
RC22817 (W0306-053) June 11, 2003
Computer Science

IBM Research Report

Active Probing

Mark A. Brodie, Irina Rish, Sheng Ma, Genady Grabarnik, Natalia V. Odintsova
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research
Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Active Probing

Mark Brodie, Irina Rish, Sheng Ma, Genady Grabarnik, Natalia Odintsova
I.B.M. T.J. Watson Research

(mbrodie, rish, shengma, genady)@us.ibm.com, nodintsova@hotmail.com

Abstract

Problem determination is one of the most important tasks in managing dis-
tributed systems. Probing (both at the transaction and network levels) has been
widely used for assessing compliance with Service Level Agreements and locating
problems in distributed systems. However a probing scheme which uses a fixed set
of regularly scheduled probes can be expensive in terms of the number of synthetic
transactions needed, especially for the task of problem determination. This paper
introduces an active probing scheme to reduce the number of probes needed. Our
key idea is to divide the problem determination task into two steps. We first use
a relatively small number of fixed, regularly scheduled, probes for detecting that
a problem has occurred. In the second phase, once occurrence of a problem is
detected, additional probes are issued on-the-fly to acquire additional information
until the problem is localized. We develop algorithms for selecting an optimal set
of probes for problem detection and choosing which probes to send next based on
what is currently known. We demonstrate through both analysis and simulation
that the active probing scheme can greatly reduce the number of probes and the
time needed for localizing the problem when compared with a non-active probing
scheme.

1 Introduction

The rapid growth in size and complexity of distributed systems makes performance
management tasks such as problem determination – detecting system problems and iso-
lating their root causes – an increasingly important but also extremely difficult task. For
example, in IP network management, we would like to quickly identify which router or
link has a problem when a failure or performance degradation occurs in the network. In
the e-Commerce context, our objective could be to trace the root-cause of unsuccessful
or slow user transactions (e.g. purchase requests sent through a web server) in order to
identify whether it is a network problem, a web or back-end database server problem,
etc. Another example is real-time monitoring, diagnosis and prediction of the “health”
of a large cluster system containing hundreds or thousands of workstations performing
distributed computations (e.g., Linux clusters or GRID-computing systems).

Two general approaches are commonly used for problem determination. The first
is event correlation([13, 7, 12]), in which every managed device is instrumented to

1

emit an alarm when its status changes. By correlating the received alarms a central-
ized manager is able to identify the problem. However, this approach usually requires
heavy instrumentation, since each device needs to have the ability to send out the ap-
propriate alarms. Also it may be difficult to ensure that alarms are sent out, e.g. by a
device that is down. To avoid these problems, which arise from using a fixed, “passive”
data-gathering approach, a more active probing technologyhas been developed, which
allows one to test network and system components in order to provide more accurate
and cost-efficient problem determination.

A probe is a test transaction whose outcome depends on some of the system’s com-
ponents; accurate diagnosis can be achieved by appropriately selecting the probes and
analyzing the probe outcomes. Previous work has focussed on selecting probes in an
off-line, pre-planned fashion. Prior information about network and system dependen-
cies, which problems need to be detected most urgently (perhaps because they are more
important or more likely to occur), and other forms of prior knowledge are used to con-
struct a set of probes that is small (thereby reducing probing costs such as data storage
requirements and network load) yet provides extensive coverage so that problems can
be diagnosed. These probes are scheduled to run periodically to provide information
about what problems may be occurring. A typical example is IBM’s EPP technology
([5]).

Using pre-planned probe sets suffers from considerable limitations. Because the
probe set is computed off-line, it needs to be able to diagnose all possible problems
which might occur. However in practice constructing such a probe set can be quite
difficult, because one must envisage all problems one would like to be able to diagnose
and construct probes for them. A pre-planned probe set may also be very wasteful,
because many problems that might occur do not in fact ever happen. Probes to detect
such problems enlarge the probe set unnecessarily, but knowing which probes can be
safely omitted can usually only be determined on-line by monitoring which problems
in fact occur.

Another disadvantage of pre-planned probe sets is that because the probes run peri-
odically at regularly scheduled intervals, there may be a considerable delay in obtaining
information when a problem occurs. It is clearly desirable to detect the occurrence of
a problem as quickly as possible. Furthermore, once the occurrence of a problem has
been detected, additional information may be needed to diagnose the problem precisely.
This information may not be obtainable from the results of the pre-planned probes - ad-
ditional probes may need to be sent to obtain it. These probes should be appropriately
selected “on-demand”, based on the results of the previous probes.

Our works develops a methodology called active probing that addresses these lim-
itations. This involves probing in an interactive mode, where probe results are analyzed
to determine the most likely diagnosis, and then additional probes are selected and sent
in order to gain further information. This process may repeat - once additional probe re-
sults are obtained, the diagnosis is refined, and, if necessary, more probes are selected,
and so on, until the problem is completely determined. The idea of this approach is to
“ask the right questions at the right time”.

Active probing selects and sends probes as needed in response to problems that
actually occur. It therefore avoids both the difficulty of constructing probes for all
possible problems as well as the waste inherent in using probes for problems that in

2

fact never occur. Furthermore, because probes are selected on-line to obtain further
information about particular problems that have occurred, they need not circulate reg-
ularly throughout the entire network; instead they can be targeted quickly and directly
to the points of interest. Thus fewer probes are needed than in a pre-planned approach,
allowing for a considerable reduction in probing costs.

Implementing active probing requires developing solutions for the following issues:

1. A small probe set must be pre-selected, so that when a problem occurs we can
detect that something has gone wrong.

2. The probe results must be integrated and analyzed, to determine the most-likely
network state.

3. The “most-informative” probes to send next must be selected, based on the anal-
ysis of previous probe results.

4. This process must be repeated until the problem diagnosis task is complete.

In this paper we describe efficient solutions for each of these issues and integrate
them into a practical system for active probing. We also analyze the costs and benefits
of active probing and show experimentally that active probing substantially reduces
the number of probes needed to diagnose problems when compared with pre-planned
probing. Our preliminary results suggest that active probing may be a powerful and
effective technique for problem determination.

2 Probing Technology

In the context of distributed systems management, a probe is a program that executes
on a particular machine (called a probe station) by sending a command or transac-
tion to a server or network element and measuring the response. The ping program is
probably the most popular probing tool that can be used to detect network availabil-
ity. Other probing tools, such as IBM’s EPP technology ([5]), provide more sophis-
ticated, application-level probes. For example, probes can be sent in the form of test
e-mail messages, web-access requests, and so on. Generally a distributed system (as
well as many other applications) can be represented by a logical “dependency graph”,
where nodes are either hardware elements (e.g., workstations, servers, routers, links)
or software components and services, and links can represent both physical and logical
connections between the elements.

Probes are issued from machines, called probe-stations, where probing software is
installed, and traverse the network, testing the availability and performance of the vari-
ous objects. Probes can be low-level ping probes, or higher level test transactions such
as web access, e-mail, etc. Each probe may depend on, and thus tests the functioning
of, a wide variety of different objects in the network.

Figure 1 illustrates the core ideas of probing technology. The bottom left of the
picture represents an external cloud (e.g. the Internet), while the greyed box in the
bottom middle and right represents an example intranet - e.g. a web site hosting system
containing a firewall, routers, web server, application server running on a couple of load

3

Figure 1: Illustrative Example where Probing can be used at Multiple Levels.

balanced boxes, and database server. Each of these contains further substructure - the
figure illustrates the various layers underlying the components.

Probing can take place at multiple levels of granularity; the appropriate choice of
granularity depends on the task probing is used for. For example, to test a Service Level
Agreement stating response time one need only probe one point of Figure 1, the point
of contact of the external cloud and the intranet. In order to find more detailed infor-
mation about the system one could probe all network segments as well the web server,
application server, database server - all the elements of the intranet in the network layer.
If we need to do problem determination or tune up the system for better performance,
we may also need to consider more detailed information; e.g. from the system layer
(some systems allow instrumentation to get precise information about system compo-
nents) or component and modules layer, and so on. For each task appropriate probes
must be selected and sent and the results analyzed.

Thus there is a logical network associated with, but distinct from, the physical
network. Nodes in the logical network represent objects in the physical network; thus
links in the physical network can appear as nodes in the logical network. Links in
the logical network represent dependencies between objects in the physical network.
When we refer to “nodes” in our network examples, we will be referring to the logical
network.

Probing technology has many advantages; it does not require extra instrumentation
and works with any server that takes user transactions. It is very flexible; a probe station
can be placed in any location with network access and can target multiple components.

4

Figure 2: Active Probing System.

However using probes imposes costs, because of the additional network and server load
and the need to collect, store and analyze probe results. It is important to control these
costs in order to use probing effectively.

3 Active Probing

In this work, we discuss using probing technology for the purpose of problem deter-
mination. An initial set of probes is selected off-line to run periodically through the
network, for the purpose of detecting when a problem occurs. Whenever occurrence
of a problem is detected, additional probes are selected on-line and sent out to obtain
further information about the problem, and this process may repeat - as more data is
obtained, decisions are made as to which probes to send next, until finally the problem
is completely determined. We refer to this approach as active probing.

An active probing system is outlined in Figure 2. Probe-stations issue probes which
traverse different parts of the network. The results of the probes are stored in a database.
These results are analyzed by an inference engine that infers what problems might be
occurring in the network. If additional information is needed in order to locate the
problem more precisely, the analysis engine determines what would be the most useful
probes to send. Instructions are then issued to the probe-stations. Once additional
results are received, further inferences can be drawn, and the process repeats until
enough information has been gained to completely determine the problem.

We now describe each of the following steps: (1) Selecting the initial set of probes
to detect problems; (2) Analyzing the probe results to determine the most-likely state

5

of the network; (3) Determining on-line the most useful probes to send next to gain
additional information. We then quantify the advantages of an active probing method-
ology when compared with an entirely pre-planned approach, and present experimen-
tal results that show that active probing can greatly the number of probes and the time
needed to perform problem determination.

3.1 Selecting the Initial Probes

Here we briefly summarize our previous work on off-line selection of a pre-planned
probe set. For more details see [1].

The relationships between the probes that are available to be used and the problems
that need to be detected can be described using a dependency matrix, where the probes
are the rows, the problems are the columns, and a matrix entry is nonzero precisely
when the corresponding probe tests the occurrence of the corresponding problem. Thus
each row (probe) may have multiple nonzero entries, corresponding to the components
it tests, and each problem (column) may have multiple nonzero entries, corresponding
to the probes that test it.

The task of problem detection is to find the smallest set of probes such that, no
matter which problem occurs, there is some probe that will fail; i.e. will detect that
a problem has occurred somewhere. Using the dependency matrix formulation, this
corresponds to finding the smallest set of rows such that each column has a nonzero
entry.

The task of problem detection should be distinguished from the task of problem
determination, which requires not simply detecting that a problem has occurred, but
also identifying, from the results of the probes, precisely which problem has occurred.
In the dependency matrix formulation this requires finding the smallest set of rows such
that every column is unique.

The tasks of finding the smallest probe sets for both problem detection and problem
determination can be shown to be NP-hard ([6]), but approximation algorithms perform
well in practice, finding near-optimal probe sets in polynomial time. Thus a small set of
probes can be initially selected which provides wide coverage throughout the network
to detect when problems occur (see [1] for further details).

3.2 Analyzing Probe Results

The initial set of probes is computed and scheduled off-line and runs periodically
throughout the network. When a problem occurs, the probe results must be analyzed
in order to detect which problem(s) has most likely occurred. If further information is
needed, additional probes must be selected and sent.

In a deterministic environment analyzing the probe results is straight-forward: If
a probe fails, then at least one of the elements it tests has a problem, while if a probe
succeeds then all the elements it tests are OK. By examining the results of the different
probes and reasoning about the interactions among their paths inferences can be drawn
about which problems have most likely occurred.

More precisely, diagnosis can be formulated as a constrained optimization problem,
as follows. Let Xi denote the current state of a network component (1 means “OK”,

6

0 means ’failed’). The states of n network elements are denoted by a vector X =
(X1, ...,Xn) of unobservedBoolean variables. Let Tj denote the j-th probe. A vector
T = (T1, ..., Tm) of observedBoolean variables denotes the outcomes (0 - failure, 1
- OK) of m probes. Lower-case letters, such as xi and tj , denote the values of the
corresponding variables, i.e. x = (x1, ..., xn) denotes a particular assignment of n
node states, and t = (t1, .., tm) denotes a particular outcome of m probes.

Each probe outcome Ti = ti imposes a logical-AND constraint ti = xi1 ∧ ...∧ xik

on the values of its parent nodes Xi1 , ...,Xik
. Diagnosis can be viewed as the prob-

lem of finding the most-likelyassignment to all network components given the probe
outcomes. Assume a prior probability of fault pi = P (Xi = 0) for every node. Then
we wish to find a vector x∗ = arg maxx1,...,xn

∏n
j=1 pj subject to those constraints

imposed by observed probes. The problem can also be cast as constraint satisfaction
rather than optimization if there exists a unique solution satisfying the constraints.

Although constrained optimization and constraint satisfaction problems are gener-
ally NP-hard, it is interesting to note that for uniform priors the probing domain yields
a tractable set of constraints which can be solved in linear time (see [19] for more de-
tails). However, if arbitrary fault priors are allowed, the problem becomes NP-complete
and thus intractable for large networks. Still, if the fault probability is small enough
(usually it is much lower than 0.5), we can make simplifying assumptions such as no
more than i simultaneous faults. Then it can be shown that diagnosis will be only
exponential in i (e.g., linear for single-fault assumption).

Note that until now we assumed no noise in the probe outcomes. However in a
realistic scenario analysis of probe results must take into account an environment of
noise and uncertainty. For example, a probe can fail even though all the nodes it goes
through are OK (e.g., due to packet loss). Conversely, there is a chance that a probe
succeeds even if a node on its path has failed (e.g., dynamic routing may result in the
probe following a different path). Thus a more sophisticated inference mechanism is
needed to determine the most likelyconfiguration of the states of the network elements.

(a) (b)

Figure 3: (a) A two-layer Bayesian network structure for a set X = (X1,X2,X3) of
network elements and a set of probes T = (T1, T2), and (b) its extension to a Dynamic
Bayesian Network.

We use the graphical framework of Bayesian networks [16] that provides both a
compact factorized representation for multivariate probabilistic distributions as well as

7

a convenient tool for probabilistic inference. An example of a simple Bayesian network
(BN) for problem diagnosis is shown in Figure 3a: a is a bipartite (two-layer) graph
where the top-layer nodes represent marginally independent faults or other problems (if
the problems are not marginally independent, appropriate edges must be added between
them) and the bottom-layer nodes represent probe results. The network represents a
joint probability P (x, t) =

∏n
i=1 P (xi)

∏m
j=1 P (tj |pa(tj)), where P (tj |pa(tj)) is

the conditional probability distribution (CPD)of node Ti given the set of its parents
pai, i.e. the nodes pointing to Ti in the directed graph, and P (xi) is the prior probabil-
ity that Xi = xi. Formally, a Bayesian network BN over a set of variables X1, ...,Xk

is a tuple (G,P) where G is the directed acyclic graph encoding the independence as-
sumptions of the joint distribution P (X), and P = {P (xi|pa(xi))} is the set of all
CPDs.

In general, a CPD defined on binary variables is represented as a k-dimensional
table where k = |pa(tj)|. Thus, just the specification complexity is O(2k) which is
very inefficient, if not intractable, in large networks with long probe paths (i.e. large
parent sets). It seems reasonable to assume that each element on the probe’s path affects
the probe’s outcome independently, so that there is no need to specify the probability
of Ti for all possible value combinations of Xi1 , ...,Xik

(the assumption known as
causal independence). For example, in the absence of uncertainty, a probe fails if and
only if at least one node on its path fails, i.e. Ti = Xi1 ∧ ... ∧ Xik

, where ∧ denotes
logical AND, and Xi1 , ...,Xik

are all the nodes probe Ti goes through; therefore, once
it is known that some Xij

= 0, the probe fails independently of the values of other
components.

In practice, however, this relationship may be disturbed by “noise”. For example,
a probe can fail even though all nodes it goes through are OK (e.g., if network perfor-
mance degradation leads to high response times interpreted as a failure). Vice versa,
there is a chance that the probe succeeds even if a node on its path has failed, e.g. due
to routing changes. Such uncertainties yield a noisy-ANDmodel which implies that
several causes (e.g., node failures) contribute independently to a common effect (probe
failure), and is formally defined as follows:

P (t = 1|x1, . . . , xk) = (1 − l)
n∏

xi=0

qi, and (1)

P (t = 1|x1 = 1, ..., xk = 1) = 1 − l, (2)

where l is the leak probabilitywhich accounts for the cases of a probe failing even
when all the nodes on its path are OK, and the link probabilitiesqi account for the
second kind of “noise”, namely, cases when a probe succeeds with a small probability
qi even if node Xi on its path has failed.

Once a Bayesian network is specified, the diagnosis task can be formulated as find-
ing the maximum probable explanation (MPE), i.e. a most-likely assignment to all Xi

nodes given the probe outcomes, i.e. x∗ = arg maxx P (x|t). Since P (x|t) = P (x,t)
P (t) ,

where P (t) does not depend on x, we get x∗ = arg maxx P (x, t) (see [19] for our
approach on efficient algorithms for solving this problem).

In order to represent temporal dependencies, Bayesian network can be extended to a
k-slice Dynamic Bayesian Networkwhere each time-slice contains a copy of the above

8

BN, and inter-slice dependencies are encoded by transition probabilities, as shown in
Figure 3b (see [18] for details).

3.3 Selecting Additional Probes

At each stage additional probes must be selected based on the results of the previous
probes. For each probe, one can compute:

1. The likelihood that the probe will succeed or fail, which depends on inferences
drawn about the probability of different network states;

2. The additional information about the network that will result from sending that
probe and receiving a successful or failed result.

Using this one can compute the expected information gain of each probe and se-
lect the probe to send next to maximize the expected information gain. For example, if
a particular probe, assuming it were successful, would provide considerable informa-
tion about the location of the problem, but the likelihood of that probe being successful
was very low, then that probe might have a relatively low expected information gain.

This approach can be generalized directly to consider sending many probes simul-
taneously. In practice the number of probes sent simultaneously in active probing mode
will usually be quite small.

Once the probes to send next are selected, they are sent, their results obtained,
further inferences about the network state are made, and additional probes, if neces-
sary, are selected and sent. This process continues until the problem determination is
complete.

4 Probing Scenarios

The active probing approach can be compared with a different approach in which the
entire set of probes is pre-selected in such a way that, no matter what problem occurs in
the network, the nature of the problem can be determined by analyzing the probe results
without the necessity of sending additional probes. It is clear that this may require an
inordinately large number of probes. Active probing, which only issues probes “on-
demand”, should allow fewer probes to be used. However the system requirements for
active probing are somewhat more complex because of its interactive nature.

These two probing strategies are illustrated in Figure 4. In the active probing sce-
nario, a pre-planned probe set is used that can detect that a fault has occurred; local-
izing the fault - determining which fault has occurred - is then achieved by sending
additional probes in active mode. In the pre-planned, or “passive”, scenario the entire
probe set must be pre-planned so that it can determine exactly which fault has occurred.

4.1 Analysis

A pre-planned probe set for complete localization will always be larger than a probe set
that is used for detection only, and so the time from fault occurrence (t0 in Figure 4) to

9

Figure 4: Probing Scenarios.

fault localization (tP in Figure 4) will be larger than the time from fault occurrence to
detecting that a fault has occurred somewhere (t1 in Figure 4). However the important
question is whether the combination of pre-planning for detection and then using active
probing for localization is better or worse than pre-planning for localization; i.e. is tP
larger or smaller than tA?

The following simple analysis indicates the issues involved. Let nP be the number
of probes needed for fault localization using pre-planned probing, and nD the number
needed for fault detection; we know that nD ≤ nP . Probing is performed by sending
probes at intervals, which may be scheduled either periodically or randomly. Suppose
M probes are sent simultaneously at any time, and τ1 is the average time between
probing intervals. Assume for simplicity that in active mode only one probe is sent at
a time; as soon as that probe returns, the next probe to send is determined and sent,
and so on. Let nA be the number of probes needed in the active phase to localize the
problem and τ2 the average time between these probes.

Then (assume t0 = 0 for convenience):

tP ∼ (nP /M)τ1

tA ∼ (nD/M)τ1 + nAτ2

In practical applications τ1 � τ2. This is because τ1 is the average time between
intervals when probes are sent - to avoid overloading the network, τ1 is usually on the
order of magnitude of minutes. However in active mode, the next probe can be sent as
soon as the result of the previous probe is received; thus τ2 consists of probe-round-trip
time together with the time for computing the next probe, so τ2 may be on the order

10

of magnitude of milliseconds. Since nD ≤ nP , active probing will achieve faster fault
localization unless nA, the number of probes needed in active mode, is very large. We
now present experimental results that show that nA is small when compared with nP .

5 Experiments

For each network size n, we generated twenty random networks with n nodes by ran-
domly connecting each node to four other nodes. Each link is given a randomly gener-
ated weight, to reflect network load. Three probe stations are selected randomly. The
available probes follow the least-cost path from each probe station to each node. The
faults we are interested in diagnosing are any single node being down or no failure
anywhere in the network. We assume that each node has the same prior probability of
failure, and that there is no noise in the probe results.

Exhaustive search is performed to find the true minimum size probe set for “pas-
sive probing”, i.e. the smallest set of probes whose results can be used to determine
unambiguously exactly which node has failed. Since this exhaustive search requires
exponential time and is therefore prohibitively expensive for large networks, a linear-
time quick search algorithm and a quadratic-time greedy search algorithm are also used
to find near-optimal probe sets.

In active probing mode, the algorithm for selecting the most-informative probe
given the previous probe outcomes can be simplified as follows. We maintain the
target set- the minimal node set which is guaranteed to contain the faulty node. (The
“no failure” situation is viewed as an additional node). Initially, the target set includes
all nodes. It is easy to see that the maximum information gain is provided by the probe
that includes the largest number of nodes from the target set.

If the probe is successful, we remove the nodes on its path from the target set, and
send the next most-informative probe. We continue doing so until we either get an
unsuccessful probe, or the set of target nodes becomes empty (corresponding to the
no-failure situation). As soon as a probe is unsuccessful, the faulty node is pinpointed
by doing a binary search among target nodes on its path.

5.1 Results

For each network, each node was sequentially selected to be the faulty one. The number
of probes required to diagnose the fault was averaged over all networks of a given size.

The results presented in Figure 5 (small networks) and Figure 6 (large networks)
clearly indicate the considerable improvement resulting from active probing when com-
pared with pre-planned, or “passive”, probing. Thus we see that an active probing ap-
proach can greatly reduce the number of probes and the time needed to successfully
diagnose faults.

In practice there will always be some costs of switching into active probing mode.
Thus the gains yielded by active probing will depend on the frequency with which fail-
ures occur; if failures are very frequent an entirely pre-planned approach may be more
cost-effective. The benefits of active probing increase as failure frequency decreases.

11

Figure 5: Active Probing - small networks.

Figure 6: Active Probing - large networks.

12

6 Related Work

Our previous work [1] and independently Ozmutlu et al. [14] studied the probe selec-
tion problem for the purpose of network management. Extending the previous work,
this paper studies the active probing approach and demonstrates its advantages in re-
ducing probe size and time-to-decision. The active probing strategy, although very
intuitive, has not been formally discussed before.

Our work relates to four broad categories of previous work: event correlation,
system-level diagnosis, network fault diagnosis, and performance measurement. Event
correlation ([13, 7]) for identifying root-causes has long been recognized as a criti-
cal issue in the system management domain. Problem determination is performed by
analyzing alarms emitted by devices when a significant situation occurs. Unlike the
probing scheme, alarms are “reactive” to a situation and this requires intensive instru-
mentation, only possible in a tightly managed environment. The probing approach uses
test transactions that can be built easily without touching the existing devices.

Nonetheless, event correlation has many similarities to our work. The formulation
of problem diagnosis as a “decoding” problem, where “problem events” are decoded
from “symptom events”, was first proposed by [12]. In our framework, the result of a
probe constitutes a “symptom event”, while a failure is a “problem event”. However
beyond this conceptual similarity the two approaches are quite different. The major
difference is that we use an active probing approach versus a “passive” analysis of
symptom events; namely [12] selects codebooks (a combination of symptoms encod-
ing particular problems) from a specified set of symptoms, while we actively construct
those symptoms (probes), a much more flexible approach. Another important differ-
ence is that [12] lacks a detailed discussion of efficient algorithms for constructing
optimal codebooks.

The problem of fault diagnosis in a system of interconnected components dates
back to [17] and [20]. Since that time a large body of literature has developed [2]. In
contrast with that work, in our case it is not possible for every node in the network to
be used to test other nodes - only a small number of nodes can be used as probe stations
to generate the tests. As a result of this the probing problem becomes a “constrained-
coding” problem, as explained above.

Other approaches to fault diagnosis in communication networks and distributed
computer systems include Bayesian networks [9] and other probabilistic dependency
models [10]; another approach is statistical learning to detect deviations from the nor-
mal behavior of the network [8]. The probabilistic diagnosis issues are addressed in
our related work in [19], where a probabilistic approximation algorithm using Bayesian
networks is provided for finding the most-likely problem diagnosis, and some theoret-
ical bounds on the diagnosis error are derived.

Finally, probing has been used for the purpose of performance measurements. In
particular, Duffield et al. [3] and Ji et al. [11] recently developed a framework for
estimating the performance of a multi-cast network based on probes. Duffield et al. [4]
and Paxson [15] studied performance measurements of end-to-end probing. Our work
focuses on the problem determination aspect in a typical IP environment. We formulate
and develop algorithms for the probe selection problem that has not been studied by
the aforementioned authors.

13

7 Conclusion

In this paper we propose an active probing scheme for the task of problem determi-
nation. The key idea is to divide problem determination into two steps: detecting
occurrence of a problem and then actively probing in order to localize the problem.
The first step is to detect whether there is a problem; once occurrence of a problem
is detected, the second step repeatedly issues additional probes based on the results of
previous probes until sufficient information to localize the problem has been obtained.

We have developed algorithms for selecting a small set of probes for detecting oc-
currence of a problem and actively choosing the optimal probes to send next based on
the information available. Experimental simulation shows that this scheme can dra-
matically reduce the total number of probes needed, and the time required, to localize
problems when compared with a “passive” scheme that uses a fixed probe set.

The next steps of this work include developing a real-time diagnosis algorithm
which takes into account dynamically changing network state and intermittent occur-
rence of faults, as well as testing our prototype on a real production system. Although
much remains to be done, the idea of active probing offers exciting possibilities and un-
doubted potential for problem determination in particular and distributed system man-
agement in general.

References

[1] M. Brodie, I. Rish, and S. Ma. Optimizing probe selection for fault localization.
In Distributed Systems Operation and Management, 2001.

[2] A.T. Dabhura. System level diagnosis. Concurrent Computation: Algorithms,
Architectures, Technologies, pages 411–434, 1988.

[3] N.G. Duffield, J. Horowitz, D. Towsley, W. Wei, and T. Friedman. Multicast-
based loss inference with missing data. Journal on Selected Areas in Communi-
cations, 2002.

[4] N.G. Duffield, F. Lo Presti, V. Paxson, and D. Towsley. Inferring link loss using
striped unicast probes. In Proceedings of INFOCOM, pages 915–923, 2001.

[5] A. Frenkiel and H. Lee. EPP: A Framework for Measuring the End-to-End Perfor-
mance of Distributed Applications. In Proceedings of Performance Engineering
’Best Practices’ Conference, IBM Academy of Technology, 1999.

[6] M.R. Garey and D.S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-completeness. W.H. Freeman and Co., San Francisco, 1979.

[7] B. Gruschke. Integrated Event Management: Event Correlation Using Depen-
dency Graphs. In Distributed Systems Operations and Management, 1998.

[8] C.S. Hood and C. Ji. Proactive network fault detection. In Proceedings of INFO-
COM, 1997.

14

[9] JF. Huard and A.A. Lazar. Fault isolation based on decision-theoretic trou-
bleshooting. Technical Report 442-96-08, Center for Telecommunications Re-
search, Columbia University, New York, NY, 1996.

[10] I.Katzela and M.Schwartz. Fault identification schemes in communication net-
works. In IEEE/ACM Transactions on Networking, 1995.

[11] C. Ji and A. Elwalid. Measurement-based network monitoring and inference:
scalability and missing information. Journal on Selected Areas in Communica-
tions, 2002.

[12] S. Kliger, S. Yemini, Y. Yemini, D. Ohsie, and S. Stolfo. A coding approach to
event correlation. In Intelligent Network Management (IM), 1997.

[13] A. Leinwand and K. Fang-Conroy. Network Management: A Practical Perspec-
tive, 2nd Edition. Addison-Wesley, 1995.

[14] H.C. Ozmutlu, N. Gautam, and R. Barton. Zone recovery methodology for probe-
subset selection in end-to-end network monitoring. In Network Operations and
Management Symposium, pages 451–464, 2002.

[15] V. Paxson. End-to-end internet packet dynamics. In Proceedings of SIGCOMM,
pages 139–152, 1997.

[16] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

[17] F.P. Preparata, G. Metze, and R.T. Chien. On the connection assignment problem
of diagnosable systems. IEEE Transactions on Electronic Computing, pages 848–
854, 1967.

[18] I. Rish, M. Brodie, and S. Ma. Accuracy versus efficiency in probabilistic diag-
nosis. Technical report, IBM T.J. Watson Research Center, 2002.

[19] I. Rish, M. Brodie, and S. Ma. Accuracy vs. Efficiency Trade-offs in Probabilistic
Diagnosis. In Proceedings of the The Eighteenth National Conference on Artifi-
cial Intelligence (AAAI-2002), Edmonton, Alberta, Canada, 2002.

[20] J. D. Russell and C. R. Kime. System fault diagnosis: Closure and diagnosability
with repair. IEEE Transactions on Computers, pages 1078–1089, 1975.

15

