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Privacy preserving data mining: a signal processing perspective and

a simple data perturbation protocol

Chai Wah Wu

IBM Research Division, Thomas J. Watson Research Center
P. O. Box 218, Yorktown Heights, NY 10598, U.S.A.

Abstract

In recent years, there have been privacy concerns over the proliferation of gathering of
personal information by various institutions and merchants over the internet. This has led to
the development of data mining algorithms that preserve the privacy of those whose personal
data are collected and analyzed. A novel approach to such privacy preserving data mining
algorithms was recently proposed where the individual data in a large data set is perturbed
by adding a random value from a known distribution. This perturbation is performed by the
user so that the true value of the data is not known to the data mining algorithm. In these
applications, the distribution of the original data set is important and estimating it is one of the
goals of the data mining algorithm. This distribution is estimated via an iterative algorithm. An
algorithm based on the Expectation Maximization (EM) algorithm was subsequently shown to
have desirable properties such as the ability to have low privacy loss and high fidelity estimates of
the distribution of the data set. Each iteration of EM requires computation which is proportional
to the size of the data set and to the number of points in the estimate. This can require large
computation time to estimate the distribution. In this paper we propose two ways to reduce
the amount of computation. First, we show that the problem is equivalent to a deconvolution
problem and signal processing algorithms can be applied to solve this problem. In particular we
consider both a direct deconvolution method which estimates the Fourier coefficients directly
and iterative deconvolution methods which are more robust against noise and ill-conditioning.
We show that the well-known Richardson-Lucy deblurring algorithm is equivalent to EM after
quantization. The signal processing approach also shows how the choice of perturbation affect
information loss and privacy loss.

Second, we propose another scheme for perturbing data which also has the nice properties
of allowing arbitrarily small privacy loss and arbitrarily high fidelity in the estimate (i.e. zero
information loss). The main advantage of this proposed scheme is the simplicity of the estima-
tion algorithm. In contrast to iterative algorithms such as EM, the proposed scheme admits an
algorithm which estimates the unknown distribution in one step. This is significant in applica-
tions where the data set is very large or when the data mining algorithm is run in an online
environment.

1 Introduction

The proliferation of data mining algorithms to extract statistics and trends from large sets of user
supplied data results in the need for data mining algorithms which preserve privacy. In [1, 2, 3] this
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problem is addressed from a cryptographic standpoint where data mining computations among
several parties are performed on the combined data sets of the parties without revealing each
party’s data to the other parties and the problem is solved using multi-party secure computation.
This approach is not suitable for scenarios where a single party collects data from many users
who do not talk to each other and where this single party performs data mining operations on
this data. An example of this is a survey that is conducted over the internet. In [4], a novel
approach to address this problem is proposed where the data is perturbed by a random value from
a known distribution. The specific random value is generated at the user’s site and is unknown
to the data mining algorithm. This random value is tied to the data, so that repeated queries
return the same perturbed value. The data mining algorithm can reconstruct or estimate the
distribution of the original data set, yet does not know the exact value of the individual items.
The estimation algorithm is an iterative algorithm derived from Bayesian analysis. In [5], this
problem is solved with a Expectation Maximization (EM) estimation algorithm which has better
convergence properties and can be shown to converge to the maximum likelihood estimate (MLE).
Furthermore, [5] introduced two new metrics, namely privacy loss and information loss to capture
the amount of data in an individual record leaked to the data mining algorithm and the fidelity of
the estimate respectively. One of the design goals of such privacy preserving data mining algorithms
is to derive algorithms which can have a small privacy loss and a small information loss. It is clear
that privacy loss is small when the perturbation is large. In [5], using a convergence result of EM,
it was claimed that the information loss is arbitrarily small when the data set is large. We will
show that information loss cannot always be made small.

The EM algorithm is iterative in nature and the entire data set is used in each iteration. Thus
the number of computations at each iteration is proportional to the size of the data set and the
number of bins used in the estimate. The purpose of this paper is to present two classes of methods
to reduce the amount of computation in the estimation algorithm. In the first class of methods,
the problem is studied from a signal processing viewpoint and algorithms are proposed to reduce
the computation in the original protocol of perturbation. In particular, the problem is recast as a
deconvolution or deblurring problem. We present a Fourier series based method to compute in one
step a good initial estimate of the distribution in order to reduce the number of iteration or eliminate
the iterative step completely (Section 3.1). This can be considered a form of direct convolution
and we also propose iterative deconvolution algorithms to compute estimates (Section 3.2). These
methods also provide a signal processing perspective to the choice of the perturbation in order to
minimize information loss and privacy loss which allows us to explain some of the experimental
findings in [5]. We also show that the algorithm in [4] which corresponds to quantization of the
perturbed data before applying the EM algorithm is equivalent to the Richardson-Lucy deblurring
algorithm (Section 3.4). By casting the problem as a deblurring problem, regularization procedures
useful in image deblurring can be used here to avoid numerical instability when the problem is ill-
posed.

For the second class of methods, we modify the protocol of data perturbation and propose a
novel privacy preserving scheme for data mining applications which also can have arbitrarily small
privacy loss and information loss when the data set is large (Section 4). The main advantage of this
proposed scheme is that the estimation algorithm is an extremely simple one-step process. This
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has significant performance advantages, especially when the data set is very large or when the data
mining is done in an online dynamic environment. The simplicity of the estimation algorithm also
makes it amenable to a simple analysis and correctness proof.

Finally, we propose other metrics for quantifying privacy loss and information loss and show that
the proposed scheme can achieve arbitrarily small privacy loss and information loss. To quantify
the loss of privacy, we study the probability in which an estimate of a single sample is correct.
We also consider a slightly different information loss metric than the one proposed in [5] which we
believe is more accurate in quantifying the loss of information due to the perturbation.

2 Problem definition

The basic problem can be abstracted into the following mathematical problem. Consider a set of
n original data values x1, . . . , xn, each considered as samples taken independently from the same
random variable X. To create the perturbation, n values y1, . . . , yn are taken independently from
the same random variable Y and the perturbed values zi = g(xi, yi) are created. We also assume
that X and Y are independent. Given these perturbed values zi and the density function fY (y) of
Y , the goal is to estimate the density function fX(x) of X. In the example of the internet survey,
xi correspond to the participants’ answers, yi correspond to the perturbations generated and zi

correspond to the perturbed answers which are sent to the server for collection. In [4, 5] xi and yi

are real numbers and the composition function g is simply addition, i.e. zi = xi + yi.
Here we take the more general view that xi, yi and zi are not necessarily real numbers, but

live in some spaces SX , SY and SZ respectively. In Section 4 we present a protocol using a more
complicated composition function g where yi and zi are both vectors. It may seem unintuitive, but
by using a more complicated function g, the corresponding estimation algorithm is very simple and
efficient.

3 The case g(x, y) = x + y

Consider the case as in [4, 5] where xi and yi are real numbers and zi = xi + yi. First let us restate
the EM algorithm proposed in [5] for solving this case. The estimated distribution is a piecewise-
constant function of the form:

∑K
i=1 θiIRi where Ri are fixed nonoverlapping intervals partitioning

the support of the distribution of X and IRi is the indicator function of Ri. The measure of Ri is
mi. The determination of the parameters θi is computed via the following iterative algorithm:

1. Initialize θ0
i = 1

K .

2. θk+1
i = θk

i
miN

∑N
j=1

Pr(Y ∈zj−Ri)∑K

i=1
θk
i Pr(Y ∈zj−Ri)

3. k = k + 1

4. If termination criterion is not met, return to Step 2.
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3.1 Calculating the Fourier coefficients of fX

In this section we show how the Fourier coefficients of fX can be computed in one step to generate
an initial estimate of fX . Estimating the Fourier coefficients of fX belongs to the class of orthogonal
series estimators [6, 7]. This estimate can be further refined using the iterative methods of [4, 5].
When the one-step estimate is close to fX , the number of iterations needed in the refinement step
is smaller than in [4, 5] (see example below).

Assume that the data is properly scaled so that the support of X is a subset of [0, 1]. We want
to express fX as a Fourier series defined on the interval [0, 1]: fX(x) = a0 +

∑∞
i=1 ai sin(2πix) +∑∞

i=1 bi cos(2πix). Since fX is a probability density function, a0 = 1. As
√

2 sin(2πix) and√
2 cos(2πix) are orthonormal in f([0, 1]), it follows that ai = 2E(sin(2πiX)) and bi = 2E(cos(2πiX).

Because of the independence of X and Y ,

E(sin(2πiZ)) = E(sin(2πi(Y + X)))

= E(sin(2πiY ))E(cos(2πiX)) + E(cos(2πiY ))E(sin(2πiX))

E(cos(2πiZ)) = E(cos(2πi(Y + X)))

= E(cos(2πiY ))E(cos(2πiX)) − E(sin(2πiY ))E(sin(2πiX))

Therefore (
ai

bi

)
= 2

(
E(sin(2πiX))
E(cos(2πiX))

)
= 2A−1

i

(
E(sin(2πiZ))
E(cos(2πiZ))

)

where

Ai =

(
E(cos(2πiY )) E(sin(2πiY ))
−E(sin(2πiY )) E(cos(2πiY ))

)

Since fY is known, A−1
i can be computed in advance and E(sin(2πiZ)) and E(cos(2πiZ)) are

estimated as 1
n

∑n
j=1 sin(2πizj) and 1

n

∑n
j=1 cos(2πizj) respectively. One of the drawback of this

method is that it works as long as Ai is not close to being singular for the coefficients that we are
interested in. In other words, this method works well, i.e. has a smaller information loss, if fY has
higher frequency components than fX . We will see this restriction again in Section 3.2.

Note that the estimated density function is independent of the number of bins used in the
iterative algorithms of [4, 5]. As is common in orthogonal series estimators, the Fourier coefficients
need to be smoothed e.g., via finite truncation of the Fourier series or by weighting the coefficients
[8].

To illustrate this estimation method, consider the following example: X is a bimodal distri-
bution, and Y is a uniformly distributed random variable in the range [0, 20]. Fig. 1 shows the
estimated probability distribution and the unperturbed distribution using 500000 samples. The
unperturbed distribution is computed using k = 50 bins. The density function is estimated using
Fourier coefficients ai, bi ,i = 1, 2, ..., 12 and forced to be nonnegative. Also shown in Fig. 1 is
the estimated distribution using the EM algorithm in [5] after 100 iterations. We see that the
Fourier-based estimate, which is computed in a much shorter time, is comparable in quality to the
EM-based estimate.

Using the same distribution for X and Y , in Fig. 2 we show the unperturbed distribution using
100000 samples. Also shown is the estimated distribution from Fourier coefficients up to the 10th
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Figure 1: Plot of distribution of unperturbed data and the estimated distributions using 1) Fourier
coefficients based method and 2) EM method. The number of samples is 500000. The perturbation
Y is a uniform distribution in the range [0, 20]. The EM algorithm is run for 100 iterations.

harmonic and refined using the EM algorithm for 50 iterations. To compare with the method in
[5] where EM is used starting from a uniform distribution, we also plot the estimated distribution
starting from a uniform distribution after 92 iterations of EM. The same stopping criteria for EM
are used in both cases. We see that using the Fourier-based estimate as an initial guess to EM
results in a superior estimate, i.e. a smaller information loss (as defined in Section 5) while requiring
less iterations.

3.2 Estimating fX by iterative deconvolution

Since Z = X + Y , the density function of Z is the convolution of the density functions of X and
Y , i.e. fZ = fX ∗ fY . From a signal processing perspective, if we consider fY as a filter, the goal
of reconstructing fX from fZ is a deconvolution or deblurring problem. Since the density function
of Y is known, by estimating a density function of Z using the techniques in [8], we can estimate
the density function of X by means of deconvolution or deblurring algorithms. The method in
Section 3.1 can be considered as direct deconvolution by expanding fX into a Fourier series. If fY

corresponds to a low pass filter, then direct deconvolution means filtering fZ with a high pass filter
(the inverse of fY ) to obtain fX . As is well known in deblurring, this is problematic since noise
is amplified by the high pass filter. In our case, noise corresponds to inaccuracy in estimating fZ

due to the finite number of samples, and is larger as the number of samples N is smaller. This
can be dealt with by limiting the magnitude of the frequency response of the inverse filter (which
corresponds to limiting ‖A−1

i ‖ in Section 3.1). Another solution is to use iterative deconvolution
algorithms [9, 10].

3.3 Spectral properties of fX and fY and information loss

Since the Fourier transform of fZ (denoted as FZ) is the multiplication of the Fourier transforms
of fX and fY (denoted as FX and FY resp.), exact reconstruction of fX is not possible (i.e. there is
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Figure 2: Plot of distribution of unperturbed data and the estimated distributions using 1) Fourier
based method as an initial guess to EM and 2) using the uniform distribution as a initial guess to
EM. The number of samples is 100000 samples. The perturbation Y is a uniform distribution in
the range [0, 20].

information loss) when FY (ω) = 0 and FX(ω) 6= 0 for some frequency ω. In this case, regularization
techniques need to be used to the deblurring algorithm to avoid ill-conditioning and instability in
the reconstruction process [11] which occurs when |FX(ω)| >> |FY (ω)| for some frequencies ω.

Therefore to achieve zero information loss, the support of FX should be a subset of the support
of FY . This is the same restriction encountered in Section 3.1. Therefore to minimize information
loss, the support of FY should be large, whereas to minimize privacy loss, the support of fY should
be large. In [5] it was shown that the EM algorithm constructs the MLE estimate of fX and claims
that this results in zero information loss. The above discussion shows that zero information loss is
not always possible, i.e. reconstructing the MLE estimate does not always imply zero information
loss. To illustrate, consider the following example where fX is a uniform distribution on [0, 25]
and fY is a Gaussian distribution with µ = 0, σ = 1, i.e. the perturbation is much smaller than
the unperturbed data. Figure 3 shows the reconstructed distribution after 500 iterations of EM on
100000 samples with 100 bins which illustrates the numerical instability due to the ill-conditioning
of the problem.

In [5] it was also observed via simulation that when fX is Gaussian, the choice of whether
fY is uniform or Gaussian has little effect on the information loss, whereas when fX is uniform,
the information loss for uniform fY is smaller than the information loss for Gaussian fY . This
observation can be explained by noting that the the spectrum of a Gaussian distribution drops off
faster than the spectrum of a uniform distribution. This means than it is easier to reconstruct fX

when fY is uniform and it is harder to reconstruct fX when fY is Gaussian, especially when fX is
uniform.

3.4 Quantizing zi and the Richardson-Lucy algorithm

The EM algorithm can be sped up by quantizing the perturbed values zi. Let ∆m, m = 1, . . . ,M
be nonoverlapping intervals partitioning the support of Z and tm be the center of the interval ∆m.
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Figure 3: Plot of distribution of unperturbed data and the estimated distributions using EM. The
number of samples is 100000. The distribution of the unperturbed data X is a uniform distribution
in the range [0, 25]. The perturbation Y is a Gaussian distribution with variance 1. The EM
algorithm is run for 500 iterations. We observe Gibbs-like phenomena due to ill-conditioning of the
problem.
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Let Nm be the number of samples zi which lie in ∆m. Quantizing zi to tm if and only if zi ∈ ∆m

and then applying the EM algorithm results in the modified step 2:

θk+1
i =

θk
i

miN

M∑
m=1

NmPr(Y ∈ tm − Ri)∑K
i=1 θk

i Pr(Y ∈ tm − Ri)

By choosing M to be much smaller than and independent of N , the resulting algorithm, which
was proposed in [4], executes much faster than the EM algorithm. It is easy to see that this modified
EM algorithm is equivalent to the Richardson-Lucy algorithm [11]. In other words, by using the
histogram as an estimator of fZ and then applying the Richardson-Lucy deblurring algorithm, we
obtain the modified EM algorithm in [4].

4 A data perturbation scheme with a one-step estimation algo-

rithm

In this section, we modify the protocol of data perturbation so that a simple one-step estimation
algorithm exists which is guaranteed to approximate the unperturbed distribution given enough
data samples. First recall that the histogram method to estimate fX(x) is to decompose SX into
k regions or bins, and count the number of times xi lies in each region. Normalized by n and
the measure of the regions, these numbers give estimates of fX(x) at these regions. We propose a
data perturbation protocol which estimate fX in this way, except that the count is perturbed. As
before, we denote the regions as R1, . . . Rk with measures mj and indicator functions IRj . Then the
estimate of fX is simply

∑
j θjIRj where θj = 1

mjn

∑n
i=1 IRj (xi). Without loss of generality, let us

assume that mj = 1. We call χ(x) = (IR1(x), . . . , IRk
(x)) the indicator vector of x. We assume that

the regions are non-overlapping and cover SX . This implies that χ(x) is a unit coordinate vector,
a vector with zeros and a single 1. One can view χ(x) as a quantization of x, with the quantization
becoming finer as the number of bins increases. We construct yi as an k-vector of iid samples from
a distribution W with mean µ. The vector zi is defined as the k-vector zi = χ(xi) + yi. It is
intuitive that by making the variance of W large, the loss of privacy, i.e. the ability to reconstruct
xi from zi can be made small.

The estimation algorithm is very simple and its correctness easily proved. It essentially consists
of calculating the average of zi’s and subtracting the mean µ. Let zij be the j-th component of
the k-vector zi. Then 1

n

∑n
i=1 zij − µ = 1

n

∑n
i=1 IRj(xi) + 1

n

∑n
i=1 yij − µ which converges to the

correct estimate θj = 1
n

∑n
i=1 IRj (xi) as n → ∞ by the law of large numbers. In other words, the

information loss is arbitrarily small for large enough n. To force the estimate of the j-th bin to be
nonnegative, we set it equal to max(0, 1

n

∑n
i=1 zij − µ).

4.1 Choosing the distribution of the perturbation W

What are some of the requirements in choosing the distribution of the perturbation random variable
W ? A slightly simpler estimation algorithm can be obtained by requiring W to have zero mean
(µ = 0). This can be obtained by subtracting the mean from the samples of W . On the other
hand, as we will see, it is sometimes helpful to allow a nonzero mean in order to efficiently store and
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transmit the vectors zi. To be able to mask the indicator vectors of the xi’s, p(W > m) should be
non-vanishing for arbitrarily large m. An obvious choice would be the normal distribution. In this
case, each zi is a k-vector of real numbers and for large k, the amount of information in the vector
zi which needs to be stored and transmitted can be too large. Therefore it is better to choose W to
be a discrete random variable. This way zi can be represented as a k-vector of integers rather than
a k-vector of reals. For example, we can choose W as γround(N), where N is a normal distribution
with zero mean and variance σ. We will call this the discrete normal distribution. Other possible
distributions for W include the Poisson distribution pW (γw) = λwe−λ

w! for w a nonnegative integer
or the discrete random variable with probability distribution pW (γw) = 6

(2π2−6)(|w|+1)2 for w an
integer1. Here γ denotes the strength of the perturbation. The higher γ is, the stronger the
perturbation is, and the smaller the privacy loss is. To ensure that zi looks like a sample from Y ,
i.e. zi ∈ SY (as otherwise it would be easy to deduce xi from zi), we choose γ to be the inverse of
a positive integer,

4.2 Quantifying privacy loss

One way to quantify the loss of privacy is to calculate the mutual information between Z and X

[5]. Another way to quantify the loss of privacy is by defining it as the probability in which an
estimate from a single sample zi is correct assuming we know the probability distribution of both
X and W .

We show here two cases where the privacy loss defined in this sense approaches 0 as the num-
ber of bins increases. First we consider a distribution for W for which we can easily calculate
the maximum likelihood estimate (MLE). Because χ(x) is a many-to-one map, the MLE cannot
distinguish between xi’s lying in the same region Rj. Therefore we will estimate xi by finding the
region it belongs to. Let us define Sn =

∑∞
k=1

1
kn which exists for n > 1. Consider the following

mass function for W : pW (k) = 1
S3k3 , k > 0. The mean is S2

S3
≈ 1.368. The MLE given a sample

zi is Rj∗ where j∗ = argminj{zij |zij ≥ 2}. It can be shown that the probability that the MLE is
incorrect approaches 1 as the number of bins increases, i.e. the loss of privacy approaches 0.

Let S(a) =
∑∞

i=0
1
ai = a

a−1 for a > 1. Consider the following distribution for W : pW (k) =
1

S(a)ak = a−1
ak+1 for k = 0, 1, . . .. For this distribution, we can easily calculate the maximum a posterior

estimate (MAP). The MAP estimate given a sample zi is Rj∗ where j∗ = arg maxj{pX(Rj)|zij ≥ 1}.
For continuous random variables X, it is easy to see that the probability the MAP estimate is
incorrect approaches 1 as the number of bins increases.

5 Information loss metric

By adding perturbation, we lose precision in estimating fX , the density function of X. In [5]
this is referred to as information loss and a metric is proposed to quantify this. The metric,
which we will denote as I, is defined as the expected value of the statistical difference (also called
variation distance [12] or Kolmogorov distance [13]) between the original distribuition of X and
the estimated distribution. In other words, it is equal to half the expected value of the L1 norm

1Note that this distribution does not have a mean, but by symmetry we can use µ = 0 in the estimation algorithm.
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Figure 4: Plot of estimated distribution and of the distribution of the unperturbed data points.
n = 10000 and k = 30. The perturbation is the discrete normal with γ = 0.5, σ = 1.

between the original distribution of X and the estimated distribution. Note that this metric depends
on k, the number of bins used in estimating the distribution. This metric is zero for perfect
reconstruction. However, the information loss metric should measure the additional decrease in
precision in estimating pX due to the perturbation Y , and should be 0 when the perturbation Y

is zero. This is not the case for the metric I in [5] since even with the unperturbed samples there
is imprecision in estimating pX , especially when the number of samples n is small. One way to
remedy this is to subtract from I the value of I when the perturbation is 0. Therefore, we propose
to measure the information loss by one half of the expected value of the L1 norm between the
histogram of xi and the reconstructed histogram. This metric also depends on k. For this metric,
its value is 0 for perfectly reconstructing the histogram of xi, i.e. its value is 0 when Y = 0.

In Section 4 the function χ(x) classifies points into bins and is a many-to-one function and there
is some loss of information. On the other hand, calculating the histogram of the unperturbed data
or estimating the distribution using EM also require classifying points into bins and thus also incur
some loss of information. If the sets of bins used in these two calculations are the same then it is
clear from the discussion in Section 4 that the information loss as defined here approaches 0 as the
number of samples n increases.

We run the algorithm in Section 4 on 10000 data points from the bimodal distribution in Section
3.1. The perturbation W is the discrete normal with γ = 0.5, σ = 1. Fig. 4 shows a plot of the
estimated distribution and the distribution of the unperturbed data points. The number of bins is
k = 30.

In Fig. 5 we show the decrease in the proposed information loss metric as the number of samples
n increases for various σ of the perturbation W . The perturbation W is a discrete normal with
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γ = 1.

6 Conclusions

We present two methods to speed up the estimation of the density function of the data in privacy
preserving data mining applications where the data is perturbed by samples from a known dis-
tribution. In the first method, we consider the problem as a deconvolution problem in order the
solve it using deconvolution or deblurring algorithms. In the second method, we propose a novel
privacy preserving data mining scheme where the density function of the original data set can be
estimated using a simple one-step algorithm, compared with more complicated iterative procedures
that have been proposed in the past. The presentation in Section 4 deals primarily with numerical
data (i.e. xi are real numbers), but categorical data can be handled by considering each region as
a separate category. Indeed, categorical data is more natural in this setting than numerical data.
One drawback of the proposed scheme in dealing with numerical data versus the scheme in [4] is
that when the number of regions k is large, the number of bits needed to store/transmit the vectors
zi in the proposed scheme is also large. In practice this is not a serious drawback, since in many
cases, k is quite small (for instance, a person’s salary is usually categorized into a few salary ranges
or a preference is ranked on a scale of 1 to 5). Furthermore, because the estimation algorithm is
essentially a summation of the vectors zi’s, only a running total of the zi is needed in storage at any
one time. This is in contrast to the iterative EM algorithm where all the vectors zi’s are needed at
each iteration.
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