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The Effects of Nonsymmetric Matrix Permutations
and Scalings in Semiconductor Device and Circuit

Simulation
Olaf Schenk, Member, IEEE, Stefan Röllin, and Anshul Gupta, Member, IEEE

Abstract— The solution of large sparse unsymmetric linear
systems is a critical and challenging component of semiconductor
device and circuit simulations. The time for a simulation is
often dominated by this part. The sparse solver is expected to
balance different, and often conflicting requirements. Reliability,
a low memory-footprint, and a short solution time are a few of
these demands. Currently, no black-box solver exists that can
satisfy all criteria. The linear systems from both simulations
can be highly ill-conditioned and therefore quite challenging
for direct and iterative methods. In this paper, it is shown
that nonsymmetric permutations and scalings aimed at placing
large entries on the diagonal greatly enhance the reliability of
both direct and preconditioned iterative solvers. The numerical
experiments indicate that the overall solution strategy is both
reliable and very cost effective for unsymmetric linear systems
arising in semiconductor device and circuit simulations.

Index Terms— Semiconductor device simulation, circuit sim-
ulation, sparse linear solvers, numerical linear algebra, sparse
unsymmetric matrices, preconditioning

I. INTRODUCTION

I N 1950, Van Roosbroeck [1] introduced the drift-diffusion
equations, which are the commonly used model in semi-

conductor device simulation. The drift-diffusion equations
are a system of three coupled, nonlinear partial differential
equations (PDEs), which describe the relation between the
electrostatic potential and the flux of the charge carriers in
a semiconductor device. The coupling between the different
equations is highly nonlinear and implies numerical diffi-
culties. More sophisticated models have evolved since the
beginnings of semiconductor device simulation to describe the
increasingly complex devices.

Different discretizations are used to solve the drift-diffusion
equations numerically. The Scharfetter-Gummel box method
and finite element discretizations are both used in modern
semiconductor device simulators [2], [3]. Regardless of the
discretization, a set of nonlinear equations must be solved.
Two different approaches are used to solve these nonlinear
equations [4]. The Gummel iteration can be seen as a block-
Gauss-Seidel iteration on the nonlinear level. The three sets of
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Basel, Basel, Switzerland. S. Röllin is with Integrated Systems Laboratory
of the Swiss Federal Institute of Technology and Innovation (ETH), Zurich,
Switzerland. Anshul Gupta is affiliated with the Mathematical Department of
the IBM T.J. Watson Research Center, Yorktown, USA.

variables electrostatic potential, electron and hole density are
solved in turn, by using the Poisson and continuity equations.
A major drawback of this method is the deterioration of the
convergence, if the couplings between the variables become
too strong. Often, the only possible way is to solve the non-
linear equations simultaneously with the Newton method. The
resulting linear systems Ax = b, where A is an unsymmetric
sparse n � n matrix, are three times larger than with the
Gummel method, highly ill-conditioned and significantly more
demanding.

In circuit simulation often a series of linear systems has
to be solved. For example, in transient analysis, a differential
algebraic equation (DAE) leads in each time-step to a system
of nonlinear equations, usually to be solved with the Newton
method resulting in very sparse unsymmetric linear systems
with a lot of zeros on the diagonal in each matrix.

There are two main approaches to solving the unsymmetric
sparse linear systems from both the Gummel and Newton
method and the matrices from circuit simulation. The first ap-
proach is more conservative and uses sparse direct solver tech-
nology. In the last few years algorithmic improvements [5], [6],
[7], [8], [9], [10] alone have reduced the time for the direct
solution of unsymmetric sparse systems of linear equations by
almost one or two order of magnitude. Remarkable progress
has been made in the increase of reliability, parallelization
and consistent high performance is now achieved for a wide
range of computing architectures. As a result, a number of
sparse direct solver packages for solving such systems are
available [7], [11], [12] and it is now common to solve these
unsymmetric sparse linear systems of equations with a direct
method that might have been considered impractically large
until recently.

Nevertheless, in large three-dimensional simulations with
more than 100K grid nodes, the memory requirements of direct
methods as well as the time for the factorization may be too
high. Therefore, a second approach, namely, preconditioned
Krylov subspace methods, is often employed to solve these
systems. This iterative approach has smaller memory require-
ments and often smaller CPU time requirements than a direct
method. However, an iterative method may not converge to
the solution in some cases where a direct method is capable
of finding the solution.

Various iterative methods are known and have been used
in semiconductor device and circuit simulations: CGS [13],
GMRES(m) [14], BICGSTAB [15] and others. A good pre-
conditioner is mandatory to achieve satisfactory convergence
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rates with these methods. There have been several attempts to
use preconditioned Krylov subspace methods with different
incomplete LU-factorizations (ILU) in this context, but in
general the results have been far from satisfactory for non-
trivial semiconductor device simulations. The primary concern
of the device and circuit engineers is the lack of robustness of
the iterative solver.

It is well known that iterative methods work well when the
coefficient matrix is, at least to some degree, diagonally dom-
inant or well conditioned. Matrices with these properties arise
e.g. from the discretization of second-order, elliptic partial dif-
ferential equations and simple preconditioning techniques such
as ILU(0) are usually reliable under these circumstances and
deliver good convergence rates. In contrast, the preconditioners
are often unstable and the convergence deteriorates when the
coefficient matrix has zeros on the diagonal, and or is highly
unsymmetric. Furthermore, preconditioned Krylov subspace
methods rarely converge well when the off-diagonal values of
the coefficient matrix are an order of magnitude larger than the
diagonal entries. This is often the case in semiconductor device
simulation and circuit simulations. These systems still pose a
challenge for most preconditioned Krylov subspace solvers.

In [16] Olschowka and Neumaier introduce new permu-
tations and scaling strategies for Gaussian elimination to
avoid extensive pivoting strategies. The goal is to transform
the coefficient matrix A with diagonal scaling matrices Dr

and Dc and a permutation matrix Pr so as to obtain an
equivalent system with a matrix DrPrADc that is better
scaled and more diagonally dominant. This preprocessing has
a beneficial impact on the accuracy of the solver and it also
reduces the need for partial pivoting, thereby speeding up the
factorization process. These and other heuristics have been
further developed and implemented by Duff and Koster [17]
and Gupta and Ying [18]. Evidence of the usefulness of this
preprocessing in connection with sparse direct solvers has been
provided in [10], [19].

For iterative methods, simple techniques like Jacobi or
Gauss-Seidel converge more quickly, if the diagonal entry
is large relative to the off-diagonals in its row or columns.
Additionally, for diagonal preconditioning or incomplete LU
factorizations, it is intuitively evident that large diagonals
should be beneficial. The contribution of the paper is to carry
out an extensive systematic experimental study of the use
of nonsymmetric matrix permutations and scalings primary
in the context of preconditioned Krylov subspace solvers for
semiconductor device and circuit simulation matrices. These
nonsymmetric permutations and scalings alter the spectrum
distribution of the coefficient matrix, thus they are able to
accelerate the convergence and the speedup especially of
preconditioned iterative methods. A number of different it-
erative preconditioners are considered (ILU types and sparse
approximate inverse). It is shown that this preprocessing has
a stabilizing effect on the computation of the preconditioner
and it results in an iterative method of high quality in terms
of convergence rates and reliability.

The paper is organized as follows. In Section 2, basic
properties of different algorithms based on [17] for computing
nonsymmetric matrix permutations and scalings are described.

Section 3 briefly reviews current sparse direct solvers and
iterative Krylov subspace methods that are routinely used in
large semiconductor device and circuit simulations. Computa-
tional experience for the algorithms applied to matrices from
device simulation and circuit simulation and the effect of
the nonsymmetric ordering and scaling applied to direct and
iterative methods are presented in Section 4. Finally, in Section
5, the conclusions are presented.

II. NONSYMMETRIC PERMUTATIONS

This section gives an introduction to the known techniques
to find nonsymmetric permutations, which try to maximize
the elements on the diagonal of the matrix. For a deeper
understanding, we refer the reader to the original papers of
Olschowka and Neumaier [16], Duff and Koster [9], [17] and
Benzi, Haws, and Tuma [20].

Matrices with zeros on the diagonal can cause problems for
both direct and iterative methods (for the latter the creation
of the preconditioner can fail). In some fields like chemical
engineering or circuit simulation a lot of zeros happen to be on
the diagonal. The matrices originating from device simulation
usually, but not always, have zero free diagonals. A remedy
is to permute the rows of the matrix, such that only nonzero
elements remain on the diagonal. By solving a combinatorial
problem, we find a permutation with the desired properties.

Let A = (aij) 2 R
n�n be a general matrix. The nonzero

elements of A define a set S = f(i; j) : aij 6= 0g of ordered
pairs of row and column indices. A subset M � S is called
a matching or a transversal, if every row index i and every
column index j appears at most once. A matching M is called
perfect, if the cardinality is equal n. For a nonsingular matrix
at least one perfect matching exists and can be found with well
known algorithms. With a perfect matching, it is possible to
define a permutation matrix Pr = (pij) with:

pij =

(
1 (j; i) 2M

0 otherwise:
(1)

As a consequence, the matrix PrA has nonzero elements on
its diagonal, which improves the robustness of both direct and
sparse methods. This method only takes the nonzero structure
of the matrix into account. There are other approaches which
maximize the diagonal values in some sense. One possibility
is to look for a matrix Pr, such that the product of the diagonal
values of PrA is maximal. In other words, a permutation �
has to be found, which maximizes:

nY
i=1

ja�(i)ij: (2)

This maximization problem is solved indirectly. We first
reformulate it by defining a matrix C = (cij) with

cij =

(
log ai � log jaij j aij 6= 0

1 otherwise;
(3)

where ai = maxj jaij j, i.e. the maximum element in row i of
matrix A. A permutation �, which minimizes the sum

nX
i=1

c�(i)i: (4)
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also maximizes the product (2).
The minimization problem is known as (linear sum) as-

signment problem or bipartite weighted matching problem in
combinatorial optimization. The problem is solved by a sparse
variant of the Kuhn-Munkres algorithm. The complexity is
O(n3) for full n � n matrices and O(n� logn) for sparse
matrices. For matrices, whose associated graph fulfill special
requirements, this bound can be reduced further to O(n�(� +
n logn) with � < 1. All graphs arising from finite-difference
or finite element discretizations meet the conditions [21]. As
before, we finally get a perfect matching, which in turn defines
a nonsymmetric permutation. In the literature this permutation
is called MPD, which stands for “maximize product on diag-
onal”.

In the solution of the assignment problem, two vectors u =
(ui) and v = (vi) are generated, which can be used to scale
the matrix. These vectors have the property, that they fulfill
the following equations:

ui + vj = cij (i; j) 2 M; (5)

ui + vj � cij otherwise: (6)

Two diagonal matrices Dr and Dc are defined through

Dr = diag(dc1; d
c
2; : : : ; d

c
n); dcj = exp(vj)=aj ; (7)

Dc = diag(dr1; d
r
2; : : : ; d

r
n); dri = exp(ui): (8)

With the equations (5) and (6), it can be shown, that the scaled
and permuted matrix A1 = PrDrADc is an I-matrix, for
which holds:

ja1iij = 1; (9)

ja1ij j � 1: (10)

Olschowka and Neumaier [16] introduced these scalings and
permutation for reducing pivoting in Gaussian elimination of
full matrices. We use the abbreviation MPS for these scalings
and the permutation, which stands for “maximize product on
diagonal with scalings”.

The linear assignment problem can also be used to max-
imize the sum of the diagonal elements. Instead of (3) the
matrix C is defined in the following way:

cij =

(
ai � jaij j aij 6= 0

0 otherwise:
(11)

In contrary to the maximization of the product (2), it is not
possible to derive scalings with the same properties from the
linear assignment algorithm in this case. The acronym for
“maximize sum of diagonals” is MSD.

Finding a bottleneck transversal is a further possibility to
maximize the diagonal elements in some extent. Instead of
looking at all diagonal values, a permutation � is searched,
which maximizes the smallest element on the diagonal, i.e.
we maximize the expression

min
i
ja�(i)ij: (12)

Two different approaches are known to achieve this goal. One
of them uses a slightly modified variant of the assignment
problem. The other defines matrices A�, where entries with

jaij j � � from the original matrix are dropped. A matching
for A� is then searched. Interval nesting is used to find the
optimal � and thus the desired permutation. These methods
do not generate unique permutations and are sensitive to a
prior scaling of the matrix. A major drawback is that only the
smallest values on the diagonal is regarded, which was already
reported in [9]. In the section with the numerical results, we
use the letters BT for the bottleneck transversal.

III. SOLVERS FOR SPARSE LINEAR SYSTEMS OF

EQUATIONS

In this section the algorithms and strategies that are used
in the direct and preconditioned iterative linear solvers in the
numerical experiments are discussed.

A. Sparse direct solver technology

Figure 1 outlines the PARDISO approach [12] to solve an
unsymmetric sparse linear system of equations. According
to [10], it is very beneficial to precede the ordering by
performing a nonsymmetric permutation to place large entries
on the diagonal and then to scale the matrix so that the
diagonal entries are equal to one. Therefore, in step (1) the
row permutation matrix, Pr, is chosen so as to maximize
the absolute value of the product of the diagonal entries in
PrA. The code used to perform the permutations is taken
from MC64, a set of Fortran routines that are included in
HSL (formerly known as Harwell Subroutine Library). Further
details on the algorithms and implementations are provided
in [9]. The diagonal scaling matrices, Dr and Dc, are selected
so that the diagonal entries of A1 = DrPrADc are 1 in
absolute value and its off-diagonal entries are less than or
equal to 1 in absolute value.

In step (2) any symmetric fill-reducing ordering can be com-
puted based on the structure of PrA+ATP T

r , e.g. minimum
degree or nested dissection. All experiments reported in this
paper with PARDISO were conducted with a nested dissection
algorithm [22].

Like other modern sparse factorization codes [7], [11],
PARDISO relies heavily on supernodes to efficiently utilize
the memory hierarchies in the hardware. There are two main
approaches in building these supernodes. In the first approach,
consecutive rows and columns with the same and exactly
identical structure in the factors L and U are treated as one
supernode. These supernodes are so crucial to high perfor-
mance in sparse matrix factorization that the criterion for the
inclusion of rows and columns in the same supernode can be
relaxed [23] to increase the size of the supernodes. This is
the second approach and it is called supernode amalgamation.
In this approach consecutive rows and columns with nearly
the same but not identical structures are included in the same
supernode, and artificial nonzero entries with a numerical
value of 0 are added to maintain identical row and column
structures for all members of a supernode. The rationale is that
the slight increase in the number of nonzeros and floating-point
operations involved in the factorization can be compensated
by a higher factorization speed. Both approaches are possible
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(1) Row/column equilibration A1  Dr � Pr � A �Dc,
where Dr and Dc are diagonal matrices and Pr is
a row permutation that maximizes the magnitude of
the diagonal entries.

(2) Find a symmetric permutation Pfill to preserve
sparsity: A2  Pfill � A1 � P

T
fill and based on

Â = A1 +AT
1 .

(3) Level-3 BLAS factorization A2 = QrLUQc with
diagonal block supernode pivoting permutations Qr

and Qc. The growth of diagonal elements is controlled
with:

if (jliij < � � kA2k1) then
set lii = sign(lii) � � � kA2k1

endif
(4) Solve Ax = b using the block L and U factors, the

permutation matrices Pfill; Pr; Dr; Dc; Qr and Qc

and iterative refinement.

Fig. 1. Pseudo-code of the complete block diagonal supernode pivoting
algorithm for general unsymmetric sparse matrices.

in PARDISO and the first approach has been used in the
remainder of the paper.

An interchange among the rows and columns of a su-
pernode, referred to as complete block diagonal supernode
pivoting, has no effect on the overall fill-in and this is the
mechanism for finding a suitable pivot in PARDISO. However,
there is no guarantee that the numerical factorization algorithm
would always succeed in finding a suitable pivot within the
supernode block. When the algorithm reaches a point where it
cannot factor the supernode based on the previously described
supernode pivoting, it uses a pivot perturbation strategy similar
to [10]. The magnitude of the potential pivot is tested against
a constant threshold of � = � � kA2k1, where � is the
machine precision and kA2k1 is the 1-norm of the scaled
and permuted matrix A2.

Therefore, in step (3), any tiny pivots encountered during
elimination are set to sign(lii) � � � kA2k1 — this trades off
some numerical stability for the ability to keep pivots from
getting too small. Although many failures could render the
factorization well-defined but essentially useless, in practice it
is observed that the diagonal elements are rarely modified for
the large class of matrices that has been used in the numerical
experiments. The result of this pivoting approach is that the
factorization is, in general, not exact and iterative refinement
may be needed in step (4). Furthermore, when there are a small
number of pivot failures, they corrupt only a low dimensional
subspace and each perturbation is a rank� 1 update of A2, so
iterative refinement can compensate for such corruption with
only a few extra iterations.

B. Incomplete LU factorizations and approximate inverses

Iterative methods are usually combined with precondition-
ers to improve the convergence rates. Especially for ill-
conditioned matrices, iterative methods fail without the ap-
plication of a preconditioner. We briefly discuss some of the

most common preconditioners. For a deeper understanding we
refer the reader to [24].

Incomplete LU-factorizations: An often used class of pre-
conditioners are incomplete LU-factorizations. In contrary
to full Gaussian elimination, the factors L and U are not
computed exactly, but some elements are disregarded during
the elimination, which makes it more economical to compute,
store and solve with. Several strategies have been proposed
in the literature to determine which elements are kept and
which are dropped. One of the simplest ideas is to keep those
elements in L and U, whose corresponding values in the given
matrix are nonzero. This version is called ILU(0). It was
originally developed for 5-point or 7-point matrices originating
from finite difference discretizations of PDEs. Advantages of
ILU(0) are its simplicity and the memory requirements, which
are known in advance. For some matrices this preconditioner
gives quite good results. However, the quality of ILU(0) is
often not enough for the convergence of iterative methods and
more elaborate incomplete factorizations are necessary.

The concept of “level-of-fill” generalizes ILU(0). In this
method, each element of L and U has an associated level lev ij

during the elimination. If an element a ij is updated, its level
is changed according to

levij := minflevij ; levik + levkj + 1g: (13)

The levels are initialized with

levij =

(
0 aij 6= 0 or i = j

1 otherwise:
(14)

Here, an element is dropped during the factorization, if its level
becomes larger than a given threshold p. The motivation for
this choice can be explained as follows. Let us suppose, that
the elements of A satisfy aij = �1+levij . Since the elements
are updated during the factorization with the formula

aij := aij � aikakj ; (15)

the size of the new element is about �levij , where levij is the
updated level according to (13). As a consequence, elements
with a large level and thus with small magnitudes are dropped.
In the literature this method is called ILU(p). The complexity
of this preconditioner is higher than for ILU(0). In addition,
the memory demand is not known until the computation is
completed. Since it is solely based on the structure of the
matrix and the numerical values of the matrix are not taken
into account, the resulting preconditioning can be poor.

In the ILUT("; q) factorization, the dropping is based on the
numerical values rather than the positions. Most incomplete
factorizations are either row (or column) oriented. After a
row has been computed in the ILUT("; q) factorization, all
elements in this row of L and U smaller than the given
tolerance " are disregarded. In order to limit the size of
the factors, only the q largest elements in each row are
kept. For non-diagonally dominant and indefinite matrices, this
preconditioner usually gives better results than ILU(p).

The combination of ILU(p) and ILUT("; q) leads to a
factorization, which is not often mentioned in the literature.
We call this method ILUPT(p; ") in the remainder of this
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document. An element is always kept in this factorization, if
its level is zero. If the level is positive, the element is dropped
if either the value is smaller than the given tolerance " or its
level exceeds p.

Incomplete LU-factorizations are often quite successful
in accelerating iterative methods. Nevertheless, some severe
problems may happen during the factorization. As in full
Gaussian elimination, zero pivots can occur. A remedy is to use
pivoting. Because of the underlying data structures, column
pivoting is the best choice, if the incomplete factorization is
computed row-wise. Not only zero pivots but also small pivots
are a problem, since they lead to unstable and inaccurate
factorizations. Another cause of inaccuracy is due to the
dropping of elements. Each element that is dropped, makes
the “error” of the factorization larger. Adapting the parameters
may improve this situation.

A successful computation of an incomplete factorization
does not guarantee the convergence of an iterative method.
For indefinite matrices the factors are often far from being
diagonal dominant. Even if the elements of L and U are within
reasonable bounds, kL�1k and kU�1k can be arbitrarily large,
which is a sign for unstable triangular solves, which in turn
can deteriorate the convergence.

Approximate inverses: The product of the factors in in-
complete Gaussian eliminations, directly approximates a given
matrix A. Other preconditioners approximate the inverse of A.
A major advantage of this approach is that the application of
the preconditioner requires one or more matrix-vector products
instead of triangular solves. Therefore, these preconditioners
are well suited to parallel environments.

The sparse approximate inverse preconditioner SPAI [25]
computes a matrix M , which minimizes the Frobenius norm
of I � AM , where I is the identity matrix. M is equal to
A�1, when the norm becomes zero. The inverse is usually a
full matrix and thus M is only computed approximately. Since
the relation

kI �AMk2F =

nX
i=1

kei �Amik
2
2 (16)

holds, each column can be determined independent of the
others (ei and mi are the i-th columns of I and M ). A
tolerance " is given to limit the fill-in and to control the
accuracy of the approximation of each column and thus the
quality of the preconditioner.

The AINV algorithm is based on an incomplete biconjuga-
tion process. Two triangular factors Z and W are computed,
which approximate the inverse of A:

ZW T � A�1: (17)

The triangular matrices are sparse approximations of the fac-
tors L and U of a full Gaussian elimination. The biconjugation
algorithm computes them without the prior computation of L
and U . A dropping tolerance is used to preserve the sparsity
of the factors. Again, the application of the preconditioner can
be performed fully in parallel.

Like in direct methods, the linear systems are ordered before
the preconditioner is computed. All mentioned preconditioners
except for SPAI are sensitive to orderings. The purpose

of the orderings is twofold. On one hand, the quality of
the preconditioner depends on the ordering. In ILU(p) as
an example, we have seen, that the dropping is based on
the positions only. A different ordering leads therefore to a
different preconditioner. On the other hand, the ordering also
influences the amount of fill-in in the preconditioners (except
for ILU(0)). The Reverse Cuthill-McKee (RCM) [26] ordering
is usually used for incomplete LU-factorizations. RCM is not
suited for both direct methods and the preconditioner AINV,
since it would result in high fill-ins in the factors. Multiple
minimum degree and nested dissection are normally used for
them.

IV. DESCRIPTION OF THE TEST PROBLEMS

TABLE I

GENERAL INFORMATIONS AND STATISTICS OF THE MATRICES USED IN

THE NUMERICAL EXPERIMENTS.

name unknowns elements dim sim

2D 27628 bjtcai 27’628 442’898 2D f
2D 54019 highK 54’019 996’414 2D f
3D 28984 Tetra 28’984 599’170 3D f
3D 51448 3D 51’448 1’056’610 3D f
barrier2-9 115’625 3’897’557 3D d
ibm matrix 2 51’448 1’056’610 3D f
igbt3 10’938 234’006 2D d
matrix-new 3 125’329 2’678’750 3D f
matrix 9 103’430 2’121’550 3D f
nmos3 18’588 386’594 2D d
ohne2 181’343 11’063’545 3D d
para-4 153’226 5’326’228 3D d
circuit 1 2’624 35’823 2D m
circuit 2 4’510 21’199 2D m
ecl32 51’993 380’415 2D m
pre2 659’033 5’959’282 2D m
wang3 26’064 177’168 3D m
wang4 26’068 177’196 3D m

This section gives an overview of the matrices that are used
for the numerical experiments. Some general informations
about the matrices are given in Table I. They are extracted
from different semiconductor device simulations with different
simulators. A part stems from simulations with FIELDAY [3]
from the IBM Thomas Watson Research Center. Those are
marked with an “f” in the column “sim”. Others, labeled
with “d”, originate from the semiconductor device simulator
DESSISISE [2], which is a product of ISE Integrated Systems
Engineering Inc. The last matrices wang3 and wang4 come
from semiconductor device simulation from a public sparse
matrix collection [27] and all other matrices are circuit systems
from the same public collection. These matrices are marked
with an ’m’ in the Table I.

In Table II we have also listed the condition numbers and the
number of diagonal dominant rows (d.d. rows) and columns
for the original matrices and for the matrices permuted and
scaled with MPS. We have used the algorithm MC71 from
HSL together with the direct solver PARDISO to estimate the
condition numbers.

As stated earlier and shown in Table II, most of the
matrices are very ill-conditioned. The influence of MPS on
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TABLE II

CONDITIONING AND DIAGONAL DOMINANCE STATISTICS.

original scaled and permuted with MPS
name condest d.d.rows d.d.cols condest d.d.rows d.d.cols
2D 27628 bjtcai 6.46e+19 11’774 13’571 1.16e+07 11’725 13’372
2D 54019 highK 5.85e+31 16’761 23’041 3.99e+07 16’749 21’835
3D 28984 Tetra 1.36e+41 12’869 13’365 1.97e+08 12’869 18’024
3D 51448 3D 1.29e+24 16’097 22’948 5.03e+07 16’110 22’196
barrier2-9 5.49e+22 29’553 5’739 1.07e+19 26’280 53’226
ibm matrix 2 1.29e+24 16’097 22’950 4.99e+07 16’740 22’337
igbt3 4.74e+19 2’795 121 1.09e+09 2’770 5’237
matrix-new 3 3.48e+22 68’450 78’339 6.59e+08 68’357 72’185
matrix 9 3.08e+23 36’258 38’926 2.71e+07 37’052 40’808
nmos3 1.09e+21 3’068 36 6.28e+06 3’048 6’671
ohne2 3.30e+21 43’283 3’804 2.03e+20 42’509 90’323
para-4 3.70e+23 41’321 6’271 4.22e+20 39’530 76’797
circuit 1 1.89e+05 1’217 1’144 2.38e+06 1’261 2’504
circuit 2 2.69e+04 3’466 560 2.19e+04 3’283 487
ecl32 9.41e+15 31’446 35’574 1.94e+08 31’837 31’745
pre2 3.11e+23 6’729 33 2.99e+14 178’421 152’798
wang3 1.07e+04 16’097 22’950 4.96e+03 21’926 21’676
wang4 4.91e+04 16’097 22’950 5.48e+03 24’762 21’526

these condition number is significant for most of the matrices.
The spectrum benefits from nonsymmetric matrix scalings and
permutations and the ill-conditioning is greatly reduced for
most of the matrices. The number of diagonal dominant rows
and columns is also affected by the permutation and scaling
and increases by the preprocessing with MPS.

V. NUMERICAL RESULTS

The numerical experiments were performed on one proces-
sor on a Regatta pSeries 690 Model 681 SMP nodes with a
Power4 running at 1.3 GHz. The processor contains 32 KB
L1 data cache, two fixed-point, two floating point and two
load/store execution units, associated with a large L2 cache,
1440 KB, and an additional L3 cache directory and controls.
All algorithms were implemented in Fortran 77 and C in 64-bit
mode. The codes were compiled by xlf and xlc with the -O3
optimization option and are linked with the IBM’s Engineering
and Scientific Subroutine Library (ESSL) for the basic linear
algebra subprograms (BLAS) that are optimized for RS6000
processors.

A key design principle for producing high-performance
scalable parallel, direct solver software is to perform partial
pivoting as little as possible, whereas the key design principle
for robustness is to allow as much pivoting as possible. A
compromise is complete block supernode diagonal pivoting,
where rows and columns of a supernode can be interchanged
without affecting the computational task-dependency graph.
This allows the a priori computation of the nonzero structure
of the factors and allows at the same time a limited complete
pivoting with the diagonal supernodes blocks. Placing large
entries on the diagonal suggests the stability and accuracy
of the direct factorization process with reduced pivoting in
PARDISO can be improved. This is especially true for circuit
simulations, where it is very common for a lot of zeros to
appear on the diagonals.

The numerical behavior of the complete block diagonal
supernode pivoting method in PARDISO with the original
matrix and the nonsymmetric scaled and permuted matrix is
illustrated in Table III. A failure in the computation of the
factorization (zero pivot) is marked with “�”.

Two comments on the results in Table III are in order.
First, we notice that for most of the semiconductor device
simulation matrices, the number of nonzeros in the factors
and the operation count is not affected by a nonsymmetric
permutation and scaling. However, we have observed for
these matrices that the numerical accuracy still benefits from
the permutation. Secondly, it can be seen that MPS greatly
improves the robustness of PARDISO and all four circuit
simulation matrices can now be solved with a backward error
that is close to machine precision.

In this section, we also present the numerical results to see
how nonsymmetric permutations influence the iterative solu-
tion of the linear systems in semiconductor device and circuit
simulation. Usually, incomplete LU-factorizations are used in
these fields and therefore we have tested different versions
of them. Results with the approximate inverse preconditioner
SPAI were also conducted.

For the preconditioning, there are always several choices:
either left or right preconditioning can be used. For incomplete
factorizations a combination of both is also possible. We
applied left preconditioning in all cases. This implies, that the
preconditioned residuals do not correspond to the unprecondi-
tioned ones. However, the error of the preconditioned and the
original system remains the same. In a majority of the tested
matrices, the preconditioned residual and the residuals of the
original systems are reduced by the same order of magnitude.

A real right hand side b was used in the numerical exper-
iments for the FIELDAY and DESSISISE matrices. For all
other matrices an artificial solution of xi = 1; 1 � i � n
was used. The initial guess x0 was always zero for the
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TABLE III

NUMBER OF FACTOR ENTRIES (�106 ) AND OPERATION COUNT (�109) IN

THE FACTORS COMPUTED BY PARDISO.

Matrix None MPS

entries ops entries ops

2D 27628 bjtcai 3.12 0.45 3.12 0.45
2D 54019 highK 7.99 1.44 7.99 1.44
3D 28984 Tetra 13.2 8.42 13.2 8.42
3D 51448 3D 28.3 25.5 28.3 25.5
barrier2-9 127. 217. 125. 212.
ibm matrix 2 28.3 25.5 28.3 25.5
igbt3 1.15 .100 1.15 .100
matrix-new 3 93.4 177. 93.4 177.
matrix 9 93.4 177. 93.4 177.
nmos3 2.47 0.30 2.47 0.30
ohne2 233. 334. 233. 334.
para-4 178. 341. 178. 341.
circuit1 � � 0.51 0.01
circuit2 � � 0.47 0.01
ecl32 25.1 22.4 25.1 22.4
pre2 � � 97.9 166.
wang3 16.1 12.3 7.63 4.58
wang4 6.26 3.02 6.26 3.02

preconditioned iterative methods.
Two of the most famous iterative methods have been

tested: BICGSTAB [15] and GMRES(m) [14]. To avoid too
high memory consumption, we restarted GMRES after 20
iterations. In both methods, we have implemented two dif-
ferent stopping criteria: the iteration is stopped, if either the
preconditioned residual is reduced by a factor of 10�8 or
200 iterations are reached. The performance of both iterative
methods is comparable. Our numerical results show, that
GMRES is faster, if only a few iterations are enough for
the convergence. This is especially the case, if we change the
tolerance from 10�8 to 10�4. However, for the tolerance we
used in the numerical experiments, more iteration steps are
required and BICGSTAB becomes slightly faster in a majority
of the cases. Our experience from complete semiconductor
device simulations also indicate to prefer BICGSTAB over
GMRES. For these reasons, we present the results for the
former only.

As mentioned in Section III-B, a symmetric permutation is
usually applied to the linear system before the preconditioner
is computed. Thus the iterative solution consists of four steps:

1) Determination of a nonsymmetric matrix permutation
and scaling

2) A symmetric permutation with RCM [26] is computed
3) Creation of a preconditioner.
4) Call of an iterative method (BICGSTAB)

The first two steps are optional. For the second step, we use
RCM unless otherwise mentioned, since this is often the best
choice for incomplete factorizations [28].

In Table IV we have listed the numerical results with and
without a nonsymmetric permutation for ILU(0). A failure
in the computation of the factorization (zero pivot) is marked
with “�”. The situations in which the iterative method did not
converge are labeled with “z”. The influence of MPS on the
number of iterations is not as high as one would expect. For

some matrices the number of iterations is even worse with
MPS than without. However, in our experience ILU(0) with
the nonsymmetric permutation and scalings is slightly more
stable. If the iterative method failed with MPS, then without
the method did not succeed either. But in some situations, the
linear systems could only be solved with MPS. Our results
coincide with observations from others [20], that is, if a system
can be solved by ILU(0) without MPS, then its influence is
not significant or even disadvantageous. We have also tested
other nonsymmetric permutations. With BT the incomplete
factorization ILU(0) is often similar to the results without
a nonsymmetric permutation. However, we have seen in other
results not listed here, that ILU(0) with BT is often unstable
and the iterative method does not reduce the unpreconditioned
residuals at all. The MSD ordering is the worst one: the
creation of the preconditioner often fails due to zero pivot.
The results from MPD are comparable to those of MPS.

TABLE IV

NUMBER OF ITERATIONS OF BICGSTAB PRECONDITIONED WITH ILU(0).

Matrix None BT MSD MPD MPS

2D 27628 bjtcai z z z 160 177
2D 54019 highK 156 156 � 155 169
3D 28984 Tetra z z � z z

3D 51448 3D 66 66 � 81 64
barrier2-9 z z � 104 128
ibm matrix 2 88 88 z 104 93
igbt3 106 106 128 95 107
matrix-new 3 125 125 z 166 143
matrix 9 68 68 � 71 66
nmos3 z z z z z

ohne2 128 z 165 z 167
para-4 z z z z 168
circuit 1 z 2 2 2 2
circuit 2 89 17 16 16 14
ecl32 139 139 z 139 131
pre2 � � � � �

wang3 � � 41 41 41
wang4 57 54 57 57 43

In our ILUT("; q) implementation we do not limit the
number of entries in each row, i.e. we set q = 1. The
impact of nonsymmetric permutations on ILUT(0.01,1) is
quite high. The number of iterations for the convergence can
be found in Table V. A lot of systems can only be solved with
MPS. However, not every nonsymmetric permutation gives
good results. The quality of BT and MSD with ILUT is com-
parable to the findings with ILU(0). A better choice is MPD,
which is better than omitting a nonsymmetric permutation. The
MPS ordering requires the fewest iterations for convergence
in almost all cases. In addition, there are often fewer nonzeros
in the incomplete factors for this ordering than for the others.
As a result, the computation of the factorization is faster and
one iteration step is cheaper with MPS.

The results of the ILUPT(5,0.01) factorization are given in
Table VI. Here, the behavior is again different than for the
previous two factorizations. A lot of systems can be solved in
combination with or without nonsymmetric permutation. What
remains the same is the quality of the MSD ordering, where
the computation of the preconditioner sometimes fails. The
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TABLE V

NUMBER OF ITERATIONS OF BICGSTAB PRECONDITIONED WITH

ILUT(0.01,1)

Matrix None BT MSD MPD MPS

2D 27628 bjtcai z z z z 125
2D 54019 highK z z � z 89
3D 28984 Tetra z z � z 79
3D 51448 3D 135 135 � 66 32
barrier2-9 z z � z 171
ibm matrix 2 136 136 � 68 34
igbt3 z z z z 54
matrix-new 3 88 88 z 74 47
matrix 9 77 77 � 57 30
nmos3 z z z z 22
ohne2 z z z z 85
para-4 77 z z z 53
circuit 1 � 3 3 3 4
circuit 2 24 33 15 15 5
ecl32 44 44 z 44 55
pre2 � � � � �

wang3 � � 24 24 29
wang4 31 27 31 31 23

results of BT are better than before, but still not optimal in
the sense, that the unpreconditioned residuals are not reduced.
Again, MPD is a better alternative. On the average, the best
choice is MPS, but the difference with MPD and without a
nonsymmetric permutation is not as high as for ILUT.

TABLE VI

NUMBER OF ITERATIONS OF BICGSTAB PRECONDITIONED WITH

ILUPT(5,0.01)

Matrix None BT MSD MPD MPS

2D 27628 bjtcai 155 155 70 89 76
2D 54019 highK 96 96 � 100 83
3D 28984 Tetra 194 194 � 100 86
3D 51448 3D 59 59 � 59 37
barrier2-9 72 81 � 47 z

ibm matrix 2 64 64 z 60 39
igbt3 36 36 57 37 44
matrix-new 3 89 89 z 87 48
matrix 9 50 50 � 52 31
nmos3 51 51 112 48 30
ohne2 59 z 59 90 72
para-4 51 z 45 51 53
circuit 1 � 2 2 2 2
circuit 2 � 11 11 11 5
ecl32 89 89 z 89 54
pre2 � 200 � � �

wang3 � � 46 46 27
wang4 43 46 43 43 21

The number of iterations give a good indication of the
reliability of preconditioner. However, the total time to perform
the four steps for the iterative solution is more important
because it directly influences the time for a semiconductor
device simulation. In Table VII, the total time for differ-
ent nonsymmetric orderings and preconditioners are given.
ILU(0) without a nonsymmetric permutation is often faster
than with MPS. However, the latter succeeds for more systems.
ILUT(0.01,1) together with MPS is for all but one examples
the fastest combination. It is between two and three times

faster and significantly more stable than ILU(0). The perfor-
mance of ILUPT(5,0.01) is slightly better than ILU(0) but
does not reach the one for ILUT. A comparison of the times
to perform the factorization shows, that ILUT is much cheaper
to compute than ILUPT. For the largest matrices, the former
is about ten times faster. The large difference comes from the
fact, that ILUPT contains at least the nonzero structure of the
original matrix. This has a significant influence on the number
of elements in the factors. As an example, for matrix “ohne2”
about six times more elements appear in the factors of ILUPT.
As a result, this makes both the factorization and one iteration
step more expensive. Interestingly to note is the observation,
that MPS reduces the factorization time of ILUPT in about
half of the systems, but the number of nonzeros remains the
same.

TABLE VIII

NUMBER OF ITERATIONS OF BICGSTAB PRECONDITIONED WITH SPAI

SPAI(0.1) SPAI(0.4)
Matrix None MPS None MPS

2D 27628 bjtcai z z z z

2D 54019 highK z z z z

3D 28984 Tetra z 103 z 178
3D 51448 3D z 84 z 143
barrier2-9 z 131 z 181
ibm matrix 2 z 77 z 151
igbt3 z z z z

matrix-new 3 z 145 z z

matrix 9 z 102 z 154
nmos3 z 54 z 97
ohne2 � � � �

para-4 z 101 z z

circuit 1 4 4 6 6
circuit 2 z 60 z 69
ecl32 z z z z

pre2 z z z z

wang3 63 63 128 123
wang4 z 79 z 92

The preconditioner SPAI can be a good choice in parallel
environments, since the computation as well as the application
of it is entirely parallel. The goal of our numerical experiments
with this preconditioner was to answer the questions, whether
nonsymmetric permutations and scalings are beneficial for
SPAI or not and if it is a viable alternative to incomplete
LU-factorizations. The computation of SPAI does not depend
on symmetric orderings and therefore we omitted them for the
numerical experiments.

Our numerical results with SPAI are summarized in Ta-
ble VIII. The quality of the preconditioner SPAI is influ-
enced by a tolerance. Two different tolerances have been
used in the experiments. For the original matrices, BICG-
STAB preconditioned with SPAI failed to converge for nearly
all matrices, i.e. the maximum number of iterations were
reached. For those matrices, where 200 iterations are reached,
the preconditioned residuals were nevertheless reduced by
some amount. However, the corresponding unpreconditioned
residuals were not reduced at all, but increased by some
orders. The preprocessing with MPS helped in both regards:
the iterative method succeeded for much more matrices than
before. In addition, the gap between the preconditioned and
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TABLE VII

TOTAL TIME IN SECONDS FOR COMPLETE ITERATIVE SOLUTION.

ILU(0) ILUPT(5,0.01) ILUT(0.01,1) SPAI(0.1) SPAI(0.4)
Matrix None MPS None MPS None MPS None MPS None MPS
2D 27628 bjtcai z 2.53 2.13 1.19 z 1.26 z z z z
2D 54019 highK 4.45 5.11 3.15 2.95 z 2.08 z z z z
3D 28984 Tetra z z 3.26 1.81 z 1.02 z 19.9 z 5.20
3D 51448 3D 2.56 2.53 2.51 2.29 8.54 1.18 z 38.5 z 9.08
barrier2-9 z 22.2 15.0 z z 10.9 z 401 z 89.9
ibm matrix 2 2.96 3.34 2.70 2.36 8.54 1.25 z 38.3 z 9.33
igbt3 0.68 0.75 0.36 0.40 z 0.31 z z z z
matrix-new 3 10.4 11.2 7.93 6.39 23.3 3.35 z 145 z z
matrix 9 4.86 4.80 4.73 5.05 18.4 3.08 z 82.8 z 14.7
nmos3 z z 0.77 0.54 z 0.33 z 9.11 z 2.55
ohne2 66.0 86.6 50.8 46.9 z 18.1 � � � �
para-4 z 35.8 16.9 13.2 6.63 6.31 z 382 z z
circuit 1 0.02 0.02 � 1.17 � 0.01 3.01 3.10 1.45 1.45
circuit 2 0.08 0.02 � 0.03 0.02 0.01 z 1.23 z 0.943
ecl32 2.81 2.76 2.08 1.90 2.72 1.70 z z z z
pre2 � � � � � � z z z z
wang3 � 0.46 � 0.51 � 0.54 6.16 8.24 1.50 1.10
wang4 0.53 0.46 0.46 0.38 0.62 0.40 z 7.61 z 1.48

unpreconditioned residuals was smaller than before.
The reduction of the tolerance from 0.4 to 0.1 in SPAI lead

to a significant improvement in the number of iterations and
more systems were successfully solved. On the other hand,
the time to compute the approximate inverse preconditioner
increases about the same factor, in which the tolerance is
reduced. Since for SPAI the overall solution time is dominated
by the computation of the preconditioner, the larger tolerance
usually results in a smaller solution time, despite the number
of iterations is larger.

The numerical experiments revealed some disadvantages
of the sparse approximate inverse. First of all, SPAI could
solve fewer systems than the incomplete factorizations. Com-
paring the number of iterations to reduce the preconditioned
residuals by 10�8, the incomplete LU-factorizations require
fewer iterations. The major drawback of SPAI is the expensive
computation. The creation of SPAI(0.4), which is faster than
SPAI(0.1), takes between 10 up to 500 times longer than
an ILUT(0.01,1) factorization, despite the use of a highly
optimized implementation. The total times are also given in
Table VII. On the average, SPAI(0.4) is between 2 and 8 times
slower compared with the best incomplete factorization. In
addition, complete semiconductor device simulations revealed,
that SPAI is not robust enough and does not give satisfactory
results.

VI. CONCLUSION

We have presented numerical experiments with linear sys-
tems originating from semiconductor device simulation and
from circuit simulations to study the influence of nonsymmet-
ric permutations on direct and iterative solvers. The results
show, that the use of nonsymmetric permutations can improve
the performance for both classes of linear solvers.

The numerical experiments for the direct method for unsym-
metric general matrices indicate that the use of row permuta-

tions with complete block diagonal supernode pivoting enables
the static computation of the task-dependency graph, resulting
in an overall factorization strategy that is both reliable and
cost-effective on shared memory multiprocessing architectures
(SMPs). Further evidence of the usefulness of nonsymmetric
matrix scalings on SMPs has been provided by Schenk and
Gärtner in [12].

From our experiments, we see that, for the preconditioned
iterative Krylov subspace solvers, nonsymmetric permutations
combined with scalings give the best results in terms of the
number of required iterations and the time to compute the
solution. Especially for the preconditioner ILUT, where the
dropping is based on the numerical values, the nonsymmetric
permutation has a significant impact. The influence is smaller
for the incomplete factorizations ILU(0) and ILUPT, where
the positions of the values determine the dropping. The robust-
ness of those preconditioners is nevertheless improved with
the use of the nonsymmetric permutations. On an average, the
most efficient preconditioner for our matrices was the ILUT
factorization with nonsymmetric scalings and permutation
(ILUT+MPS), which outperformed the others in a number
of cases. The method ILUT+MPS is both robust and cost
effective and it is the only algorithm that could solve nearly
all our test matrices from semiconductor device and circuit
simulations.

The results conducted with SPAI showed, that this pre-
conditioner is not competitive with the incomplete LU-
factorizations for the matrices occurring in device and circuit
simulation. The time to compute the preconditioner dominates
the solution process and is several times larger than for the
incomplete LU-factorizations. In addition, the robustness of
SPAI is worse for matrices from semiconductor device and
circuit simulations.
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Stefan Röllin was born in 1974 in Baar, Switzer-
land. He studied mathematics at the Swiss Federal
Institute of Technology (ETH), Zürich, Switzerland.
After his studies, in April 2000, he joined the
Integrated Systems Laboratory at ETH, where he is
working for a doctoral degree. His main research
interests are iterative solvers for linear systems from
semiconductor device simulation and their paral-
lelization on shared memory multiprocessor ma-
chines.

Anshul Gupta was born in 1966 in New Delhi,
India. He received a B.Tech. degree from the In-
dian Institute of Technology, New Delhi, in 1988
and a Ph.D. from the University of Minnesota in
1995, both in Computer Science. He is currently
a research staff member at IBM T.J. Watson Re-
search Center, Yorktown Heights, NY. His research
interests include parallel algorithms, sparse matrix
computations, and applications of parallel processing
in scientific computing and optimization.


