
RC 22816 (W0306-052) 11 June 2003
Computer Science

IBM Research Report

Developers and Evaluators in Composite Evaluations
Need Full Information

Paul A. Karger
IBM Research Division

Thomas J. Watson Research Center
P. O. Box 704

Yorktown Heights, NY 10598, USA

Helmut Kurth
atsec information security GmbH

Steinstr. 68
D-81667 Munich, Germany

Research Division
IBM Almaden – Austin – Beijing – Delhi – Haifa – T.J. Watson – Tokyo – Zurich

Limited Distribution Notice: This report has been submitted for publication outside of IBM and will probably be copyrighted if
accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of
copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and
specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g.,
payment of royalties). Some reports are available at http://www.research.ibm.com/resources/paper_search.html. Copies may
requested from IBM T.J. Watson Research Center, 16-220, P.O. Box 218, Yorktown Heights, NY 10598 or send email to
reports@us.ibm.com.

This paper has been submitted to the 19th Annual Computer Security Applications
Conference to be held in December 2003 in Las Vegas, NV. If accepted, it will appear in
final form on the conference web site at http://www.acsac.org

Draft of 11-Jun-03 9:42:01 PM 1

Developers and Evaluators in Composite Evaluations Need Full Information

Paul A. Karger Helmut Kurth
IBM Corp., Thomas J. Watson Research Center atsec information security GmbH
PO Box 704, Yorktown Heights, NY 10598, USA Steinstr. 68, D-81667 Munich, Germany

karger@watson.ibm.com helmut@atsec.com

ABSTRACT

Four Common Criteria Certification agencies from
France, Germany, the Netherlands and the UK have de-
veloped a concept of composite evaluations in which
software developers and evaluators would not receive the
full Evaluation Technical Report (ETR), but instead
would only received an abbreviated ETR-lite. While ETR-
lite is acceptable at low assurance levels, this paper ar-
gues that at high assurance levels, such an abbreviated
report violates the basic principles of systems engineering
and high assurance evaluation, and demonstrates that
serious undetected security vulnerabilities can be the re-
sult.

1 Introduction
Several of the certifying bodies in the Common Crite-

ria (BSI (Germany), CESG (UK), DCSSI (France), and
NLNCSA (The Netherlands)) have developed a series of
Supporting Documents [2-5, 7, 16] to assist in the evalua-
tion of integrated circuits and embedded software, with
smart cards particularly in mind. These supporting docu-
ments represent a good first step in developing method-
ologies for performing combined hardware and software
evaluations. However, as they are only a first step, there
are a number of potential problem areas in the documents,
some of which could result in serious difficulties when
performing such combined evaluations, particularly in the
case where the hardware and software developers are dif-
ferent companies and some information is regarded as
proprietary by one or the other of the developing compa-
nies or as proprietary by one of the CLEFs (commercially
licensed evaluation facilities).

The Supporting Documents introduce the concept of a
reduced Evaluation Technical Report, called ETR-lite,
that omits large amounts of the technical information de-
veloped during the evaluation. The assertion of [4] and
[5] is that this information is sufficient for the software
developers and software evaluators.

However, at high assurance levels (EAL6 and above),
the lack of information flow to the software developers
and evaluators could introduce serious undetected security
flaws due to insidious interactions between software and
hardware. Evaluated individually, there may be no secu-
rity flaws found, but only when viewed as a total system
do the flaws become visible. The paper will show that
composition of isolated evaluations could easily violate

basic principles of systems engineering and basic princi-
ples of high assurance evaluation as defined by the Com-
mon Criteria.

The purpose of this paper is to identify some of these
problem areas and to propose possible solutions that
should be incorporated into future versions of the docu-
ments.

2 Lack of Information Leads to Undis-
covered Vulnerabilities

There is an increased need for “secure” hardware as it
can form the basis for highly reliable security functions
implemented in software. While in the past it was often
valid to assume that highly critical systems would operate
in some kind of physically secure environment, this is no
longer true for a number of today’s embedded systems or
in general for smart cards. This results in new kinds of
attacks that use vulnerabilities introduced by specific ef-
fects a piece of software has when executed on specific
hardware. In addition to Trojan Horse attacks that may
exploit side effects of the hardware that can be observed
by software operating on this hardware, the new kind of
attacks use methods to observe hardware side effects in
the environment of the system. This includes attacks
based on externally measurable timing, power consump-
tion, electromagnetic radiation or high signal frequencies
on external interfaces.

Smart cards have especially suffered from these kind
of attacks recently. Timing and power analysis attacks
have received significant attention in recent years and
have been the reason to withdraw some smart card based
systems. As a consequence, both hardware and software
required significant changes to counter these types of at-
tacks requiring a suitable combination of hardware and
software countermeasures. The cost of replacing a large
number of issued smartcards with such a vulnerability can
be extremely high, not to mention the loss of image and
customer confidence in the technology.

In the US, the FIPS 140-1 [14] and the new FIPS 140-
2 [13] standards for cryptographic products (especially at
the level 4 defined there) also include an assessment of
the hardware. But this standard focuses more on the
physical protection features of the hardware. Vulnerabili-
ties introduced by the combination of hardware and soft-

Draft of 11-Jun-03 9:42:01 PM 2

ware have been completely neglected in FIPS 140-1 and
are only briefly mentioned in FIPS140-2. Although FIPS
140-2 looks at the combination of hardware and software,
the potential vulnerabilities introduced by that combina-
tion are not addressed.

Common Criteria evaluations of smart card hardware
have been become quite popular, especially in Europe. A
significant number of new smartcard processors have suc-
cessfully passed a hardware evaluation at quite high
Common Criteria levels with a special emphasis on a so-
phisticated vulnerability assessment. But those evalua-
tions are performed for the smart card chip alone, without
any software included as part of the evaluation.

The current practice is to evaluate a combination of
hardware and software by basically performing a vulner-
ability assessment of the software which takes the results
of the hardware vulnerability analysis as the basis for the
vulnerability analysis of the combination. The following
section show a set of examples, where this approach is
likely to fail, because the hardware evaluation could not
foresee the way the software was using the functions of
the hardware and where neither the hardware developer
nor the evaluator might have considered some effects
even worthy to mention to the software developer but
where the combination of hardware and software intro-
duces disastrous security problems.

That decomposing complex systems into separately
designed and evaluated modular units could introduce
reliability and/or security problems should not be a sur-
prise. Leveson [36] argues that systems engineering was
introduced into the aerospace industry, precisely to deal
with these types of problems in complex aircraft design.
While components would be designed in isolation and
would appear to function properly, only when they were
combined into a complex aircraft would problems arise
from the interactions. Rao [39] argues that traditional
software and systems design paradigms such as separation
of concerns break down when system-wide concerns such
as security need to be addressed..

This paper discusses hardware side effects that may re-
sult in vulnerabilities and addresses effects that can be
exploited by observing and exploiting hardware side ef-
fects external to the system as well as internal within the
system by Trojan Horses.

Those side effects can be categorized as follows:

1. “Internally visible” side effects
• Incorrect implementation resulting in side

effects of standard instructions
• Timing side effects
• Problems with pipeline architectures and

caching

2. “Externally visible” side effects
• Timing side effects
• Power Consumption

• Radiation
• “Noise” signals on external interfaces

Those side effects can be used in attacks where we

have to consider software based attacks as well as attacks
on the hardware or a combination of those. This leads to
new kinds of attacks not feasible for “classical” IT sys-
tems operating in a friendly or physically secured envi-
ronment.

The examples we present in this paper are mainly “in-
ternally visible” side effects. The main reason is that vul-
nerabilities related to “externally visible” side effects are
being analyzed in the last years (except for the problem of
radiation, which has been known for some decades to be a
critical problem).

3 Examples of Hardware/Software In-
teraction Vulnerabilities

This section will describe a number of examples of
how complex interactions between hardware and software
can result in vulnerabilities. Both the developer and the
evaluator of a high-assurance software system need to
have as much information as possible in these areas to
avoid these vulnerabilities. All of these examples are of
“internally visible” problems – they deal with issues in the
architecture of the processor or the implementation as
visible from software.

3.1 Flaws in Hardware Architecture
Design flaws in the hardware architecture can prevent

an operating system from effectively enforcing security
properties on running applications. The simplest such
example are traditional smart card processors that have no
supervisor state or memory protection. Any application
can issue any instruction and touch any location in mem-
ory. The only hope for achieving security on such a proc-
essor is to either ensure all applications are totally trust-
worthy or to confine all applications to a hopefully secure
interpreter, such as Multos [26] or JavaCard [27].

The more subtle issue is whether a hardware architec-
ture that has a supervisor state and memory management
has actually been designed without flaws. A good exam-
ple of this can be found in the Philips XA architecture.
The basic XA processor [18] has supervisor state and
memory protection, but certain critical special function
registers can be accessed from user mode. The XA is in-
tended for automotive applications for which this is not a
problem. However, the Philips SmartXA [11], designed
for smart card applications, has a revised architecture, that
resolves these security problems.

These types of security issues will be evident from
careful reading of the relevant processor manuals, and
such issues should be covered in the ETR-lite [4].

Draft of 11-Jun-03 9:42:01 PM 3

3.2 Flaws in Hardware Implementation
Merely having a processor architecture that is secure

is, of course, insufficient. The implementation of that
architecture must also be secure.

There was early concern on whether CPUs could fail
during operation in a way that could lead to undetected
security problems. Molho [38] studied the IBM System
360/50 as part of the ADEPT-50 project [42], and his
work led to the development of the first so-called “sub-
verter” program for Multics, described in section 3.2 of
[30] by Karger and Schell.

The subverter was designed to test various combina-
tions of illegal opcodes, illegal operands, and illegal
memory references to ensure that the hardware protection
mechanisms were actually implemented correctly and to
ensure that random failures did not cause problems. The
first subverter that Karger and Schell implemented for the
Honeywell 645 processor [24] ran a series of fixed tests in
background mode, one test per minute. After 1100 hours
of testing, the subverter found no random failures, but
found two implementation errors in the processor. One
was an undocumented but benign instruction. The other
was a way to bypass the hardware protection mechanisms
to allow an unprivileged user to execute privileged in-
structions. They were able to construct a simple exploit
program that allowed them to take complete control of the
Multics operating system. Running the 645 subverter on
the Honeywell 6180 processor [17] discovered another
implementation flaw that permitted a denial of service
attack on the 6180 mainframe. Hennigan [28] then devel-
oped an improved subverter for the Honeywell 6180
processor that did more extensive testing, but it did not
find any further implementation flaws.

These early subverters were useful tools, but because
they only had a fixed set of test cases, their test coverage
was still rather limited. That they still found flaws only
showed that traditional CPU testing focused almost exclu-
sively on showing that legal operations were implemented
correctly, rather than that illegal operations were correctly
prevented from causing damage. The problem was that
an enormous number of test cases would be required to
ensure good coverage.

Digital Equipment Corporation developed [25] a better
technique for ensuring broad test coverage in the early
1980s. They developed a program called AXE that gen-
erated random sequences of instructions and ran the same
sequences on two different models of the same processor
architecture. For example, their earliest tests compared
the VAX-11/780 to the VAX-11/750. The AXE program
did not check to see whether the instruction sequence exe-
cuted correctly. Rather it checked to see if two different
implementations gave identical results. If the results dif-
fered, then you knew that either one or the other imple-
mentation was flawed (or less likely that the AXE pro-
gram was flawed). AXE would not catch cases in which
two different implementations had identical flaws, but by
running literally millions of test cases, AXE did a remark-

able job of finding implementation flaws – much better
than any human written set of test sequences could ever
have accomplished. AXE was used for testing Digital’s
VAX VMM security kernel [32], including adding special
subverter-type tests to the AXE test suite. More informa-
tion about AXE can be found in [23] and [41]. IBM has
developed similar test strategies as described by Aharon,
et. al. in [19, 20].

Subverter-type testing is recommended in the Common
Criteria [10, section 13.3, pg. 158] in the ATE_FUN sec-
tion, but the actual requirement does not require it in all
cases. “Functional testing is not limited to positive con-
firmation that the required security functions are pro-
vided, but may also include negative testing to check for
the absence of particular undesired behavior (often based
on the inversion of functional requirements).” If the
ETR-lite does not say whether subverter-type testing was
actually performed, the software developer and the soft-
ware evaluation agency will have no way to know
whether such testing was actually performed or not. This
could lead to needless duplication of testing effort on the
part of software developers and evaluators and that could
significantly increase the costs of performing high assur-
ance evaluations. Furthermore, what is the software de-
veloper or evaluator to do if their testing reveals problems
that had not been tested for during the hardware evalua-
tion?

3.3 Covert Channel Issues
There can be a variety of covert channel issues in the

design of computer hardware. Frequently, these issues
are not visible from the normal computer hardware user
manuals, but can only be found, either by testing or by
reading detailed information about the internal designs.
Covert channel issues could be a particular problem in an
ETR-lite concept, because many software systems do not
consider covert channels at all. Only if the software sys-
tem intends to implement mandatory access controls at
high EAL levels will covert channels become an issue.
As a result, it would be very easy for the hardware evalua-
tion to completely omit any covert channel analysis or to
do a cursory analysis and report in ETR-lite that there are
no problems. Only when a later software development
actually starts to implement mandatory access controls
will the need for a detailed covert channel analysis be-
come clear, but with ETR-lite, neither the software devel-
oper nor the software evaluator will be able to determine
what if any covert channel analysis was actually done on
the hardware. The next two subsections describe how
such hardware covert channels could be serious problems.

3.3.1 Disk Arm Covert Channel in Controller
Disk drivers in operating systems have frequently im-

plemented the so-called elevator algorithm to optimize
disk arm motions. Schaefer, et. al. [40] identified an ex-
ploitable covert storage channel in such algorithms and
developed alternate driver algorithms that avoided the

Draft of 11-Jun-03 9:42:01 PM 4

channel for the KVM/370 system. That covert channel
had no relation to a hardware evaluation, because it was
purely a software artifact. However, as disk controllers
became more sophisticated over the years, the elevator
algorithm and other similar optimizations moved from the
operating system drivers into the disk controllers them-
selves, and the controller designs did not permit the oper-
ating system to directly prevent the covert channel.
Worse still, the existence of these optimizations in the
disk controllers were frequently undocumented, so the
developer would not know of the covert channel without
detailed knowledge of the internals of the controller.
Karger and Wray showed how to deal with such covert
channels in the disk controller in [31], but their counter-
measures were only possible, because they had detailed
knowledge of the internals of the controllers, knowledge
that did not appear in the normal user manuals. Under the
ETR-lite concept, there would no obligation for either the
disk controller developer or the hardware evaluator to
reveal that information to the software developer, assum-
ing that the disk controller developer was even aware of
the potential problem.

3.3.2 Covert Channel in SMP Interlock Hardware

Covert timing channels can exist in memory control-
lers for symmetric multi-processor (SMP) systems. Hu
[29] shows how the fact that the VAX 8800 processor
[37] uses only a single interlock in its memory controller,
can be exploited as a high bandwidth covert timing chan-
nel. Nothing in the normal VAX documentation [35]
would suggest that there was only a single interlock in the
entire memory controller. Indeed, other VAX processor
models do not suffer from this particular covert channel
problem. Without this detailed internal design informa-
tion about how the memory controller was built, a soft-
ware developer would have no reason to expect such a
covert channel. Once again, such information would be
considered proprietary to the hardware developer and
likely be excluded from the ETR-lite. Also, the hardware
designer would not likely consider this to be an issue at
all, and close communication between the hardware and
software developer would be needed to address the issue
properly. There would be a distinct possibility that the
hardware evaluation could do no covert channel analysis
at all, while the software developer would assume that an
analysis had been done and that no problems had been
found.

3.3.3 Covert Channels in Unpredictable/Undefined
Operations in VAX and Alpha

Many processor architectures define certain illegal op-
erations to be either unpredictable or undefined. For ex-
ample, the value stored after division by zero might be
defined to be unpredictable, in addition to generating a
zerodivide exception. Leaving such items as unpredict-
able or undefined gives the hardware designer more free-
dom to design any particular implementation in the best

way. The VAX architecture [35] has many such unpre-
dictable and undefined operations. Invalid instruction
prefixes are an example on the x86 architecture [12, sec-
tion 11.1.1]. However, most processor architecture speci-
fications do not allow for the possibility that an unpredict-
able result should depend in any way on information to
which the current process does not have access. Such a
store of a stale value from before the most recent context
switch would be perfectly legal in the VAX architecture,
yet it would constitute a quite serious covert channel.

By contrast, the Alpha architecture [1, section 1.6.3]
explicitly declares that such covert channels are forbid-
den. In the Alpha, this would likely be a visible security
function in the security target and the ETR-lite, but in
most processors, the issue would not even be mentioned
in the user manuals and would likely not be mentioned in
the ETR-lite, yet this could be a critical security issue to a
software developer, closely related to the subverter testing
issues described in section 3.2.

3.4 Instruction Prefetch Queue Length
About 1981 the following problem was identified with

a program running on an IBM minicomputer of the IBM
Series/1 family [8]. The program was executing without a
problem on computers with an older version [15] of the
processor while it failed on computers with the new ver-
sion of the processor. The problem could not be ex-
plained, since the manual claimed that both processors
where “fully binary compatible”. Investigating the prob-
lem in detail resulted in the following:

The developer of the program had used self-modifying
code to save some space and time. So the code included
an instruction that under some rare conditions modified
another instruction near to it (just 3 instructions ahead).

As part of the investigation it turned out that the new
version of the processor was enhanced by increasing the
size of the instruction prefetch queue by two instructions.
The hardware developer had considered this as a modifi-
cation that would not affect any program and therefore did
not consider this fact to be relevant to be mentioned in the
user documentation. They also did not consider imple-
menting any check in the processor to verify that instruc-
tions they had already cached in the instruction prefetch
queue had not been modified. Self-modifying code was
not foreseen by the hardware developers!

As a result, the instruction that was modified by the
program was already in the instruction prefetch queue of
the new version of the processor and the program then
failed in some cases. If this code had been in security or
safety critical software, the results could have been disas-
trous. Fortunately, it was not in such critical software.
As late as 1986, versions of the Series/1 manuals [9] still
did not discuss the problem with self-modifying code.1

1 The authors are uncertain if the particular Series/1 models and manuals
cited were those involved in the original incident, as the detailed records
are no longer available. However, we are grateful to Dawn Stanford of
the IBM Archives in Somers, NY for locating these manuals for us.

Draft of 11-Jun-03 9:42:01 PM 5

3.5 Cache Vulnerabilities
The previous example described a potential vulnerabil-

ity in a specific kind of cache: the instruction prefetch
queue. But there are other examples of critical vulnerabil i-
ties introduced by caching.

Such a problem was identified just recently in a logical
partitioning architecture. In this architecture, the hardware
was designed in such a way that two processors always
shared a common second level cache. The logical part i-
tioning architecture allowed the allocation of the two
processors to different logical partitions.

It is easy to see that Trojan horses in the two partitions
could easily set up a covert channel by “measuring” the
amount of the second level cache allocated to their own
processor (via the time used for memory access). No
measurement of the bandwidth of this channel was per-
formed but from other examples it can be assumed that
this is quite high.

3.6 Virtual Machine Timing Dependencies
When running an operating system on top of a virtual

machine, similar problems arise as when running the op-
erating system on a different “binary compatible” hard-
ware platform. Also in this case, security problems may
turn up that did not exist when the operating system is
executed on the bare machine. To make it very clear: we
are not talking here about the problems of interference
between different virtual machines operating in parallel
on the same physical hardware. Those problems need to
be addressed in the security evaluation of the virtual ma-
chine monitor. Here we just focus on security problems
arising within an operating system running on top of a
virtual machine monitor instead of the bare hardware.
Those problems exist even when there is just a single vir-
tual machine started by the virtual machine monitor.

The example where these problems become immedi-
ately obvious is the case where a secure operating system
that has been carefully analyzed for potential covert chan-
nels is executed within a virtual machine environment that
provides virtual memory management. Regardless of
whether the operating system itself uses virtual memory
management techniques or not, new covert timing chan-
nels with potentially very high bandwidth are introduced
with high probability within the operating system by the
virtual memory management of the virtual machine moni-
tor. It should also be obvious to the reader that an analysis
of those covert channels can only be done with detailed
knowledge about the virtual memory management strat-
egy and algorithms implemented by the virtual machine
monitor. In this respect, the channels introduced are simi-
lar to those introduced by caching or bus arbitration as
part of hardware architectures.

Virtual memory management is just one example of an
area where additional security problems can show up
when an operating system runs in a virtual machine envi-
ronment. One also has to consider that the timing charac-
teristics of emulated instructions, I/O, interrupt handling,

caching etc. are very much different from the bare ma-
chine and may become dependent on the state of the vir-
tual machine where it is constant on the bare machine. As
a result, one can deduce that high assurance for an operat-
ing system intended to execute in a virtual machine envi-
ronment requires a combined analysis of the operating
system, the virtual machine and the underlying hardware.

4 Smart Card Examples
Attacks on smart cards have received wide attention

recently, especially since smart cards are applied in highly
critical areas like electronic purses and for the generation
of digital signatures. In addition, the assumption of a
physically protected environment for the hardware com-
monly made in most vulnerability assessments and
evaluations does not hold any more. For example, in the
case of an electronic purse, the legitimate owner of the
smart card may have the highest interest to penetrate its
functions to set up his own money generating system.

A number of active and passive attacks against smart-
cards have been published in the last years, and some of
them required significant modifications to both the hard-
ware and the software to counter those attacks. The most
widely recognized attacks were probably the simple and
differential power analysis attacks as described by Kocher
[33]. Attacks requiring active manipulation of the smart
card hardware also have been published. [22, 34] give an
overview on some of those attacks and their effects. We
do not intend with this paper to go into further details on
those kind of attacks.

What has not yet been analyzed in full detail in the ex-
isting papers are the effects of combining hardware and
software related attacks. Those kind of attacks become
critical with new multi-application smart cards that allow
the download of applications in the field. This might al-
low an attacker to use a combination of hardware and
software attacks provided he manages to get his applica-
tion downloaded and executed on the smart card.

In a Common Criteria evaluation with a target level of
AVA_VLA.4 for the vulnerability assessment one would
expect that those combined attack methods are analyzed
in sufficient detail to ensure that they require highly spe-
cific equipment and a detailed knowledge of the operation
of both hardware and software. This of course requires the
evaluator to analyze hardware and software in parallel
with the same rigor. Focusing just on one of them, as is
required under the ETR-lite concept, has the danger of
missing a highly critical attack in the analysis.

An example of a document focusing just on the soft-
ware aspects of a security function and neglecting poten-
tial hardware related vulnerabilities is [6], which provides
very detailed guidance on how to test random numbers
generated by a physical random number generator to en-
sure a high quality of those numbers. Based on the guid-
ance provided in that guidance, one could easily conclude
that the best random numbers to use are those that have
undergone these extensive statistical tests. On the other

Draft of 11-Jun-03 9:42:01 PM 6

hand, when one performs those tests on a smart card, one
be almost sure that the total set of random numbers tested
can be obtained using differential power analysis tech-
niques. Post processing by a pseudo random number gen-
erator does not help, since one can assume that the at-
tacker knows the algorithm used. Careless use of the thor-
oughly tested random numbers e. g. for the generation of
cryptographic keys, could make those keys known to the
attacker before they are used the first time for a crypto-
graphic operation. Unfortunately, the document [6] does
not provide any guidance on how to securely use the thor-
oughly tested random numbers such that the attacker can-
not extract critical information by differential power
analysis or by the analysis of electromagnetic radiation.
An easy fix of this problem would be to generate addi-
tional (non-tested) random numbers and use those to se-
lect the bits or bytes used from the large set of tested ran-
dom numbers as the basis for the generation of crypto-
graphic keys. One would expect guidance taking into ac-
count potential hardware vulnerabilities would be pre-
sented to help software developers avoid the risk of being
easily attacked using a hardware vulnerability when they
try to counter a potential software related attack.

5 Conclusion
While this paper has focused extensively on some of

the drawbacks of the ETR-lite concept as part of compos-
ite evaluation, it is important to note that there are a large
number of very good and useful concepts in composite
evaluation. The supplementary documents lay out very
well how hardware evaluations and software evaluations
are likely to be separate, because the underlying technical
issues are different. Furthermore, a single hardware
evaluation may be used as the basis for several different
software evaluations. The supplementary documents also
make clear that information has to flow from the hardware
evaluation to both the software developer and the soft-
ware evaluator. They recognize that there may be legiti-
mate proprietary interests held by the hardware developer
and hardware evaluator, and lays out guidelines for in-
formation that must flow, regardless. At lower levels of
assurance, there is much less of a problem with ETR-lite.
For example, Albertson and Forge [21] report good results
with ETR-lite, but the software in that case was only
evaluated to EAL4.

The major problem is that the ETR-lite concept was
developed without adequate consideration of that at
higher assurance levels, the software developer and
evaluator need considerably more information than would
be the case at lower levels. If the software security target
is claiming at least EAL5 or specifically “AVA_VLA.4
Highly Resistant”, then the information specified in ETR-
lite is almost certainly insufficient. The supplementary
documents should specify that further information, includ-
ing the complete ETR is likely to be essential for such an
evaluation to be successful.

6 Acknowledgements
This paper has benefited greatly from comments by J.

R. Rao and Elaine Palmer of IBM.

7 References
1. Alpha Architecture Handbook, Order Number: EC-QD2KC-
TE, October 1998, Compaq Computer Corporation. URL:
http://www.support.compaq.com/alpha-
tools/documentation/current/alpha-archt/alpha-architecture.pdf

2. Application of Attack Potential to Smartcards, Version 1.1,
July 2002, Bundesamt für Sicherheit in der Informationstechnik
(BSI): Bonn, Germany. URL:
www.commoncriteria.org/supporting_docs/2002-08-001.pdf

3. The Application of CC to Integrated Circuits, Version 1.2,
July 2002, Bundesamt für Sicherheit in der Informationstechnik
(BSI): Bonn, Germany. URL:
www.commoncriteria.org/supporting_docs/2002-08-002.pdf

4. ETR-lite for Composition, Version 1.1, July 2002, Bundesamt
für Sicherheit in der Informationstechnik (BSI): Bonn, Ger-
many. URL: www.commoncriteria.org/supporting_docs/2002-
08-003.pdf

5. ETR-lite for composition: Annex A Composite smartcard
evaluation : Recommended best practice, Version 1.2, March
2002, Direction Centrale de la Sécurité des Systèmes d'Informa-
tion (DCSSI): Paris, France. URL:
www.commoncriteria.org/supporting_docs/2002-07-017A.doc

6. Functionality classes and evaluation methodology for physi-
cal random number generators, AIS 31, Version 1, 25 Septem-
ber 2001, Bundesamt für Sicherheit in der Informationstechnik
(BSI): Bonn, Germany. URL:
http://www.bsi.bund.de/zertifiz/zert/interpr/ais31e.pdf

7. Guidance for Smartcard Evaluation, Version 1.1, March
2002, Direction Centrale de la Sécurité des Systèmes d'Informa-
tion (DCSSI): Paris, France. URL:
www.commoncriteria.org/supporting_docs/2002-07-019.pdf

8. IBM Series/1 - 4942 Processor Models A and B and Proces-
sor Features Description, GA34-0157-0, April 1981, IBM Cor-
poration: Boca Raton, FL.

9. IBM Series/1 - Processor Models 30D, 31D, 60D, and 61D
Description, GA34-0253-2, January 1986, IBM Corporation:
Boca Raton, FL.

10. Information technology - Security techniques -- Evaluation
criteria for IT security -- Part 3: Security assurance require-
ments, ISO/IEC 15408-3, 1999, International Organization for
Standardization.

11. P16WX064 SmartXA-Family: Secure 16-bit Smart Card
Controller, Short Form Specification Revision 1.1, February
2001, Philips Semiconductors. URL: http://www-
us.semiconductors.philips.com/acrobat/other/identification/smar
txa_ls.pdf

Draft of 11-Jun-03 9:42:01 PM 7

12. Pentium Pro Family Developer's Manual - Volume 2: Pro-
grammer's Reference Manual, Order No. 242691, December
1995, intel Corporation.

13. Security Requirements for Cryptographic Modules, FIPS
PUB 140-2, Change Notice 1, 10 October 2001, National Insti-
tute of Standards and Technology: Gaithersburg, MD. URL:
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

14. Security Requirements for Cryptographic Modules, FIPS
PUB 140-1, 11 January 1994, National Institute of Standards
and Technology: Gaithersburg, MD. URL:
http://csrc.ncsl.nist.gov/publications/fips/fips140-1/fips1401.pdf

15. Series/1 Model 5 - 4955 Processor and Processor Features
Description, GA34-0021-0, November 1976, IBM Corporation:
Boca Raton, FL. URL:
http://www.spies.com/~aek/pdf/ibm/series1/GA34-0021-
0_series1mod5proc.pdf

16. ST-lite, Version 1.1, July 2002, Bundesamt für Sicherheit in
der Informationstechnik (BSI): Bonn, Germany. URL:
www.commoncriteria.org/supporting_docs/2002-08-004.pdf

17. Summary of the H6180 Processor, 22 May 1973, Informa-
tion Processing Center, Massachusetts Institute of Technology:
Cambridge, MA.

18. XA User Guide, 1998, Philips Electronics North America
Corporation. URL: http://www-
us.semiconductors.philips.com/acrobat/various/XA_USER_GUI
DE_1.pdf

19. Aharon, A., A. Bar-David, B. Dorfman, E. Gofman, M.
Leibowitz, and V. Schwartzburd, Verification of the IBM RISC
System/6000 by a dynamic biased pseudo-random test program
generator. IBM Systems Journal, 1991. 30(4): p. 527-538.

20. Aharon, A., D. Goodman, M. Levinger, Y. Lichtenstein, Y.
Malka, C. Metzger, M. Molcho, and G. Shurek. Test Program
Generation for Functional Verification of PowerPC Processors
in IBM. in Proceedings of the 32nd ACM/IEEE Design Auto-
mation Conference. June 1998, San Francisco, CA Association
for Computing Machinery. p. 279-285.

21. Albertson, H.-G. and F. Forge. The modular approach: A
composite product evaluation for Smart Cards. in 3rd Interna-
tional Common Criteria Conference - Common Criteria:
Delivering Information Assurance Solutions . 13-14 May
2002, Ottawa, Ontario, Canada. URL:
http://www.expotrack.com/iccc/proceedings/pdf/proceed/english
/track3/pr041_e.pdf

22. Anderson, R. and M. Kuhn. Tamper Resistance - a Cau-
tionary Note. in Second USENIX Workshop on Electronic
Commerce Proceedings. 1996, Oakland, CA USENIX Associa-
tion. p. 1-11.

23. Anderson, W. Logical Verification of the NVAX CPU Chip
Design. in 1992 International Conference on Computer De-
sign: VLSI in Computers and Processors . 1992, IEEE Com-
puter Society Press. p. 306-309.

24. Andrews, J., M.L. Goudy, and J.E. Barnes, Model 645
Processor Reference Manual, revision 4, 1 April 1971, Cam-
bridge Information Systems Laboratory, Honeywell Information
Systems, Inc.: Cambridge, MA.

25. Bhandarkar, D., Architecture Management for Ensuring
Software Compatibility in the VAX Family of Computers. Com-
puter, February 1982. 15(2): p. 87-93.

26. Brown, M.D., MULTOS Version 3 on Hitachi H8/3112
integrated circuit card, UK ITSEC Scheme Certification Report
No. P130, 13 September 1999, UK IT Security Evaluation and
Certification Scheme, Certification Body: PO Box 152, Chel-
tenham, UK.

27. Chen, Z., Java Card (tm) Technology for Smart Cards:
Architecture and Programmer's Guide. 2000, Boston: Addison-
Wesley.

28. Hennigan, K.B., Hardware Subverter for the Honeywell
6180, December 1976, The MITRE Corporation, Bedford, MA:
HQ Electronic Systems Division, Hanscom AFB, MA.

29. Hu, W.-M. Reducing Timing Channels with Fuzzy Time. in
Proceedings of the 1991 IEEE Symposium on Research in
Security and Privacy. 20-22 May 1991, Oakland, CA IEEE
Computer Society. p. 8-20.

30. Karger, P.A. and R.R. Schell, Multics Security Evaluation:
Vulnerability Analysis, ESD-TR-74-193, Vol. II, June 1974, HQ
Electronic Systems Division: Hanscom AFB, MA. URL:
http://csrc.nist.gov/publications/history/karg74.pdf

31. Karger, P.A. and J.C. Wray. Storage Channels in Disk Arm
Optimization. in Proceedings of the 1991 IEEE Computer
Society Symposium on Research in Security and Privacy. 20-
22 May 1991, Oakland, CA p. 52-61.

32. Karger, P.A., M.E. Zurko, D.W. Bonin, A.H. Mason, and
C.E. Kahn, A Retrospective on the VAX VMM Security Kernel.
IEEE Transactions on Software Engineering, November
1991. 17(11): p. 1147-1165.

33. Kocher, P., J. Jaffe, and B. Jun. Differential Power Analy-
sis: Leaking Secrets . in Proceedings of Crypto '99. August
1999, Santa Barbara, CA:Lecture Notes in Computer Science
Vol. 1666. Springer Verlag. p. 388-397.

34. Kömmerling, O. and M. Kuhn. Design Principles for Tam-
per-Resistant Smartcard Processors. in Proceedings of the
USENIX Workshop on Smartcard Technology (Smartcard
'99). 10-11 May 1999, Chicago, IL USENIX Association. p. 9-
20.

35. Leonard, T.E., VAX Architecture Manual. 1987, Bedford,
MA: Digital Press.

36. Leveson, N.G., Safeware: System Safety and Computers.
1995, Reading, MA: Addison-Wesley.

37. Mishra, S.N., The VAX 8800 Microarchitecture. Digital
Technical Journal, February 1987(4): p. 20-33.

Draft of 11-Jun-03 9:42:01 PM 8

38. Molho, L.M. Hardware Aspects of Secure Computing. in
1970 Spring Joint Computer Conference. 5-7 May 1970, At-
lantic City, NJ Vol. 36. AFIPS Press. p. 135-141.

39. Rao, J.R., On the role of formal methods in security. Infor-
mation Processing Letters , 28 February 2001. 77(2-4): p. 209-
212.

40. Schaefer, M., B. Gold, R. Linde, and J. Scheid. Program
Confinement in KVM/370. in Proceedings of the 1977 ACM
Annual Conference. 16-19 October 1977, Seattle, WA p. 404-
410.

41. Taylor, S., M. Quinn, D. Brown, N. Dohm, S. Hildebrandt,
J. Huggins, and C. Ramey. Functional Verification of a Multi-
ple-Issue, Out-of-Order, Superscalar Alpha Processor - The
DEC Alpha 21264 Microprocessor. in Proceedings of the 35th
Annual Conference on Design Automation. June 1998, San
Francisco, CA Association for Computing Machinery. p. 638-
644.

42. Weissman, C. Security Controls in the ADEPT-50 time
sharing system . in Fall Joint Computer Conference. 1969,
Vol. 35. AFIPS Conference Proceedings, AFIPS Press, Mont-
vale, NJ. p. 119-133.

