
RC22801 (W0305-083) May 16, 2003
Computer Science

IBM Research Report

Hyper-Q Learning of Mixed Strategies in Multi-Player
Normal Form Games

Gerald J. Tesauro
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research
Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Hyper-Q Learning of Mixed Strategies in

Multi-Player Normal Form Games

Gerald Tesauro tesauro@watson.ibm.com

IBM Thomas J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532 USA

Abstract

This paper proposes an extension of Q-

Learning, dubbed \Hyper-Q" Learning,

which can learn mixed strategies in multi-

player normal form matrix or stochastic

games. Factors governing the possible con-

vergence of Hyper-Q learning are addressed,

including observability of the opponents'

mixed strategies. A model-free Bayesian

technique is proposed for mixed strategy es-

timation given the history of observed ac-

tions. Hyper-Q is tested in Rock-Paper-

Scissors against an Iterated Gradient As-

cent (IGA) player, and a Policy Hill Climber

(PHC) player. The Hyper-Q learner is able to

signi�cantly exploit both of these opponents,

and with Bayesian estimation it achieves

much better results than with simple Expo-

nential Moving Average estimation.

1. Introduction

Reinforcement Learning (RL) algorithms such as Q-

Learning (Watkins, 1989) are advantageous for single-

agent learning in a stationary environment, because

they can learn on-line without a model of the environ-

ment, using only observed rewards and state transi-

tions. A major focus of current research is to extend

RL to multi-agent games. The traditional approach to

games, computation of Nash equilibrium strategies, is

generally of little utility in most practical multi-agent

problems. Obstacles to the practical use of game the-

ory include: hidden or imperfect state information,

intractability of computing the equilibria, diÆculty of

equilibrium coordination (collectively agreeing on a

choice from amongst many possible equilibria), and

the likelihood that other agents may be \irrational,"

i.e. they may implement something di�erent from a

Nash equilibrium strategy.

The application of standard RL algorithms in such

games is problematic, however, because: (a) they only

learn deterministic policies, whereas mixed strategies

are generally needed; (b) the environment is generally

non-stationary due to the adaptation of other agents'

strategies. In some cases the use of normal single-

agent Q-learning in a multi-agent environment may

give good empirical results (Kephart & Tesauro, 2000;

Sridharan & Tesauro, 2000), but in general one would

expect that new algorithms are needed.

A variety of multi-agent extensions of Q-Learning have

recently been published. Littman (1994) and (?) ex-

tend Q-Learning to two-player zero-sum and general-

sum games, respectively, and are designed to converge

to Nash equilibrium solutions. These algorithms ex-

plicitly assume game-theoretic play by the opponent.

Littman (2001) and Hall and Greenwald (2001) further

consider expansion of the equilibrium solution space

to include concepts such as correlated equilibrium.

Note that these algorithms all assume full-information

games where every agent knows every other agent's

payo�. In contrast, Bowling and Veloso (2002) study

a Policy Hill Climber (PHC) variant of Q-Learning

that only uses its own actions and payo�s. The aim of

PHC is to achieve a best-response to whatever strate-

gies are used by other players, regardless of whether or

not they are game-theoretic. When combined with the

\Win or Learn Fast" (WoLF) principle for dynamically

adapting the learning rate, PHC achieves equilibrium

convergence in a number of interesting multi-agent sce-

narios.

This paper proposes an extension of Q-Learning,

dubbed \Hyper-Q" Learning, which can learn mixed

strategies in multi-player normal form matrix or

stochastic games, using observations of other agents'

play, but without knowledge of other agents' payo�s.

The key idea of Hyper-Q Learning is to learn a value

function of state-action pairs, where the \actions" are

entire mixed strategies rather than base actions, and

the \states" consist of observations or estimates of the

opponents' current mixed strategies, plus any addi-

tional stochastic-game state description. Given this

viewpoint, certain classes of opponent learning rules

such as Iterated Gradient Ascent (IGA) (Singh et al.,

2000) and Replicator Dynamics (Weibull, 1995) pro-

vide stationary \state-transition" rules. In this case

it may be possible for the Hyper-Q learner to achieve

an exact optimal strategy, provided that the issues of

function approximation and strategy observability can

be handled successfully.

In cases where the opponent strategy is not directly ob-

servable, the paper proposes two model-free techniques

for estimating the opponent's current mixed strategy

based on recent observed actions: (1) a simple expo-

nential moving average of recent actions; (2) a more

sophisticated Bayesian inference technique, in which

a probability for every state in the strategy space is

estimated, by applying a recency-weighted version of

Bayes' rule to the observed action sequence.

The Hyper-Q algorithm is implemented using both

of the above state-estimation methods, as well as

with perfect state observability, and is tested in

a repeated two-player zero-sum game (Rock-Paper-

Scissors) against two types of adaptive opponents: an

IGA player and a PHC player. The IGA player's

adaptation rule is stationary and history-independent,

while the PHC player's adaptation does have history

dependence. While not having demonstrated exact

convergence, we �nd that the Hyper-Q learning does

make signi�cant progress against both of these oppo-

nents, as demonstrated by large positive average re-

ward and by reduction in Bellman error as a function

of training time.

Section 2 of the paper develops a general formulation

of Hyper-Q for stochastic games. Section 3 discusses

a number of important issues a�ecting the possible

convergence of Hyper-Q Learning. Section 4 presents

the proposed Bayesian state estimation technique, and

compares it to a simple Exponential Moving Average

scheme. Section 5 discusses implementation details of

Hyper-Q in Rock-Paper-Scissors and presents test re-

sults against IGA and PHC. Concluding remarks are

given in section 6.

2. General Hyper-Q formulation

Recall the formulation of normal Q-learning for a sin-

gle agent in a �nite MDP, consisting of discrete time

steps t, a �nite state space S, and a �nite action set

A(s) for every s 2 S. At each time step t, the agent

observes a state s, chooses a legal action a in this state,

and then observes a payo� or immediate reward r and

a transition to a new state s0. The equation for Q-

learning is then given by:

�Q(s; a) = �(t)[r + max
b

Q(s0; b)�Q(s; a)] (1)

where is a discount parameter, and �(t) is an appro-

priate learning rate schedule. Given a suitable method

of exploring all possible state-action pairs, equation 1

is guaranteed to converge to the optimal value function

Q�, and the associated greedy policy is guaranteed to

be an optimal policy �� for the given MDP.

The generalization of a single-agent MDP to multiple

agents is called a stochastic game, also known as a

Markov game. In a stochastic game, at each time step,

each agent i independently chooses a legal action ai in

state s. The transition to a new state s0 and payo�

ri to agent i are now functions of joint actions of all

agents. An important special class of stochastic games

are matrix games, in which jSj = 1 and payo�s are

functions only of joint actions.

Rather than choosing the best action in a given state,

an agent's learning or optimization task in a stochastic

game is to choose the best mixed strategy ~xi = ~xi(s)

given the known or expected mixed strategy ~x�i(s) of

all other agents. Here ~xi denotes a set a probabilities

summing to 1 for selecting each of the Ni = Ni(s) legal

actions in state s. The space of possible mixed strate-

gies is a continuous (Ni�1) dimensional unit simplex,

and choosing the best mixed strategy is clearly more

complex than choosing the best base action.

We now consider extensions of Q-learning that may be

appropriate for stochastic games. Given that the agent

needs to learn a mixed strategy, and that this strategy

may depend on the mixed strategies of other agents, an

obvious idea is to have the Q-function evaluate entire

mixed strategies, rather than base actions, and to have

the \state" description include an observation or esti-

mate of the other agents' current mixed strategy. This

idea forms the basis of the proposed Hyper-Q learning

algorithm, which is formulated as follows. For nota-

tional simplicity, let x denote the Hyper-Q learner's

current mixed strategy, and let y denote an observed

or estimated joint mixed strategy of all other agents

(hereafter referrred to as \opponents"). At time t, the

agent generates a base action according to x, and then

observes a payo� r, a new state s0, and a new esti-

mated opponent strategy y0. The Hyper-Q function

Q(s; y; x) is then adjusted according to:

�Q(s; y; x) = �(t)[r + max
x0

Q(s0; y0; x0) (2)

�Q(s; y; x)]

The greedy policy associated with any Hyper-Q func-

tion is thus the mixed strategy x� de�ned by:

x� = argmax
x

Q(s; y; x) (3)

3. Convergence of Hyper-Q learning

There are four major issues that must be examined to

determine the conditions under which Hyper-Q learn-

ing may converge: (1) exploration; (2) function ap-

proximation; (3) opponent strategy dynamics; (4) op-

ponent strategy estimation. We consider the �rst three

issues below, followed by a separate discussion of strat-

egy estimation in the following section.

3.1. Function approximation

The proposed Hyper-Q function is a function of both

continuous actions (the agent's mixed strategy) as well

as continuous state (the opponents' mixed strategies).

To represent and learn such functions, one would in

general expect that some sort of function approxima-

tion scheme, possibly including discretization schemes

such as a uniform grid, would be necessary. Establish-

ing convergence of Q-learning with function approxi-

mation is substantially more diÆcult than for a nor-

mal Q-table for a �nite MDP, and there are a number

of well-known counterexamples. One important point

to note regarding �nite discretization schemes is that

they may cause a loss of the Markov property of the

underlying MDP (Munos, 1997).

The development of function approximation schemes

that enable Q-learning to work well in continuous state

spaces and action spaces has been an active research

topic in recent years. A number of promising schemes

have been published, including locally weighted regres-

sion (Smart & Kaelbling, 2000) and tree-based dis-

cretization (Uther & Veloso, 1998). There is a least

one discretization scheme, called Finite Di�erence Re-

inforcement Learning, that is provably convergent to

the optimal value function of the underlying continu-

ous problem (Munos, 1997).

In the implementation section of this paper, we will

study a simple uniform grid discretization of the mixed

strategies of the Hyper-Q agent and its opponents. No

attempt will be made to prove convergence under this

approximation scheme. However, we will argue that

for certain types of opponent strategy dynamics de-

scribed below, a plausible working hypothesis is that a

Finite-Di�erence-RL implementation of Hyper-Q will

be provably convergent.

3.2. Exploration

Normal Q-learning requires visiting every state-action

pair in�nitely often in order to guarantee convergence.

For training in a real environment, the issue of how to

achieve this is sometimes swept under the rug. The

clearest way to achieve this in simulated Q-learning is

through the use of exploring starts (Sutton & Barto,

1998), in which training consists of a large number of

episodes, each of which starts from a randomly selected

state-action pair. Exploring starts may not be feasible

in a real environment. In this case one may utilize o�-

policy randomized exploration, e.g., �-greedy policies.

Such procedures will ensure that, for all visited states,

every action will be tried in�nitely often, but they do

not guarantee for general MDPs that all states will

be visited in�nitely often. As a result one would not

expect the trained Q function to exactly match the

ideal optimal Q� for the MDP, although the di�erence

in expected payo�s of the respective policies should be

vanishingly small.

The above considerations should apply equally to

Hyper-Q learning in a stochastic game. The use of

exploring starts for states, agent and opponent mixed

strategies should guarantee suÆcient exploration of

the state-action space (assuming �nite resolution of

whatever function approximator is used). Without ex-

ploring starts, the agent can use �-greedy exploration

to at least obtain suÆcient exploration of its own

mixed strategy space. If the opponents also do sim-

ilar exploration, the situation should be equivalent to

normal Q-learning, where some stochastic game states

might not be visited in�nitely often, but the cost in

expected payo� should be vanishingly small. If the op-

ponents do not explore, the e�ect could be a further re-

duction in e�ective state space explored by the Hyper-

Q agent (where \e�ective state" = stochastic game

state plus opponent mixed strategy state). Again this

should have a negligible e�ect on the agent's long-run

expected payo� relative to the policy that would have

been learned with opponent exploration.

3.3. Opponent strategy dynamics

Given that the evolution of opponent mixed strategies

over time can be governed by arbitrarily complicated

dynamical rules, it seems unlikely that Hyper-Q learn-

ing will converge for arbitrary opponent strategy dy-

namics. Nevertheless, some broad categories of strat-

egy dynamics can be identi�ed under which conver-

gence should be achievable.

One very simple example is that of a �xed opponent

mixed strategy, i.e., y(s) is a constant independent of

time and independent of Hyper-Q strategy x. Sim-

ple examples would be a Rock-Paper-Scissors player

that always plays Rock, or that always plays the Nash

equilibrium (1
3
; 1
3
; 1
3
). In this case, the stochastic game

obviously reduces to an e�ective MDP with stationary

state transitions and stationary payo�s, and with the

appropriate conditions on exploration and on learning

rates, Hyper-Q will clearly converge to the optimal

value function.

Another important broad class of strategy dynamics

consists of opponent strategies that evolve according

to a �xed, history-independent dynamical rule depend-

ing only on themselves and not depending on actions

taken by the Hyper-Q player, i.e., yt+1 = f(s; yt). This

is a reasonable approximation for many-player games

in which any individual player has negligible \mar-

ket impact," or in which any player's inuence on any

other player occurs only through a global summariza-

tion function (Kearns & Mansour, 2002). In such

cases the opponent population strategy representation

need not contain details of which player does what,

but only needs to express observable summarizations

of population activity, such as averages, in order to be

acted on by individual agents. An example of such

a model is the \Replicator Dynamics" model used in

evolutionary game theory (Weibull, 1995), in which

a strategy grows or decays in a population according

to its �tness relative to the population average �tness.

This leads to a history independent �rst order di�eren-

tial equation _y = f(y) for the evolution of population

average strategy. In these types of models, the stochas-

tic game faced by the Hyper-Q learner again reduces

to an e�ective MDP in which the e�ective state (s; y)

undergoes stationary history-independent transitions,

so that Hyper-Q learning should be able to converge.

The �nal interesting class of opponent strategy dy-

namics occurs when the opponent can accurately know

or estimate the Hyper-Q strategy x, and then adapts

its strategy using a �xed history-independent rule:

yt+1 = f(s; yt; xt). This can occur in games where

players are required to announce their mixed strate-

gies, or it can occur if the Hyper-Q player voluntarily

announces its strategy. An example of this type of

model that has been studied for matrix games is the

Iterated Gradient Ascent (IGA) model (Singh et al.,

2000), in which the agent uses knowledge of the cur-

rent strategy pair (x; y) to make a small change in its

strategy in the direction of the gradient of immediate

payo� P (x; y). Once again, this type of model reduces

to an MDP with stationary history-independent tran-

sitions of e�ective state depending only on (s; y; x).

Note that the above claims of reduction to an MDP

depend in each case on the Hyper-Q learner being able

to accurately estimate the opponent mixed strategy y.

If this is not possible, then the Hyper-Q learner would

instead face a POMDP situation, and the standard

Q-learning convergence proofs would not apply. The

issue of how opponent strategies may be estimated if

they are not directly observable is now taken up in the

following section.

4. Opponent strategy estimation

In typical stochastic or matrix games, the opponent

mixed strategy is usually not directly observable. In-

stead, the only observable information available to an

agent at time t is the history Ht of joint actions, and

the agent's own payo�s. In full-information games the

history of opponent payo�s is also observable. In this

section we consider techniques for estimating oppo-

nent strategies from the history of base actions. One

approach to this would be model-based, i.e., to con-

sider a class of possible explicit dynamical models of

opponent strategy, and then choose the model in the

class that best �ts the observed data. There are two

main problems with this approach: (1) the class of

possible models of multi-agent strategy dynamics may

need to be extraordinarily large; (2) there is a well-

known danger of \in�nite regress" of opponent models

that can occur when A's model of B attempts to take

into account B's model of A.

An alternative approach that we consider in this pa-

per is a model-free approach to strategy estimation.

This is in keeping with the spirit of Q-learning, which

attempts to learn state valuations in an MDP with-

out explicitly modeling the dynamics of the underlying

state transitions.

A simple model-free estimation technique used in the

following section is the well-known Exponential Mov-

ing Average (EMA) technique. This incrementally

maintains a moving average �y of opponent strategy

by updates after each observed action according to:

�y(t+ 1) = (1� �)�y(t) + �~ua(t) (4)

where ~ua(t) is a unit vector representation of the base

action a (for example, in penny-matching, (1,0) for

heads and (0,1) for tails). EMA assumes only that

recent observations are more informative about cur-

rent strategy than older observations, and should give

a reasonably accurate estimate when signi�cant strat-

egy changes take place on time scales larger than 1=�.

4.1. Bayesian strategy estimation

A more sophisticated model-free alternative to EMA

is now presented. We assume a discretized represen-

tation of of the possible values of y, for example, by

a uniform grid on the unit simplex representing each

individual opponent's mixed strategy. Given the ob-

served history of actions H , a probability value for

each discrete y given H , P (yjH), can then be com-

puted using Bayes' rule as follows:

P (yjH) =
P (H jy)P (y)P
y0 P (H jy0)P (y0)

(5)

where P (y) is the prior probability of state y, and the

sum over y0 denotes the sum over all discrete points in

the strategy space. The conditional probability of the

history given the strategy, P (H jy), can now be decom-

posed into a product of individual action probabilitiesQt

k=0 P (a(k)jy(t)) assuming conditional independence

of the individual actions. If all actions in the history

are equally informative regardless of age, we may write

P (a(k)jy(t)) = ya(k)(t) for all k. This corresponds to

a Naive-Bayes equal weighting of all observed actions.

However, once again it is reasonable to assume that

more recent actions are more informative. The way to

implement this in a Bayesian context is with exponent

weights wk that increase with k (Hong et al., 2002).

Within a normalization factor, we then write:

P (H jy) =

tY

k=0

y
wk

a(k)
(6)

An intuitively obvious schedule for the weights is a

linear schedule wk = 1 � �(t � k); if the history is

truncated at the most recent 1=� observations, this

guarantees that all the weights are positive.

An illustration of the di�erence between EMA esti-

mation and Bayesian estimation is shown in �gure 1.

This is taken from a Rock-Paper-Scissors simulation

using two IGA players. The curves show : the true

probability of player 1 playing Rock, an EMA esti-

mate using equation 4, and a maximum-likehihood

Bayes estimate calculated using equations 5 and 6

with a uniform prior. Both estimates use � = 0:005.

The Bayes estimate generally appears to track the true

probability better, although the maximum likehihood

value is noisier, and in particular, there are large noise

spikes at the random strategy restarts occurring every

2000 time steps. This could possibly be addressed by

placing greater weight on the prior using a �cititious

number of initial observations at the start of a new

episode.

5. Implementation and Results

In this section, we examine the performance of Hyper-

Q learning in a simple two-player matrix game, Rock-

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1000 2000 3000 4000 5000 6000

Time Steps

IGA vs. IGA: Player 1 Prob(Rock)

’True_prob’
’EMA_est’

’Bayes_est’

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1000 2000 3000 4000 5000 6000

Time Steps

IGA vs. IGA: Player 1 Prob(Rock)

’True_prob’
’EMA_est’

’Bayes_est’

Figure 1. An illustration of estimates of an opponent's

mixed strategy based on observations of base actions, taken

from a Rock-Paper-Scissors simulation in which both play-

ers use the IGA learning procedure, with random strategy

restarts occurring every 2000 time steps.

Paper-Scissors. A uniform grid discretization of size

N = 25 is used to represent the mixed-strategy com-

ponent probabilities for either player. This implies

a simplex grid of size N(N + 1)=2 = 325 for either

player's mixed strategy, and thus the entire Hyper-Q

table is of size (325)2 = 105625. All simulations use

 = 0:9, and for simplicity, a constant learning rate

� = 0:01.

5.1. Hyper-Q/Bayes formulation

Three di�erent opponent state estimation schemes

were used with Hyper-Q learning: (1) \Omniscient,"

i.e. perfect knowledge of the opponent's mixed strat-

egy; (2) EMA, using equation 4 with � = 0:005; (3)

Bayesian, using equations 5 and 6 with � = 0:005 and

a uniform prior.

Modi�cation of equations 2 and 3 were implemented in

the Bayesian case to allow for a distribution of possi-

ble opponent states y, with probabilities P (yjH). The

corresponding equations are:

�Q(y; x) = �(t)P (yjH)[r + max
x0

Q(y0; x0) (7)

�Q(y; x)]

x� = argmax
x

X

y

P (yjH)Q(y; x) (8)

A technical note regarding equation 7 is that, to im-

prove tractability of the algorithm, an approximation

P (yjH) � P (y0jH 0) is used, so that the Hyper-Q table

updates are performed using the updated distribution

P (y0jH 0).

5.2. Rock-Paper-Scissors results

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 400000 800000 1.2e+06 1.6e+06

Time Steps

Hyper-Q vs. IGA: Online Bellman error

’Omniscient’
’EMA’

’Bayes’

Figure 2. Smoothed online Bellman error for a Hyper-Q

learner vs. an IGA player in Rock-Paper-Scissors, using

three di�erent opponent state estimation methods: \Omni-

scient," \EMA" and \Bayes" as indicated. Random strat-

egy restarts occur every 1000 time steps.

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0 400000 800000 1.2e+06 1.6e+06

Time Steps

Hyper-Q vs. IGA: Avg. reward per time step

’Omniscient’
’EMA’

’Bayes’
-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0 400000 800000 1.2e+06 1.6e+06

Time Steps

Hyper-Q vs. IGA: Avg. reward per time step

’Omniscient’
’EMA’

’Bayes’

Figure 3. Average reward per time step for a Hyper-Q

learner vs. an IGA player in Rock-Paper-Scissors.

We �rst examine performance of Hyper-Q when train-

ing online against an IGA player. As discussed pre-

viously, Hyper-Q should in principle be able to con-

verge against this type of opponent, apart from pos-

sible state observability and discretization issues. In

order to conform to the original implicit assumptions

underlying IGA, the IGA player is allowed to have

omniscient knowledge of the Hyper-Q player's mixed

strategy at each time step. Policies used by both play-

ers are always greedy. Restarts every 1000 time steps

reset both players' mixed strategies to uniform random

values.

Figure 2 shows a smoothed plot of the online Bellman

error, while �gure 3 shows the Hyper-Q player's av-

erage reward per time step, as a function of training

time. While not demonstrating exact convergence, the

�gures do exhibit good progress toward convergence,

as suggested by substantially reduced Bellman error

and substantial positive average reward per time step.

Among the three state estimation techniques used, the

Bayesian technique reached the lowest Bellman error

at long time scales. This is probably because it up-

dates many elements in the Hyper-Q table per time

step, whereas the other techniques only update a sin-

gle element. Bayes also has by far the worst average

reward at the start of learning, but asymptotically it

clearly outperforms the EMA technique, and comes

close to matching the performance obtained with om-

niscient knowledge of opponent state.

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 10000 20000 30000 40000

Time Steps

Asymptotic IGA Trajectory

’IGA_Rock_Prob’
’IGA_Paper_Prob’
’HyperQ_Reward’

Figure 4. Trajectory of the IGA mixed strategy against the

Hyper-Q strategy starting from a single exploring start.

Also shown is a suitably rescaled plot of the cumulative

reward obtained by the Hyper-Q player.

Part of the advantage obtained by the Hyper-Q player

over the IGA player comes from its ability to exploit

the transient behavior starting from a random initial

condition. In addition, Hyper-Q also appears to ex-

ploit the asymptotic behavior of IGA, as shown in �g-

ure 4. This plot shows that the initial transient lasts

at most a few thousand time steps. Afterwards, the

Hyper-Q policy causes IGA to basically cycle, with

erratic periodicity, between two di�erent probabilites

for Rock and two di�erent probabilities for Paper, thus

preventing IGA from reaching the Nash mixed strat-

egy. The overall pro�t to Hyper-Q during this cycling

is positive on average, as shown by the plot of cu-

mulative Hyper-Q reward. The observed cycling with

positive pro�tability is reminiscent of the cycling ob-

tained by an algorithm called PHC-Exploiter (Chang

& Kaelbling, 2002) in play against a PHC player. An

interesting di�erence is that PHC-Exploiter uses an

explicit model of its opponent's behavior, whereas no

such model is needed by a Hyper-Q learner.

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

400000 800000 1.2e+06

Hyper-Q vs. PHC: Online Bellman error

’Omniscient’
’EMA’

’Bayes’

Figure 5. Smoothed online Bellman error for a Hyper-Q

learner vs. a PHC player in Rock-Paper-Scissors.

-0.1

-0.05

0

0.05

0.1

0.15

0.2

400000 800000 1.2e+06

Time Steps

Hyper-Q vs. PHC: Avg. reward per time step

’Omniscient’
’EMA’

’Bayes’

Figure 6. Average reward per time step for a Hyper-Q

learner vs. a PHC player in Rock-Paper-Scissors.

We now exmamine Hyper-Q vs. a PHC player. PHC

is a simple adaptive strategy based only on its own

actions and rewards. It maintains a Q-table of values

for each of its base actions, and at every time step,

it adjusts its mixed strategy by a small step towards

the greedy policy of its current Q-function. The PHC

strategy is history-dependent, so that reduction to an

MDP is not possible for the Hyper-Q learner. Nev-

ertheless Hyper-Q does exhibit substantial reduction

in Bellman error, shown in �gure 5, and also signi�-

cantly exploits PHC in terms of average reward, shown

in �gure 6. Given that PHC ignores opponent state,

it should be a weak competitive player, and in fact it

does much worse in average reward than IGA. It is also

interesting to note that Bayesian estimation once again

clearly outperforms EMA estimation, and surprisingly,

it also outperforms omniscient state knowledge. This

is not yet well understood and is a focus of ongoing

research.

6. Conclusion

This paper has introduced a new multi-agent learn-

ing algorithm, Hyper-Q Learning, and a new Bayesian

technique for estimating mixed strategies of other

agents based on their observed actions. Some tanta-

lizing early results were found in Rock-Paper-Scissors

tests against some simple adaptive opponents. These

results are extremely recent, and research on this topic

should be regarded as very much a work in progress.

Obviously there is a need for vastly more research, to

develop a satisfactory theoretical analysis of the ap-

proach, an understanding of what kinds of realistic

environments it can be expcted to do well in, as well

as �eldable versions of the algorithm that can be suc-

cessfully deployed in those environments.

Signi�cant improvements in opponent state estimation

should be fairly easy to obtain. The linear formula for

setting the recency weights was only a plausible heuris-

tic, and more principled methods should be achievable.

For example, Hong et al. (2002) propose a method

for training optimal weight values based on observed

data. The use of predictive time-series methods such

as Kalman �lters and ARMA models might also result

in substantially better state estimation. Model-based

techniques are also likely to be advantageous in situ-

ations where one has a reasonable basis for modeling

the opponents' dynamical behavior.

It would be interesting to see whether full conver-

gence of Hyper-Q against IGA, possibly employing a

Finite-Di�erence-RL scheme, could be achieved. At a

minimum, the use of properly decaying learning-rate

schedules �(t) should be investigated. More empirical

tests against other types of opponents, where conver-

gence cannot be guaranteed or expected, would also

be interesting. One obvious source of opponents is

the International RoShamBo Programming Competi-

tion (RoShamBo, 2001), a tournament for computer-

ized Rock-Paper-Scissors players.

The most interesting test of Hyper-Q, however, would

be to see if it can converge against itself. This has not

yet been tried. A Hyper-Q learner certainly is a non-

stationary dynamical system when viewed by another

Hyper-Q learner, so proving convergence by reduction

to an MDP seems unlikely. It is worth noting, how-

ever, that if a Hyper-Q learner converges, its dynam-

ics become stationary, so that self-consistent solutions

may exist where each agent's Hyper-Q function is op-

timal given the policy of the other agents. It then be-

comes an interesting question whether Hyper-Q learn-

ing could actually �nd such solutions when they exist.

This is entirely analogous to the situation found for

simultaneous Q-learning in two-player dynamic pric-

ing (Kephart & Tesauro, 2000): in some models stud-

ied, self-consistent optimal solutions did exist, and in

many but not all cases, ordinary Q-learning was able

to �nd them.

Acknowledgements

The author thanks Michael Bowling for helpful dis-

cussions regarding implementation of the PHC algo-

rithm, and Irina Rish for helpful discussions regarding

Bayesian state estimation.

References

Bowling, M., & Veloso, M. (2002). Multiagent learning

using a variable learning rate. Arti�cial Intelligence,

136, 215{250.

Chang, Y.-H., & Kaelbling, L. P. (2002). Playing is

believing: the role of beliefs in multi-agent learning.

Proceedings of NIPS-2001. MIT Press.

Hall, K., & Greenwald, A. (2001). Correlated Q-

learning. Proceedings of DIMACS Workshop on

Computational Issues in Game Theory and Mech-

anism Design.

Hong, S. J., Hosking, J., & Natarajan, R. (2002). Mul-

tiplicative adjustment of class probability: educating

naive Bayes (Technical Report RC-22393). IBM Re-

search.

Hu, J., & Wellman, M. P. (1998). Multiagent rein-

forcement learning: theoretical framework and an

algorithm. Proceedings of the Fifteenth International

Conference on Machine Learning (pp. 242{250). San

Francisco: Morgan Kaufmann.

Kearns, M., & Mansour, Y. (2002). EÆcient

Nash computation in large population games with

bounded inuence. Proceedings of UAI-02 (pp. 259{

266).

Kephart, J. O., & Tesauro, G. J. (2000). Pseudo-

convergent Q-learning by competitive pricebots.

Proceedings of the Seventeenth International Con-

ference on Machine Learning (ICML-00) (pp. 463{

470). Morgan Kaufmann.

Littman, M. L. (1994). Markov games as a frame-

work for multi-agent reinforcement learning. Pro-

ceedings of the Eleventh International Conference

on Machine Learning (pp. 157{163). San Francisco:

Morgan Kaufmann.

Littman, M. L. (2001). Friend-or-Foe Q-learning in

general-sum games. Proceedings of the Eighteenth

International Conference on Machine Learning. San

Francisco: Morgan Kaufmann.

Munos, R. (1997). A convergent reinforcement learn-

ing algorithm in the continuous case based on a

�nite di�erence method. Proceedings of IJCAI-97

(pp. 826{831). Morgan Kaufman.

RoShamBo (2001). Second International

Roshambo Programming Competition.

http://www.cs.ualberta.ca/�darse/rsbpc.html.

Singh, S., Kearns, M., & Mansour, Y. (2000). Nash

convergence of gradient dynamics in general-sum

games. Proceedings of UAI-2000 (pp. 541{548).

Morgan Kaufman.

Smart, W. D., & Kaelbling, L. P. (2000). Practical

reinforcement learning in continuous spaces. Pro-

ceedings of ICML-00 (pp. 903{910).

Sridharan, M., & Tesauro, G. (2000). Multi-agent Q-

learning and regression trees for automated pricing

decisions. Proceedings of the Seventeenth Interna-

tional Conference on Machine Learning (ICML-00)

(pp. 927{934). Morgan Kaufmann.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement

Learning: An Introduction. Cambridge, MA: MIT

Press.

Uther, W. T. B., & Veloso, M. M. (1998). Tree based

discretization for continuous state space reinforce-

ment learning. Proceedings of AAAI-98 (pp. 769{

774).

Watkins, C. (1989). Learning from delayed rewards.

Doctoral dissertation, Cambridge University, Cam-

bridge.

Weibull, J. W. (1995). Evolutionary Game Theory.

The MIT Press.

