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ABSTRACT 

Four Common Criteria Certification agencies from 
France, Germany, the Netherlands and the UK have de-
veloped a concept of composite evaluations in which 
software developers and evaluators would not receive the 
full Evaluation Technical Report (ETR), but instead 
would only received an abbreviated ETR-lite.  While ETR-
lite is acceptable at low assurance levels, this paper ar-
gues that at high assurance levels, such an abbreviated 
report violates the basic principles of systems engineering 
and high assurance evaluation, and demonstrates that 
serious undetected security vulnerabilities can be the re-
sult. 

1 Introduction 
Several of the certifying bodies in the Common Crite-

ria (BSI (Germany), CESG (UK), DCSSI (France), and 
NLNCSA (The Netherlands)) have developed a series of  
Supporting Documents [2-5, 7, 16] to assist in the evalua-
tion of integrated circuits and embedded software, with 
smart cards particularly in mind.  These supporting docu-
ments represent a good first step in developing method-
ologies for performing combined hardware and software 
evaluations.  However, as they are only a first step, there 
are a number of potential problem areas in the documents, 
some of which could result in serious difficulties when 
performing such combined evaluations, particularly in the 
case where the hardware and software developers are dif-
ferent companies and some information is regarded as 
proprietary by one or the other of the developing compa-
nies or as proprietary by one of the CLEFs (commercially 
licensed evaluation facilities).  

The Supporting Documents introduce the concept of a 
reduced Evaluation Technical Report, called ETR-lite, 
that omits large amounts of the technical information de-
veloped during the evaluation.  The assertion of [4] and 
[5] is that this information is sufficient for the software 
developers and software evaluators. 

However, at high assurance levels (EAL6 and above), 
the lack of information flow to the software developers 
and evaluators could introduce serious undetected security 
flaws due to insidious interactions between software and 
hardware.  Evaluated individually, there may be no secu-
rity flaws found, but only when viewed as a total system 
do the flaws become visible.  The paper will show that 
composition of isolated evaluations could easily violate 

basic principles of systems engineering and basic princi-
ples of high assurance evaluation as defined by the Com-
mon Criteria. 
 

The purpose of this paper is to identify some of these 
problem areas and to propose possible solutions that 
should be incorporated into future versions of the docu-
ments. 

2 Lack of Information Leads to Undis-
covered Vulnerabilities  

There is an increased need for  “secure” hardware as it 
can form the basis for highly reliable security functions 
implemented in software. While in the past it was often 
valid to assume that highly critical systems would operate 
in some kind of physically secure environment, this is no 
longer true for a number of today’s embedded systems or 
in general for smart cards. This results in new kinds of 
attacks that use vulnerabilities introduced by specific ef-
fects a piece of software has when executed on specific 
hardware. In addition to Trojan Horse attacks that may 
exploit side effects of the hardware that can be observed 
by software operating on this hardware, the new kind of 
attacks use methods to observe hardware side effects in 
the environment of the system. This includes attacks 
based on externally measurable timing, power consump-
tion, electromagnetic radiation or high signal frequencies 
on external interfaces. 
 

Smart cards have especially suffered from these kind 
of attacks recently. Timing and power analysis attacks 
have received significant attention in recent years and 
have been the reason to withdraw some smart card based 
systems. As a consequence, both hardware and software 
required significant changes to counter these types of at-
tacks requiring a suitable combination of hardware and 
software countermeasures. The cost of replacing a large 
number of issued smartcards with such a vulnerability can 
be extremely high, not to mention the loss of image and 
customer confidence in the technology. 

In the US, the FIPS 140-1 [14] and the new FIPS 140-
2 [13] standards for cryptographic products (especially at 
the level 4 defined there) also include an assessment of 
the hardware. But this standard focuses more on the 
physical protection features of the hardware.  Vulnerabili-
ties introduced by the combination of hardware and soft-
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ware have been completely neglected in FIPS 140-1 and 
are only briefly mentioned in FIPS140-2. Although FIPS 
140-2 looks at the combination of hardware and software, 
the potential vulnerabilities introduced by that combina-
tion are not addressed. 

Common Criteria evaluations of smart card hardware 
have been become quite popular, especially in Europe. A 
significant number of new smartcard processors have suc-
cessfully passed a hardware evaluation at quite high 
Common Criteria levels with a special emphasis on a so-
phisticated vulnerability assessment. But those evalua-
tions are performed for the smart card chip alone, without 
any software included as part of the evaluation. 

The current practice is to evaluate a combination of 
hardware and software by basically performing a vulner-
ability assessment of the software which takes the results 
of the hardware vulnerability analysis as the basis for the 
vulnerability analysis of the combination. The following 
section show a set of examples, where this approach is 
likely to fail, because the hardware evaluation could not 
foresee the way the software was using the functions of 
the hardware and where neither the hardware developer 
nor the evaluator might have considered some effects 
even worthy to mention to the software developer but 
where the combination of hardware and software intro-
duces disastrous security problems.  

That decomposing complex systems into separately 
designed and evaluated modular units could introduce 
reliability and/or security problems should not be a sur-
prise.  Leveson [36] argues that systems engineering was 
introduced into the aerospace industry, precisely to deal 
with these types of problems in complex aircraft design.  
While components would be designed in isolation and 
would appear to function properly, only when they were 
combined into a complex aircraft would problems arise 
from the interactions.  Rao [39] argues that traditional 
software and systems design paradigms such as separation 
of concerns break down when system-wide concerns such 
as security need to be addressed.. 

This paper discusses hardware side effects that may re-
sult in vulnerabilities and addresses effects that can be 
exploited by observing and exploiting hardware side ef-
fects external to the system as well as internal within the 
system by Trojan Horses.  
 

Those side effects can be categorized as follows: 
 

1. “Internally visible” side effects 
• Incorrect implementation resulting in side 

effects of standard instructions 
• Timing side effects 
• Problems with pipeline architectures and 

caching 
 

2. “Externally visible” side effects 
• Timing side effects 
• Power Consumption 

• Radiation 
• “Noise” signals on external interfaces 

 
Those side effects can be used in attacks where we 

have to consider software based attacks as well as attacks 
on the hardware or a combination of those. This leads to 
new kinds of attacks not feasible for “classical” IT sys-
tems operating in a friendly or physically secured envi-
ronment. 
 

The examples we present in this paper are mainly “in-
ternally visible” side effects. The main reason is that vul-
nerabilities related to  “externally visible” side effects are 
being analyzed in the last years (except for the problem of 
radiation, which has been known for some decades to be a 
critical problem). 

3 Examples of Hardware/Software In-
teraction Vulnerabilities 

This section will describe a number of examples of 
how complex interactions between hardware and software 
can result in vulnerabilities.   Both the developer and the 
evaluator of a high-assurance software system need to 
have as much information as possible in these areas to 
avoid these vulnerabilities.  All of these examples are of 
“internally visible” problems – they deal with issues in the 
architecture of the processor or the implementation as 
visible from software.   

3.1 Flaws in Hardware Architecture 
Design flaws in the hardware architecture can prevent 

an operating system from effectively enforcing security 
properties on running applications.  The simplest such 
example are traditional smart card processors that have no 
supervisor state or memory protection.  Any application 
can issue any instruction and touch any location in mem-
ory.  The only hope for achieving security on such a proc-
essor is to either ensure all applications are totally trust-
worthy or to confine all applications to a hopefully secure 
interpreter, such as Multos  [26] or JavaCard [27]. 

The more subtle issue is whether a hardware architec-
ture that has a supervisor state and memory management 
has actually been designed without flaws.  A good exam-
ple of this can be found in the Philips XA architecture.  
The basic XA processor [18] has supervisor state and 
memory protection, but certain critical special function 
registers can be accessed from user mode.  The XA is in-
tended for automotive applications for which this is not a 
problem.  However, the Philips SmartXA [11], designed 
for smart card applications, has a revised architecture, that 
resolves these security problems. 

These types of security issues will be evident from 
careful reading of the relevant processor manuals, and 
such issues should be covered in the ETR-lite [4]. 
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3.2 Flaws in Hardware Implementation  
Merely having a processor architecture that is secure 

is, of course, insufficient.  The implementation of that 
architecture must also be secure.   

There was early concern on whether CPUs could fail 
during operation in a way that could lead to undetected 
security problems.  Molho [38] studied the IBM System 
360/50 as part of the ADEPT-50 project [42], and his 
work led to the development of the first so-called “sub-
verter” program for Multics, described in section 3.2 of 
[30] by Karger and Schell. 

The subverter was designed to test various combina-
tions of illegal opcodes, illegal operands, and illegal 
memory references to ensure that the hardware protection 
mechanisms were actually implemented correctly and to 
ensure that random failures did not cause problems.   The 
first subverter that Karger and Schell implemented for the 
Honeywell 645 processor [24] ran a series of fixed tests in 
background mode, one test per minute.  After 1100 hours 
of testing, the subverter found no random failures, but 
found two implementation errors in the processor.  One 
was an undocumented but benign instruction.  The other 
was a way to bypass the hardware protection mechanisms 
to allow an unprivileged user to execute privileged in-
structions.  They were able to construct a simple exploit 
program that allowed them to take complete control of the 
Multics operating system.  Running the 645 subverter on 
the Honeywell 6180 processor [17] discovered another 
implementation flaw that permitted a denial of service 
attack on the 6180 mainframe.  Hennigan [28] then devel-
oped an improved subverter for the Honeywell 6180 
processor that did more extensive testing, but it did not 
find any further implementation flaws. 

These early subverters were useful tools, but because 
they only had a fixed set of test cases, their test coverage 
was still rather limited.   That they still found flaws only 
showed that traditional CPU testing focused almost exclu-
sively on showing that legal operations were implemented 
correctly, rather than that illegal operations were correctly 
prevented from causing damage.  The problem was that 
an enormous number of test cases would be required to 
ensure good coverage. 

Digital Equipment Corporation developed [25] a better 
technique for ensuring broad test coverage in the early 
1980s.  They developed a program called AXE that gen-
erated random sequences of instructions and ran the same 
sequences on two different models of the same processor 
architecture.  For example, their earliest tests compared 
the VAX-11/780 to the VAX-11/750.  The AXE program 
did not check to see whether the instruction sequence exe-
cuted correctly.  Rather it checked to see if two different 
implementations gave identical results.  If the results dif-
fered, then you knew that either one or the other imple-
mentation was flawed (or less likely that the AXE pro-
gram was flawed).  AXE would not catch cases in which 
two different implementations had identical flaws, but by 
running literally millions of test cases, AXE did a remark-

able job of finding implementation flaws – much better 
than any human written set of test sequences could ever 
have accomplished.  AXE was used for testing Digital’s 
VAX VMM security kernel [32], including adding special 
subverter-type tests to the AXE test suite.  More informa-
tion about AXE can be found in [23] and [41].  IBM has 
developed similar test strategies as described by Aharon, 
et. al. in [19, 20]. 

Subverter-type testing is recommended in the Common 
Criteria [10, section 13.3, pg. 158] in the ATE_FUN sec-
tion, but the actual requirement does not require it in all 
cases.  “Functional testing is not limited to positive con-
firmation that the required security functions are pro-
vided, but may also include negative testing to check for 
the absence of particular undesired behavior (often based 
on the inversion of functional requirements).”  If the 
ETR-lite does not say whether subverter-type testing was 
actually performed, the software developer and the soft-
ware evaluation agency will have no way to know 
whether such testing was actually performed or not.  This 
could lead to needless duplication of testing effort on the 
part of software developers and evaluators and that could 
significantly increase the costs of performing high assur-
ance evaluations.  Furthermore, what is the software de-
veloper or evaluator to do if their testing reveals problems 
that had not been tested for during the hardware evalua-
tion? 

3.3 Covert Channel Issues 
There can be a variety of covert channel issues in the 

design of computer hardware.  Frequently, these issues 
are not visible from the normal computer hardware user 
manuals, but can only be found, either by testing or by 
reading detailed information about the internal designs.  
Covert channel issues could be a particular problem in an 
ETR-lite concept, because many software systems do not 
consider covert channels at all.  Only if the software sys-
tem intends to implement mandatory access controls at 
high EAL levels will covert channels become an issue.  
As a result, it would be very easy for the hardware evalua-
tion to completely omit any covert channel analysis or to 
do a cursory analysis and report in ETR-lite that there are 
no problems.  Only when a later software development 
actually starts to implement mandatory access controls 
will the need for a detailed covert channel analysis be-
come clear, but with ETR-lite, neither the software devel-
oper nor the software evaluator will be able to determine 
what if any covert channel analysis was actually done on 
the hardware.  The next two subsections describe how 
such hardware covert channels could be serious problems. 

3.3.1 Disk Arm Covert Channel in Controller 
Disk drivers in operating systems have frequently im-

plemented the so-called elevator algorithm to optimize 
disk arm motions.  Schaefer, et. al. [40] identified an ex-
ploitable covert storage channel in such algorithms and 
developed alternate driver algorithms that avoided the 
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channel for the KVM/370 system.  That covert channel 
had no relation to a hardware evaluation, because it was 
purely a software artifact.  However, as disk controllers 
became more sophisticated over the years, the elevator 
algorithm and other similar optimizations moved from the 
operating system drivers into the disk controllers them-
selves, and the controller designs did not permit the oper-
ating system to directly prevent the covert channel.  
Worse still, the existence of these optimizations in the 
disk controllers were frequently undocumented, so the 
developer would not know of the covert channel without 
detailed knowledge of the internals of the controller.  
Karger and Wray showed how to deal with such covert 
channels in the disk controller in [31], but their counter-
measures were only possible, because they had detailed 
knowledge of the internals of the controllers, knowledge 
that did not appear in the normal user manuals.  Under the 
ETR-lite concept, there would no obligation for either the 
disk controller developer or the hardware evaluator to 
reveal that information to the software developer, assum-
ing that the disk controller developer was even aware of 
the potential problem.   

3.3.2 Covert Channel in SMP Interlock Hardware 

Covert timing channels can exist in memory control-
lers for symmetric multi-processor (SMP) systems.  Hu 
[29] shows how the fact that the VAX 8800 processor 
[37] uses only a single interlock in its memory controller, 
can be exploited as a high bandwidth covert timing chan-
nel.  Nothing in the normal VAX documentation [35] 
would suggest that there was only a single interlock in the 
entire memory controller.  Indeed, other VAX processor 
models do not suffer from this particular covert channel 
problem.  Without this detailed internal design informa-
tion about how the memory controller was built, a soft-
ware developer would have no reason to expect such a 
covert channel.  Once again, such information would be 
considered proprietary to the hardware developer and 
likely be excluded from the  ETR-lite.  Also, the hardware 
designer would not likely consider this to be an issue at 
all, and close communication between the hardware and 
software developer would be needed to address the issue 
properly.  There would be a distinct possibility that the 
hardware evaluation could do no covert channel analysis 
at all, while the software developer would assume that an 
analysis had been done and that no problems had been 
found. 

3.3.3 Covert Channels in Unpredictable/Undefined 
Operations in VAX and Alpha 

Many processor architectures define certain illegal op-
erations to be either unpredictable or undefined.  For ex-
ample, the value stored after division by zero might be 
defined to be unpredictable, in addition to generating a 
zerodivide exception.  Leaving such items as unpredict-
able or undefined gives the hardware designer more free-
dom to design any particular implementation in the best 

way.  The VAX architecture [35] has many such unpre-
dictable and undefined operations.  Invalid instruction 
prefixes are an example on the x86 architecture [12, sec-
tion 11.1.1].  However, most processor architecture speci-
fications do not allow for the possibility that an unpredict-
able result should depend in any way on information to 
which the current process does not have access.  Such a 
store of a stale value from before the most recent context 
switch would be perfectly legal in the VAX architecture, 
yet it would constitute a quite serious covert channel.   

By contrast, the Alpha architecture [1, section 1.6.3] 
explicitly declares that such covert channels are forbid-
den.  In the Alpha, this would likely be a visible security 
function in the security target and the ETR-lite, but in 
most processors, the issue would not even be mentioned 
in the user manuals and would likely not be mentioned in 
the ETR-lite, yet this could be a critical security issue to a 
software developer, closely related to the subverter testing 
issues described in section 3.2. 

3.4 Instruction Prefetch Queue Length 
About 1981 the following problem was identified with 

a program running on an IBM minicomputer of the IBM 
Series/1 family [8]. The program was executing without a 
problem on computers with an older version [15]  of the 
processor while it failed on computers with the new ver-
sion of the processor. The problem could not be ex-
plained, since the manual claimed that both processors 
where “fully binary compatible”. Investigating the prob-
lem in detail resulted in the following: 

The developer of the program had used self-modifying 
code to save some space and time. So the code included 
an instruction that under some rare conditions modified 
another instruction near to it (just 3 instructions ahead). 

As part of the investigation it turned out that the new 
version of the processor was enhanced by increasing the 
size of the instruction prefetch queue by two instructions. 
The hardware developer had considered this as a modifi-
cation that would not affect any program and therefore did 
not consider this fact to be relevant to be mentioned in the 
user documentation. They also did not consider imple-
menting any check in the processor to verify that instruc-
tions they had already cached in the instruction prefetch 
queue had not been modified. Self-modifying code was 
not foreseen by the hardware developers! 

As a result, the instruction that was modified by the 
program was already in the instruction prefetch queue of 
the new version of the processor and the program then 
failed in some cases. If this code had been in security or 
safety critical software, the results could have been disas-
trous. Fortunately, it was not in such critical software. 
As late as 1986, versions of the Series/1 manuals [9] still 
did not discuss the problem with self-modifying code.1 

                                                                 
1 The authors are uncertain if the particular Series/1 models and manuals 
cited were those involved in the original incident, as the detailed records 
are no longer available.  However, we are grateful to Dawn Stanford of 
the IBM Archives in Somers, NY for locating these manuals for us.  
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3.5 Cache Vulnerabilities 
The previous example described a potential vulnerabil-

ity in a specific kind of cache: the instruction prefetch 
queue. But there are other examples of critical vulnerabil i-
ties introduced by caching. 

Such a problem was identified just recently in a logical 
partitioning architecture. In this architecture, the hardware 
was designed in such a way that two processors always 
shared a common second level cache. The logical part i-
tioning architecture allowed the allocation of the two 
processors to different logical partitions. 

It is easy to see that Trojan horses in the two partitions 
could easily set up a covert channel by “measuring” the 
amount of the second level cache allocated to their own 
processor (via the time used for memory access). No 
measurement of the bandwidth of this channel was per-
formed but from other examples it can be assumed that 
this is quite high.  

3.6 Virtual Machine Timing Dependencies 
When running an operating system on top of a virtual 

machine, similar problems arise as when running the op-
erating system on a different “binary compatible” hard-
ware platform. Also in this case, security problems may 
turn up that did not exist when the operating system is 
executed on the bare machine. To make it very clear: we 
are not talking here about the problems of interference 
between different virtual machines operating in parallel 
on the same physical hardware. Those problems need to 
be addressed in the security evaluation of the virtual ma-
chine monitor. Here we just focus on security problems 
arising within an operating system running on top of a 
virtual machine monitor instead of the bare hardware. 
Those problems exist even when there is just a single vir-
tual machine started by the virtual machine monitor. 

The example where these problems become immedi-
ately obvious is the case where a secure operating system 
that has been carefully analyzed for potential covert chan-
nels is executed within a virtual machine environment that 
provides virtual memory management. Regardless of 
whether the operating system itself uses virtual memory 
management techniques or not, new covert timing chan-
nels with potentially very high bandwidth are introduced 
with high probability within the operating system by the 
virtual memory management of the virtual machine moni-
tor. It should also be obvious to the reader that an analysis 
of those covert channels can only be done with detailed 
knowledge about the virtual memory management strat-
egy and algorithms implemented by the virtual machine 
monitor. In this respect, the channels introduced are simi-
lar to those introduced by caching or bus arbitration as 
part of hardware architectures. 

Virtual memory management is just one example of an 
area where additional security problems can show up 
when an operating system runs in a virtual machine envi-
ronment. One also has to consider that the timing charac-
teristics of emulated instructions, I/O, interrupt handling, 

caching etc.  are very much different from the bare ma-
chine and may become dependent on the state of the vir-
tual machine where it is constant on the bare machine. As 
a result, one can deduce that high assurance for an operat-
ing system intended to execute in a virtual machine envi-
ronment requires a combined analysis of the operating 
system, the virtual machine and the underlying hardware. 

4 Smart Card Examples 
Attacks on smart cards have received wide attention 

recently, especially since smart cards are applied in highly 
critical areas like electronic purses and for the generation 
of digital signatures. In addition, the assumption of a 
physically protected environment for the hardware com-
monly made in most vulnerability assessments and 
evaluations does not hold any more. For example, in the 
case of an electronic purse, the legitimate owner of the 
smart card may have the highest interest to penetrate its 
functions to set up his own money generating system. 

A number of active and passive attacks against smart-
cards have been published in the last years, and some of 
them required significant modifications to both the hard-
ware and the software to counter those attacks. The most 
widely recognized attacks were probably the simple and 
differential power analysis attacks as described by Kocher 
[33]. Attacks requiring active manipulation of the smart 
card hardware also have been published. [22, 34] give an 
overview on some of those attacks and their effects. We 
do not intend with this paper to go into further details on 
those kind of attacks.  

What has not yet been analyzed in full detail in the ex-
isting papers are the effects of combining hardware and 
software related attacks. Those kind of attacks become 
critical with new multi-application smart cards that allow 
the download of applications in the field. This might al-
low an attacker to use a combination of hardware and 
software attacks provided he manages to get his applica-
tion downloaded and executed on the smart card. 

In a Common Criteria evaluation with a target level of 
AVA_VLA.4 for the vulnerability assessment one would 
expect that those combined attack methods are analyzed 
in sufficient detail to ensure that they require highly spe-
cific equipment and a detailed knowledge of the operation 
of both hardware and software. This of course requires the 
evaluator to analyze hardware and software in parallel 
with the same rigor. Focusing just on one of them, as is 
required under the ETR-lite concept, has the danger of 
missing a highly critical attack in the analysis. 

An example of a document focusing just on the soft-
ware aspects of a security function and neglecting poten-
tial hardware related vulnerabilities is [6], which provides 
very detailed guidance on how to test random numbers 
generated by a physical random number generator to en-
sure a high quality of those numbers. Based on the guid-
ance provided in that guidance, one could easily conclude 
that the best random numbers to use are those that have 
undergone these extensive statistical tests.  On the other 
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hand, when one performs those tests on a smart card, one 
be almost sure that the total set of random numbers tested 
can be obtained using differential power analysis tech-
niques. Post processing by a pseudo random number gen-
erator does not help, since one can assume that the at-
tacker knows the algorithm used. Careless use of the thor-
oughly tested random numbers e. g. for the generation of 
cryptographic keys, could make those keys known to the 
attacker before they are used the first time for a crypto-
graphic operation. Unfortunately, the document [6] does 
not provide any guidance on how to securely use the thor-
oughly tested random numbers such that the attacker can-
not extract critical information by differential power 
analysis or by the analysis of electromagnetic radiation. 
An easy fix of this problem would be to generate addi-
tional (non-tested) random numbers and use those to se-
lect the bits or bytes used from the large set of tested ran-
dom numbers as the basis for the generation of crypto-
graphic keys. One would expect guidance taking into ac-
count potential hardware vulnerabilities would be pre-
sented to help software developers avoid the risk of being 
easily attacked using a hardware vulnerability when they 
try to counter a potential software related attack.   

5 Conclusion 
While this paper has focused extensively on some of 

the drawbacks of the ETR-lite concept as part of compos-
ite evaluation, it is important to note that there are a large 
number of very good and useful concepts in composite 
evaluation.  The supplementary documents lay out very 
well how hardware evaluations and software evaluations 
are likely to be separate, because the underlying technical 
issues are different.  Furthermore,  a single hardware 
evaluation may be used as the basis for several different 
software evaluations.  The supplementary documents also 
make clear that information has to flow from the hardware 
evaluation to both the software developer and the soft-
ware evaluator.  They recognize that there may be legiti-
mate proprietary interests held by the hardware developer 
and hardware evaluator, and lays out guidelines for in-
formation that must flow, regardless.  At lower levels of 
assurance, there is much less of a problem with ETR-lite.  
For example, Albertson and Forge [21] report good results 
with ETR-lite, but the software in that case was only 
evaluated to EAL4. 

The major problem is that the ETR-lite concept was 
developed without adequate consideration of that at 
higher assurance levels, the software developer and 
evaluator need considerably more information than would 
be the case at lower levels.  If the software security target 
is claiming at least EAL5 or specifically “AVA_VLA.4 
Highly Resistant”, then the information specified in ETR-
lite is almost certainly insufficient.  The supplementary 
documents should specify that further information, includ-
ing the complete ETR is likely to be essential  for such an 
evaluation to be successful. 
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