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Abstract

We study a capacitated network design problem arising in the design of pri-

vate line networks. Given a complete graph, a subset of its node set (the \hub"

set), and point-to-point traÆc demands, the objective is to install capacity on

the edges (using several batch sizes and nonlinear costs), and route traÆc in

the resulting capacitated network, so that 1) all the demand between a pair of

nodes is routed along a single path, and 2) the demand is either sent directly

from source to sink, or via a number of hub nodes. We �rst formulate an initial

integer program, and various approximations to it. Valid inequalities are then

derived for a special knapsack problem involving both integer and 0-1 variables

arising from the capacity constraints on an edge. These and related inequalities

are then used to strengthen the formulations. Computational results using these

inequalities within a general purpose branch-and-cut system are presented.
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yIBM Research, U.S.A. Research partially supported by a post-doctoral fellowship at CORE and
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1 Introduction

The problem studied in this paper is a minimum cost capacitated multi-commodity

ow problem. Given a set of known demands between certain pairs of nodes, the

problem is to install suÆcient \bandwidth" capacity on each of the edges such that

each demand can be routed on a single path from source to sink. The capacity on

each edge is installed in discrete amounts and the associated costs are nonlinear.

The total edge capacity installation costs are to be minimized.

Applications of this problem (or its variants) arise in the telecommunications

industry for both service providers (i.e. long-distance carriers) and their customers.

Our motivation for this study comes from the customer side where the nodes of the

network correspond to the oÆces and production facilities of a big corporation with

nationwide operations. Usually a corporation leases private lines between pairs of

its sites from a telecommunications carrier in order to satisfy its data transmission

requirements. A private line is a physical analog or digital line, which is permanently

available and used exclusively by a single customer of the telecommunications carrier.

The customer has to pay monthly recurring charges depending on the terms

of the contract with the telecommunications carrier, on the bandwidth of the line,

and on the distance covered by the line. A bandwidth refers to the information-

carrying capacity of the line. It is generally speci�ed in kilobits per second (Kbps).

Bandwidth is provided in certain discrete values, usually in integral multiples of

64Kbps (normal telephone lines) and of 1,544 Kbps (a batch of 24 lines carrying

64 Kbps each, called T1 lines). The associated costs are nonlinear in the number

of leased 64Kbps lines, while the costs are linear in the number of 1,544Kbps lines.

There is also a break-even cost, i.e. it is cheaper to lease a 1,544Kbps line if the

bandwidth exceeds a certain number of single 64Kbps lines. The dependence of

the tari�s on the distance is given by distance rate bands. The distance is usually

determined by the mileage computed from the geographical locations of the customer

sites.

Although it is diÆcult to obtain accurate input data on transmission require-

ments for this problem, the telecommunications sta� of the corporation has suÆ-

cient information on which �xed logical site-to-site connections and bandwidths are
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needed. The objective is to (re-)design the structure of the corporation's private

line network so that the total private line costs are minimized and that the given de-

mands on data connections are routed via single paths through the network. Only a

prede�ned subset of sites - the so called hub sites - can be used for routing purposes.

These hub sites are provided with the appropriate technical routing equipment and

trained personnel.

The results of the optimization serve as a decision support for the management

whenever new contracts have to be negotiated with the telecommunications carriers,

new sites are established or existing sites are shut down.

A second objective related to this study was the development of general purpose

mixed integer programming software capable of solving such problems, see PAMIPS

[15]. This inuenced the choice of a multicommodity ow formulation by the user,

and led us to develop an algorithmic approach adapted for use with a general purpose

solver.

Many related network design problems have been studied recently in which the

capacity installation options di�er slightly. Barahona [3], Bienstock and Gunluk

[4], Bienstock et al.[5] and Magnanti, Mirchandani and Vachani[12] among others

treat problems in which demands can be split among several paths. A variety

of inequalities and separation algorithms have been developed both for families of

valid inequalities of a global nature such as cut and strengthened cut inequalities

[3],[4],[5],[11],[12], partition inequalities [4],[5],[12] and ow cut-set inequalities [4],

and local edge cuts such as the residual capacity inequalities [12].

Problems involving sending ow on a single path have been treated by Balakr-

ishnan, Magnanti and Wong [2] for tree graphs, Gavish and Altinkemer [10] for the

design of a backbone network with a nonlinear objective function, and Dahl, Martin,

and Stoer [9] for a problem similar to that treated here except for additional "pipe

network" constraints, and a simpler cost structure.

We now describe the contents of the paper. In Section 2 we describe the problem,

and give an initial multi-commodity integer programming formulation of the prob-

lem. This contrasts with the cut formulation used in [9]. The nonlinear nature of the

cost structure on each edge forces one to use a considerable number of 0-1 variables

to obtain a linear integer programming formulation. This leads us to develop two
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simpli�ed models, one a relaxation providing a lower bound on the optimal value of

the original problem, and the other a restriction providing an upper bound.

In Section 3 we study the polyhedral structure of an edge capacity submodel

obtained by just considering the traÆc ow and bandwidth installation on a single

edge. This leads to a knapsack constraint in which 0�1 variables appear on one side

representing the demands that pass through that edge, and on the other side there

is both a set of 0�1 variables linked by a generalized upper bound constraint and an

integer variable representing the choices for the installation of bandwidth capacity.

Valid inequalities are derived. In Section 4 we investigate how cut-set inequalities

can be adapted for our speci�c problem. As shown in [3] and [4], cut inequalities

are typically the most important inequalities as they contain global, as opposed to

local (single edge or single node) information. However �nding out on which cuts

to generate these inequalities is typically a diÆcult problem requiring the use of

separation heuristics embedded in a cutting plane procedure and the development

of a special purpose system.

In Sections 5 and 6 we discuss computational results using a prototype gen-

eral purpose branch-and-cut mixed integer programming solver bc � opt based on

XPRESS. The desire to use such a system means that the main options are to

strengthen the problem formulation a priori and de�ne the problem-speci�c cuts

to be used a priori so as to avoid having to develop special purpose cutting plane

routines. Three approaches are examined all making use of some of the inequalities

developed in Section 3. The �rst is to use the approximate problems to �nd hopefully

good feasible solutions and tight bounds. The second is an exact solution approach,

and the third is a cut-and-�x heuristic approach in which we use the LP values

of certain variables after the addition of cuts to �x or restrict the branch-and-cut

search tree.

2 A Formulation

The input consists of a node set V = f1; : : : ; ng, a nonempty subset H � V of hub

nodes, a demand graph G = (V;Q), a demand vector d 2 R
jQj
+ , and the capacity

installation costs described below.
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The quantity dq associated with demand q 2 Q must ow on a single directed

path from iq to jq where iq; jq 2 V with iq < jq. The choice of paths is restricted

either to the single arc (iq; jq), or to a path of distinct nodes iq; v1; : : : ; vr; j
q where

r � 1 and v1; v2; : : : ; vr 2 H. Thus all intermediate nodes on a path must be hub

nodes. Therefore, although all arcs of the complete digraph on V can potentially

carry ow, only a subset of the arcs are candidates for a speci�c instance. Speci�cally

let Aq be the set of all arcs lying on at least one feasible path from iq to jq, A =

[q2QA
q and D = (V;A) be the resulting digraph associated with the demand graph

G. Note that provided that the demand graph contains at least two distinct sources

and two distinct sinks, A contains all arcs (i; j) with i; j 2 H, A contains an arc

(i; j) with i; j 2 V n H if and only if i < j and (i; j) = (iq; jq) for some q 2 Q, A

contains an arc (i; j) with i 2 H; j 2 V n H if and only if there exists some q 2 Q

with jq = j, and similarly an arc (i; j) with i 2 V n H; j 2 H if and only if there

exists some q 2 Q with iq = i.

Cost data is provided for each edge of the complete graph on V . For each edge

e, the costs fce;kg
m�1
k=1 of installing k individual units of capacity are given with

0 < ce;1 < : : : < ce;m�1, and also the cost fe per multiple of m = 24 units. Again

the data suggests some immediate preprocessing. If Eq = fe = (i; j) : (i; j) 2 Aq

or (j; i) 2 Aqg, and E = [q2QE
q, then only edges in E are candidates for the

installation of capacity. In addition if �e = min[minfk : ce;k+1 � feg;m � 1], one

only needs to consider installing between 1 and �e single units, and/or multiples of

m units on edge e 2 E.

The following variables are used to formulate the problem:

wq
ij = 1 if the path chosen for demand q 2 Q contains arc (i; j) 2 Aq

ze;k = 1 if k single units are installed on edge e 2 E

xe is the number of single units installed on edge e 2 E,

ye is the number of batches of m units installed on edge e 2 E.

Letting N q be the node-arc incidence matrix associated with Aq, the problem

can now be formulated as (P ):
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min :
X
e2E

(
�eX
k=1

ce;kze;k + feye) (1)

subject to :

N qwq = Æq for q 2 Q (2)
X

q:(u;v)2Aq

dqw
q
uv +

X

q:(v;u)2Aq

dqw
q
vu � xe +mye for e = (u; v) 2 E (3)

�eX

k=1

ze;k � 1 for e 2 E (4)

xe =
�eX
k=1

kze;k for e 2 E (5)

ze;k 2 f0; 1g for k = 1; : : : ; �e; e 2 E (6)

wq
e 2 f0; 1g for e 2 Eq; q 2 Q (7)

xe; ye 2 Z+ for e 2 E (8)

where for all q 2 Q, Æq 2 f0; 1gjV j with Æqv = 0 for v =2 fiq; jqg; Æqiq = 1 and Æqjq = �1.

Here constraints (2) are ow conservation constraints, (3) is the capacity constraint

on edge e, while (4) and (5) describe how the small capacity xe is constructed. Note

that because all the installation costs are positive, there always exists an optimal

solution in which each demand selects a route not containing a cycle, and therefore

chooses a single path as required.

2.1 Edge Sets

So as to study certain edge sets, and then to obtain two simpli�ed problems requiring

less variables, we now introduce some additional variables and notation.

Note that for e = (u; v) 2 Eq, either variable wq
uv or variable w

q
vu or both exist.

We introduce the new variable !qe = wq
uv +wq

vu. The variable !
q
e is a f0; 1g variable

because no directed path passes more than once through an edge and the solutions

are cycle-free. Also let Q(e) = fq 2 Q : e 2 Eqg.

Now we de�ne the two sets that we study in the next section: the simple edge
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knapsack set

Ye =
n
(!e; xe; ye) 2 BjQ(e)j � Z1

+ � Z1
+ :

X

q2Q(e)

dq!
q
e � xe +mye

o

and the mixed edge knapsack set

Xe =
n
(!e; xe; ye; ze) 2 BjQ(e)j � Z1

+ � Z1
+ �B�e : (!e; xe; ye) 2 Ye; (xe; ze) satis�es (4),(5)

o

The constraint set of the original problem can now be written as U =

N qwq = Æq for q 2 Q

!qe = wq
uv + wq

vu for e = (u; v) 2 Eq; q 2 Q

(!e; xe; ye; ze) 2 Xe for e 2 E

wq
uv 2 f0; 1g for (u; v) 2 Aq; q 2 Q

2.2 Equivalent Formulations

Here we derive two formulations based on U involving less variables, obtained by

projecting out some or all of the binary capacity variables ze;k. In one we linearize

the cost function for the unit capacities, and in the second we partially linearize it.

First note that

n
xe : (xe; ze) 2 Z1

+ �B�e satis�es (4) and (5)
o
=
n
xe 2 Z1

+ : xe � �e
o
;

and thus

n
(!e; xe; ye) : (!e; xe; ye; ze) 2 Xe

o
=
n
(!e; xe; ye) : (!e; xe; ye) 2 Ye; xe � �e

o
:

It follows that the feasible region ~U :

N qwq = Æq for q 2 Q

!qe = wq
uv +wq

vu for e = (u; v) 2 Eq; q 2 Q

(!e; xe; ye) 2 Ye for e 2 E

wq
uv 2 f0; 1g for (u; v) 2 Aq; q 2 Q

xe � �e for e 2 E:
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has the property that for any (x; y; w; !) there exists z such that (x; y; w; !; z) 2 U

if and only if (x; y; w; !) 2 ~U .

In the second reformulation, the z variables are only partially eliminated. In

particular we keep the exact value for one unit, and then linearize the costs for two

units and upwards to give a better approximation. Speci�cally de�ning

ue =
�eX
k=2

kze;k; ve =
�eX
k=2

ze;k (9)

note that the set

We = f(xe; ze;1; ue; ve) : (xe; ze; ue; ve) 2 Z1
+ �B�e � Z1

+ �B1 satis�es (4),(5),(9) g

= f(xe; ze;1; ue; ve) 2 Z1
+ �B1 � Z1

+ �B1 : xe = ze;1 + ue; ze;1 + ve � 1;

2ve � ue � �eveg:

Now we obtain the feasible region �U :

N qwq = Æq for q 2 Q

!qe = wq
uv + wq

vu for e = (u; v) 2 Eq; q 2 Q

(!e; xe; ye) 2 Y 0
e for e 2 E

(xe; ze;1; ue; ve) 2 We for e 2 E

wq
uv 2 f0; 1g for (u; v) 2 Aq; q 2 Q:

with the property that for any (x; y; w; !) there exists z such that (x; y; w; !; z) 2 U

if and only if there exists (z:1; u; v) such that (x; y; w; !; z:1; u; v) 2 �U .

2.3 Relaxations and Restrictions of (P )

Formulations ~U and �U can be used to obtain either relaxations or restrictions of

(P ). To obtain a relaxation, let ge = mink=1;:::;�e
ce;k
k
. Now if (xe; ze) 2 Z1

+ � B�e

satis�es (5),
�eX

k=1

ce;kze;k �
�eX

k=1

kgeze;k = gexe:

It follows that

(P 0) minf
P

e2E gexe +
P

e2E feye : (x; y; w; !) 2
~Ug
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is a relaxation of (P ).

Now taking he = maxk=2;:::;�e
ce;k�ce;1
k�1 , we see that for (xe; ze;1; ue; ve) 2 Z1

+ �

B1 � Z1
+ �B1 satisfying (4),(5) and (9)

�eX
k=1

ce;kze;k = ce;1

�eX
k=1

ze;k +
�eX
k=2

(ce;k � ce;1)ze;k

� ce;1(ze;1 + ve) +
�eX

k=2

(k � 1)heze;k

= ce;1(ze;1 + ve) + he

�eX

k=2

kze;k � he

�eX

k=2

ze;k

= ce;1ze;1 + (ce;1 � he)ve + heue:

It follows that the problem ( �P 1)

min
nX
e2E

[ce;1ze;1 + (ce;1 � he)ve + heue] +
X
e2E

feye : (x; y; w; z:1; u; v) 2 �U
o

is a restriction of (P ).

Note that the optimal values of (P 0) and (P
1
) provide lower and upper bounds

respectively on the optimal value of (P ).

3 The Edge Capacity Submodel

Here we concentrate on developing valid inequalities for the following edge capacity

sets

Y = f(!; x; y) 2 BjQj � Z1
+ � Z1

+ :
X
q2Q

dq!q � x+myg, and,

X = f(!; x; y; z) 2 BjQj � Z1
+ � Z1

+ �B� : (!; x; y) 2 Y; x =
�X

k=1

kzk;
�X

k=1

zk � 1g

where the subscript e has been dropped and � � m. We also abuse notation by

using Q in place of Q(e). Throughout this section, we suppose that dq 2 Z1
+ for all

q 2 Q. In an earlier version of this paper [6], we consider the case when dq 2 R1
+ and

derive valid inequalities that are similar to the ones presented in this paper. Some

of the inequalities presented in [6] are further studied in [1], see also [16].
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3.1 Valid Inequalities

We introduce the notation dS =
P

q2S dq; �S = ddS
m
e; rS = dS � m(�S � 1) and

cS =
P

q2S �q � �S � 0 for all S � Q. Also for simplicity we will write �q for �fqg,

etc.

Proposition 1 For all S � Q with dS not an integral multiple of m, the inequality

x+ rSy + [rScS �
X
q2S

(rS � rq)
+] �

X
q2S

[rS�q � (rS � rq)
+]!q

+
X

q2QnS

[rS(�q � 1) + (rS + rq �m)+]!q

is valid for Y .

Proof. Letting �!q = 1�!q for S � Q, and dividing by m, all feasible points satisfy

X
q2S

�dq
m

�!q +
X

q2QnS

dq
m
!q � y �

�dS
m

+
x

m

with all variables nonnegative and �!q; !q and y integral.

Letting fS = �dS
m

� b�dS
m

c; fq = �dq
m
� b�dq

m
c for q 2 S and fq =

dq
m
� bdq

m
c for

q 2 Q n S, the MIR inequality [14] is:

X
q2S

h
� �q +

(fq � fS)

1� fS

+i
�!q +

X

q2QnS

h
(�q � 1) +

(fq � fS)

1� fS

+i
!q � y

� ��S +
x

m(1� fS)

It is readily checked that rS = m(1 � fS); rq = m(1 � fq) for q 2 S, and rq = mfq

for q 2 Q n S. Now after multiplying by rS , the inequality can be rewritten as :

rS
X
q2S

[��q + (rS � rq)
+]�!q +

X

q2QnS

[rS(�q � 1) + (rS + rq �m)+]!q

� �rS�S + rSy + x:

Finally after recomplementing the variables �!q for q 2 S, we obtain the inequality.

Corollary. The following inequalities

x+ rS(y + cS) �
X
q2S

rS�q!q +
X

q2QnS

[rS(�q � 1) + (rS + rq �m)+]!q; (10)

y + cS + 1 �
X
q2S

�q!q +
X

q2QnS

(�q � 1)!q (11)
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are valid for Y .

Proof. To obtain inequality (10), it suÆces to take a weakening of the MIR in-

equality in the proof of Proposition 1.

X
q2S

��q �!q +
X

q2QnS

[(�q � 1) +
(fq � fS)

1� fS

+

]!q � y � ��S +
x

m(1� fS)

After multiplication by rS and complementation this gives (10).

As x � m for all feasible points, we have that m+my �
P

q2Q dq!q. Following

exactly the same steps as in the proof above, leads to the MIR inequality

X
q2S

[��q +
(fq � fS)

1� fS

+

]�!q +
X

q2QnS

[(�q � 1) +
(fq � fS)

1� fS

+

]!q � y

� ��S + 1:

Weakening the inequality by dropping the fractional part of the coeÆcients gives

X
q2S

��q�!q +
X

q2QnS

(�q � 1)!q � y � ��S + 1

which after complementation gives (11).

Now we derive valid inequalities for X.

Proposition 2 For any S � Q with dS not an integral multiple of m, the inequali-

ties

X

k<rS

kzk + rS
X

k�rS

zk + rSy + [rScS �
X
q2S

(rS � rq)
+] � (12)

X
q2S

[rS�q � (rS � rq)
+]!q +

X

q2QnS

[rS(�q � 1) + (rS + rq �m)+]!q

and X

k�rS

zk + y + cS �
X
q2S

�q!q +
X

q2QnS

(�q � 1)!q (13)

are valid for X.
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Proof. Consider a point (!; x; y; z) 2 X. If zk = 0 for all k > rS , the lhs (left hand

side) of the inequality (12) is x+ rSy+ [rScS �
P

q2S(rS � rq)
+]. From Proposition

1, this is greater than or equal to the rhs of the inequality.

If zk = 1 for some k > rS, lhs then equals rS + rSy + [rScS �
P

Q2S(rS � rq)
+].

As x � m, the point (w; y+1; 0) is also feasible, and so by Proposition 1, rS+rSy+

[rScS �
P

Q2S(rS � rq)
+] � rhs. Thus inequality (12) is valid.

From a weakening of inequality (10) in the Corollary, we have that

x

rS
+ y + cS �

X
q2S

�q!q +
X

q2QnS

(�q � 1)!q

If
P

k�rS zk = 0, then x < rS or x
rS

< 1, and therefore

y + cS >
X
q2S

�q!q +
X

q2QnS

(�q � 1)!q � 1:

Therefore as all the terms in this expression are integral, y + cS �
P

q2S �q!q +P
q2QnS(�q � 1)!q and inequality (13) is valid.

If
P

k�rS
zk = 1, then adding this equality to (11) of the Corollary, we see that

the inequality is again valid.

Example. Consider an instance with d1 = 22; d2 = 34; d3 = 15 and m = 10. We

have that �1 = 3; �2 = 4; �3 = 2; r1 = 2; r2 = 4; r3 = 5.

Taking S = f1; 2g; �S = 6; rS = 6 and cS = 1, Proposition 1 tells us that the

inequality

14!1 + 22!2 + 7!3 � x+ 6y

is valid for Y , and Proposition 2 that the inequalities

14!1 + 22!2 + 7!3 �
X

k<6

kzk + 6
X

k�6

zk + 6y

and

3!1 + 4!2 + !3 � 1 + y +
X
k�6

zk

are valid for X.

12



With S = f1; 2; 3g; �S = 8; rS = 1 and cS = 1. In this case all three inequalities

obtained are identical

3!1 + 4!2 + 2!3 � 1 + y + x:

4 Cut-set inequalities.

In this section, we discuss some extensions to the well-known cut-set inequalities.

The cut-set inequalities have been successfully applied to similar problems (see [3],

[4], [5], [11]) and [12]) .

For S � V and K � Q let Æ(S) = ffi; jg 2 E : jfi; jg \ Sj = 1g, Q(S) = fq 2

Q : jfiq; jqg \ Sj = 1g, d(K) =
P

q2K dq and r(K) = d(K) �m(dd(K)=me � 1). It

is easy to see that the following simple MIR inequality

X

e2Æ(S)

(xe + r(Q(S))ye) � r(Q(S)) dd(Q(S))=me (14)

associated with the cut-set inequality
P

e2Æ(S) (xe +m ye) � d(Q(S)) is valid for

(P).

Using the special structure of (P), these inequalities can be modi�ed as follows:

Let S � V and �K � Q(S) be given. De�ne �Æ = Æ(S)\ ([q2 �KE
q) to be the collection

of edges in Æ(S) that can carry at least one demand in �K. Furthermore, for e 2 �Æ

let �me = minfm;
P

q2 �K:e2Eq
dqg. Then, the following modi�ed cut-set inequality:

X

e2�Æ

xe +
X

e2�Æ:me<r( �K)

�me ye +
X

e2�Æ:me�r( �K)

m ye � d( �K): (15)

and thus, the associated simple MIR inequality:

X

e2�Æ

xe +
X

e2�Æ

min
n
�me; r( �K)

o
ye � r( �K)

�
d( �K)=m

�
: (16)

are valid for (P).
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5 Computation

In this section, we describe the main components of our computational study: the

preprocessing of the initial model, the inequalities added a priori and as "model"

cuts, and the cuts generated in the branch and cut system.

In our computational study we have examined three problems: the original prob-

lem (P ), the problem (P 0) that provides a lower bound on the optimal value of (P ),

and the problem (P
1
) that provides an upper bound. The discussion below is essen-

tially restricted to problem (P ), but is similar for the other two models.

Our initial formulation for (P ) consists of (1)-(8) except that the xe variables

are eliminated by substituting (5) in (3).

5.1 Initial Reformulation

The �rst modi�cation just involves simple tightening of some bounds. Letting L(e) =
P

q2Q(e) dq denote the maximum possible ow on edge e, setting he = minf�e; L(e)g

and me = minfm;L(e)g, we can replace (3) by

X

q2Q(e)

dqw
q
uv +

X

q2Q(e)

dqw
q
vu �

heX
k=1

kze;k +meye

with ye � dL(e)
m

e. Speci�cally if D(u) =
P

q2Q:u2fiq;jqg dq is the sum of all demands

with source or sink in node u, then if e = (u; v) with u =2 H and v 2 H, we have

that L(e) = D(u).

We also add an inequality for each node. Speci�cally for each node i 2 V , we

take the aggregate cut-set constraint

X

e2Æ(i)

(xe +mye) �
X

q2Q:i2fiq ;jqg

dq

and add the corresponding MIR inequality

X

e2Æ(i)

(xe + rye) � r�

where � = d
P

q2Q:i2fiq;jqg dq=me and r =
P

q2Q:i2fiq;jqg dq�m(�� 1). These we call

simple cut-set inequalities.
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This completes the �rst a priori reformulation. Some further tightening is pos-

sible if one uses the fact that certain edges are only potentially used for a single

demand.

5.2 A Priori (Model) Cuts

The next step involves the edge capacity inequalities developed in Proposition 2.

For each singleton set S = fqg � Q, and for each edge e 2 Eq, take a weakening

X
k�rq

ze;k + ye � �q!
q
e

of the second inequality from Proposition 2. These inequalities are generated a priori

in the model and classi�ed as model cuts. For models (P 0) and (P
1
), we use the

corresponding weakening of inequality (11) of the Corollary to Proposition 1:

xe + rqye � rq�q!
q
e :

5.3 The Branch-and-Cut Algorithm

The approach using bc� opt is now described:

� Take the initial formulation. Tighten and reformulate adding the simple cut-

set and edge capacity inequalities.

� Run bc-opt, designating the edge capacity inequalities as model cuts.

� bc� opt solves the resulting linear programming relaxation without the model

cuts, and then adds violated model cuts as cutting planes.

� bc� opt then generates violated integer knapsack constraints on the edge ca-

pacity constraints.

� In the tree, directives (priorities) are used with priority given to the y; z; !

variables in that order. Knapsack cuts are generated every 8 nodes in the tree.

Non-binding cuts are deleted at the top node as well as in the tree. A "best

bound among all" search strategy is used for the �rst 255 active nodes.
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5.4 An Upper Bound Cut-and-Fix Heuristic

In an e�ort to obtain a good feasible solution quickly, we use a cut-and-�x heuristic,

based on the observation that in the optimal solution to the tightened formulation

many of the capacity variables are either integral, or are very close to integral. The

idea is to apply branch-and-cut to the tightened formulation, but to restrict the

search to solutions that are not very di�erent from this fractional one. In particular

if p̂ = [ẑ; ŷ; ŵ] is the solution to the LP before branching, then we choose a small pos-

itive number � and modify the bounds on the capacity variables as follows: dŷe + �e

� ye � bŷe � �c for all e 2 E. The resulting formulation, called the \restricted

formulation", is solved to optimality by applying branch-and-cut. It is hoped that

it will solve more quickly and that the resulting solutions give tight upper bounds

for the original problem.

6 Computational Results

6.1 The Test Instances

Below we discuss our algorithmic approach and computational results obtained for

the two approximate problems (P 0) and (P
1
) and the real problem (P ). The data

set consists of four instances. All four instances are generated with the real cost

and demand data. The demand data is integer and m = 24. The largest model

corresponds to the real problem to be solved. The size of the four instances for

the initial formulations of (P 0) and (P ) is indicated in Table 1, where rows is the

number of constraints, cols the total number of variables, and 0� 1 the number of

binary variables.

6.2 Branch-and-Cut for the Approximate Problems (P 0) and ( �P 1)

The results presented below have all been obtained using bc� opt based on version

9.36 of the XPRESS-MP subroutine library (XOSL) running on a Pentium 166 MX

PC.

In the Tables, InitLP gives the linear programming value for the original formu-

lation, LP the value with bound tightening and single node cuts, XLP1 after also
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Problem Total Hub All Problem P 0 Problem P

Instance Nodes Nodes Demands rows cols 0� 1 rows cols 0� 1

net20 20 8 24 333 1504 1256 457 1939 1815

net28 28 8 32 469 2088 1712 657 2647 2459

net32 32 10 49 806 4923 4381 1077 5915 5644

net54 54 10 74 1303 7660 6676 1795 8954 8462

Table 1: Problem Instances

adding model cuts, and XPL2 after bc � opt has generated knapsack cuts. Time

and Nodes denote the total running time in secs, and the number of nodes in the

branch-and-cut tree.

In Table 2 we present the results for the lower bounding problem (P 0).

Instance InitLP LP XLP1 XLP2 IP Time Nodes

net20 12096 13664 14926 15633 16,030 28 36

net28 15422 17293 18708 19357 19848 31 39

net32 20254 21419 23829 24696 25248 1330 168

net54 28149 28826 31522 32453 32840 2084 169

Table 2: Computational Results for LB(P 0)

In Table 3 we present the results for the upper bounding problem (P
1
) for the

smaller instances with 20 and 28 nodes. Just from these instances we see that the

running times for this reformulation are very large, and we decided that there was

little to gain from this approach. However it was observed that the quality of the

solutions obtained was very good.

6.3 Branch-and-Cut for the Real Problem (P )

The results are shown in Table 4. The di�erence in values between InitLP and

IP suggests that these problems are diÆcult to solve without using cuts. This
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Instance InitLP LP XLP1 XLP2 IP Time Nodes

net20 12096 13688 15197 16106 17360 737 2706

net28 15422 17388 19040 19917 21229 2319 4153

Table 3: Computational Results for UB( �P 1)

Instance InitLP LP XLP1 XLP2 IP Time Nodes

net20 12096 13664 15445 16086 17263 320 712

net28 15422 17321 19271 19829 21107 542 936

net32 20254 21509 25102 25734 26689 4245 889

net54 28149 29256 32928 33498 34406 11887 1786

Table 4: Computational Results for (P )

is con�rmed in that pure branch-and-bound takes 5865 seconds to solve net20 to

optimality with directives running XPRESS version 10.04 on the same PC.

6.4 Results with the Cut-and-Fix Heuristic

We also tested the heuristic approach described in Section 5.4 based on the fractional

solution [ẑ; ŷ; ŵ] to the tightened formulation (with value XLP2). We used � = 0

and thus �xed the bounds of the capacity variables y to dŷee � ye � bŷec for all

e 2 E before starting with the enumeration.

The results and running times are shown in Table 5. Note that the LP and XLP

values have increased because the XPRESS preprocessor is able to pro�t from the

tightened bounds. Observe that for each of the four instances, the heuristic �nds the

optimal solution. However the running time for the 54 node instance is signi�cantly

less than the time needed to prove optimality as shown in Table 4.
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Instance LP XLP IP Time Nodes

net20 13664 16414 17263 134 565

net28 17321 20226 21107 253 742

net32 21509 25895 26689 2103 987

net54 29256 33651 34406 5703 991

Table 5: Heuristic Results with bc-opt

7 Conclusion

Above we have presented results based on a combination of simple special purpose

cuts, and general purpose integer knapsack cuts to solve and prove optimality for

a set of �xed charge network design problems arising in practice. The results show

that it is possible to solve such problems using a formulation with ow conservation

constraints to represent the paths. The fact that the set of hub nodes is small may

be one reason for the success of the approach based on local cuts that look only at

individual nodes and edges. In many other applications, cut constraints of the type

discussed in Section 4 have turned out to be the most critical cuts.

We have also shown that an appropriate \cut and �x" heuristic permits us to

�nd very good solutions in a fraction of the time required to prove optimality. This

means that, combined with the tight lower bounds, solutions guaranteed within a

small percentage of optimality can be obtained in reasonable time.

The approximating problems tested give somewhat disappointing results in that

the simple lower bounding problem gives weak lower bounds, and the quality of the

resulting feasible solutions was not very good, whereas the upper bounding problem

gave good solutions, but was very diÆcult to solve. This approach probably deserves

further exploration.

More generally the valid inequalities developed in Section 3 show that our knowl-

edge of the polyhedral structure of knapsack problems is still in it infancy. Also the

fact that the cuts we use are dominated by Gomory mixed integer cuts suggests that

developing a separation routine for Gomory mixed integer cuts working on rows of
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the initial formulation is a promising research topic.
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