
RC22821 (W0306-088) June 17, 2003
Computer Science

IBM Research Report

Manageability Services for Linux Resources

Ching-Farn E. Wu, *Hariharan Balakrishnan,
*Biju T. Maniampadavathu, William P. Horn

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

*IBM Solutions Research Center
 Block 1, Indian Institute of Tech.
 Hauz Khas, New Delhi 110016

 India

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research
Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email : reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

Manageability Services for Linux Resources

C. Eric Wu, Hariharan Balakrishnan, Biju T. Maniampadavathu, William P. Horn

IBM T.J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598
cwu@us.ibm.com

Abstract
Grid services are emerging technologies for the next
generation web services. In this paper we develop a
manageability framework based on Globus toolkit version
3. It consists of a persistent messaging service for notifying
users (i.e. system administrators) of critical changes, and a
number of Grid-enabled manageability services for some of
the most commonly used Linux resources, including disk
partitions, Linux OS, Linux processes, system statistics, and
system services. Various service operations and service
data elements are implemented to enable manageability
functions for the resources. System administrators can then
subscribe to one or more service data elements using the
messaging service. Visualization panels are also developed
to access these manageability services through the Globus
service browser. The on-demand feature of Grid services
distinguishes manageability services from enumeration
based systems in which object instances are often created
but never accessed.

1. Introduction
The development of raw computing power in recent years
coupled with the proliferation of computer devices has
grown at exponential rates. This phenomenal growth along
with the availability of the Internet have led to
unprecedented levels of complexity, brought on new
challenges for system administrators to manage and
maintain computer systems, and added demands for skilled
IT professionals. Managing vast amount of heterogeneous
computing resources is never an easy task, especially when
the systems at hand are increasingly distributed. While
some resources may be inside the network of an
organization, others can be spread across the globe and
dynamically connected through the Internet. It is evident
that increasing processor power, storage capacity and
network connectivity must report to some kind of authority
if one expects to take advantage of their full potential. As
the total cost of ownership (TCO) is increasingly dominated
by human costs, it becomes critical to automate resource
and system management [1] to reduce the TCO and thus
requires software-to-software communication.

Grid services are web services with service data elements
(SDEs) that conform to a set of conventions expressed as
Web Service Description Language (WSDL) [2] interfaces

and behaviors, such as notification, on-demand factory, and
lifetime management. Using a set of open standards and
protocols Grid services provide the ability to gain access to
a vast array of computing resources over the Internet [3].
These resources could be applications and data, processing
power, storage capability, or individual physical or logical
subsystems and components.

Grid services are emerging technologies based on web
services for the next generation of service oriented
architecture [4, 5]. They are self-describing, in that WSDL
is used to describe operations and service data elements.
Service clients do not need to have prior knowledge about
operation APIs from Grid services. When a service client
accesses the end point of a Grid service, the client learns
from the WSDL descriptions of the service before invoking
service operations. As in web services, WSDL descriptions
eliminate the potential problem resulting from changes in
operation API, thus making Grid services very suitable for
software-to-software communication. A WSDL file is a
text-based XML document, which eliminates byte-ordering
problems that are typically associated with binary-oriented
remote procedure calls and is therefore allowed to go
through corporate firewalls through HTTP requests and
responses. In addition to SDEs, Grid services typically
provide factories for on-demand services, notification
mechanism for information exchange, and use registry for
service discovery. These features make Grid services a
compelling foundation for resource management across the
Internet.

We present a framework for Linux resources based on the
Globus toolkit. Background information for resource
management and Grid services is discussed in Section 2,
and the design and implementation of manageability
services is given in Section 3. We then discuss the
messaging service in Section 4, followed by the summary in
Section 5.

2. Resource Management and Manageability Services
One of the early open standards for network management,
the Simple Network Management Protocol (SNMP) [6]
from the Internet Engineering Task Force (IETF) was
introduced in 1988 for managing TCP/IP networks. The
Web-Based Enterprise Management (WBEM) initiative [7],
including the Common Information Model (CIM) [8] and

 2

promoted by the Distributed Management Task Force
(DMTF), is also evolving as a standard since 1996. The
Java Management Extensions (JMX) from Sun [9] is yet
another interesting development since the late ‘90s,
particularly for Java platforms.

Proprietary platform-specific tools for resource
management were the main stream before open standards
were developed. Tools implementing open standards may
or may not be compatible with one another while
competing for market shares. Organizations often acquire
individual management tools for specific platforms over
time, resulting in having multiple tools for managing
various platforms. The constant need to upgrade these tools
and educate administrative staff, coupled with the
proliferation of computing devices, may easily lead to a
skyrocketing TCO. This warrants the need for an open,
service oriented, highly scalable, standards-based
integration model for management. Grid services, derived
from web services for heterogeneous environments, provide
the necessary infrastructure to integrate resource
management functions with different platforms offering
different APIs and implementations.

Open standards have the advantage of being potentially
supported by multiple vendors over proprietary systems.
The use of open standards facilitates the management of
widely heterogeneous systems and networks, and allows
one to exploit the work of other organizations. A
successful management approach is likely to be an
infrastructure based on open standards and supported by
multiple vendors, which is the only effective way to
manage systems and components in a heterogeneous
environment. Grid services, as the emerging standard for
“stateful” web services, are likely to flourish along with the
Internet.

Grid services use WSDL to describe operations and service
data elements. A WSDL file typically contains a collection
of description components that apply within a single target
namespace. A description component is a description of
some aspect of a web service. A message consists of a
collection of typed data items. An exchange of messages
between the service provider and requestor is described as
an operation. A collection of operations is called a
portType. Collections of portTypes are grouped and called
a serviceType. A service represents an implementation of a
serviceType and contains a collection of ports, where each
port is an implementation of a portType, which includes all
the concrete details needed to interact with the service.

In Globus Toolkit version 3 Gird services can be created
from the default factory. Manageability services, on the
other hand, must have the underlying resources to back
them up. For example, a manageability service for disk
partitions manages a specific disk partition, and it is

mandatory that the specific disk partition exists when the
service is created. The default factory portType with the
createService() operation creates a Grid service but does
nothing to help a user identify existing resources. Thus, a
managed resource factory (i.e. MRFactory) portType is
used to enumerate existing resource ids and to verify if a
given resource id is valid. The enumerateIDs() operation in
the managed resource portType merely enumerates valid
resource ids in its factory and does not create service
instances. To create a service instance, the user can then
call the createService() operation of the factory portType
using one of the valid ids. This on-demand feature prevents
users from wasting system resources, especially when they
are interested only in one of the many resources of the same
type (such as Linux processes). A manageability service
factory therefore inherits both the default factory portType
and the managed resource factory portType.

A resource may be related to other resources, or in other
words “associated with” other resources. For example, a
Linux system service such as sendmail may be running as a
couple of daemon processes. If we want to increase the
priority of the daemon processes, it will be helpful to know
which processes the sendmail system service is currently
running on. In other words, it will be helpful if we can get
associated resource ids from a given service instance. As a
result we define the association portType for manageability
services with the enumerateAssociatedIDs() operation.
Similar to the enumerateIDs() operation, it enumerates
related resource ids for the given resource type (such as
Linux process) and does not create service instances. A
manageability service therefore inherits the association
portType and implements the operation for finding
associated resource ids for a given resource type.

Most manageability services can be implemented as
<factory, service> pairs. The factory is responsible for
resource id enumeration and instance creation, while a
service instance is responsible to manage the corresponding
resource. PortType panels are developed for individual
portTypes defined in manageability services and factories.
This extends the service browser in the Globus toolkit to
interact as a service client. A messaging service is also
designed and implemented. It can be used to subscribe to
any number of service data elements in the manageability
services. When a subscribed service data changes, the
notification source, i.e. the manageability service, notifies
the messaging service which in turn sends out a Lotus
Sametime instant message. In the following sections we
discuss the manageability services in Section 3, and the
messaging service is described in Section 4. Summaries are
given in section 5.

3. Manageability Services
Manageability services are Grid services for managing
system resources. We use Globus Toolkit version 3 alpha 3

 3

in our development. It provides common mechanisms for
critical components such as registry, factory, service data,
and notifications.

Figure 1. Class hierarchy of manageability services

Figure 1 illustrates a simplified class hierarchy of the
implementation for disk partition service in UML. Other
manageability services derive from the same notification
service skeleton and implement their own port types.

Figure 2. Class hierarchy for disk partition factory service

A simplified class hierarchy of the disk partition factory
service is shown in Figure 2. The disk partition factory is
derived from the skeleton of the managed resource factory,
which in turn extends the default skeleton for factory
services. Other manageability factory services are derived
in the same way.

3.1 Disk Partition Service
Disk partition service is one of the first manageability
services developed to show the feasibility of using Grid

services for resource management. In addition to the
inherited portTypes (GridService portType, Factory
portType, and MRFactory portType), the disk partition
factory service implements its own portType, which defines
the listPartition(), createPartition(), and removePartition()
operations. The listPartition() operation returns an array of
elements describing the disk partitions currently defined in
the system disks. Given the inputs including the selected
disk, start cylinder, and end cylinder, createPartition()
creates a primary or extended partition at the specified
location. Unlike the output of the sfdisk command in which
cylinder number starts from 0, here cylinder number starts
from 1 and is compatible with the fdisk utility. Thus, an
empty entry in a disk partition table will have 0 for its start
cylinder and end cylinder.

Two service data elements are also defined in the factory:
Disks and PartitionInformation. The Disks service data
element is an array of information items expressed in XML,
one for each disk to specify information such as the device,
number of cylinders in the disk, disk size, etc. The
PartitionInformation service data element is basically the
XML expression for the output of the listPartition()
operation. It is an array of partition information items, one
for each disk partition to specify the device, start cylinder,
end cylinder, system id (0x82, 0x83, 0x5, etc) and name
(Linux, Linux swap, FAT16, HPFS/NTFS, etc). Figure 3
shows the service browser with panels for the disk partition
factory portType and managed resource factory portType.
A list of disk partitions is shown along with the
createPartiion, removePartition, and listPartition buttons.
The text area in the panel for the MRFactory portType
displays all the valid disk partitions.

Figure 3. Browser snapshot with panels for the disk
partition factory portType and MRFactory portType

For each disk partition service we implemented four
operations: mount(), umount(), makeLinuxFileSystem(), and
pvCreateForLVM(), as defined in the disk partition
portType. The pvCreateForLVM() operation initializes the
partition for use with Logical Volume Manager (LVM). It

ServiceSkeleton

NotificationServiceSkeleton

DiskPartitionService

makeLinuxFileSystem()

<interface>
NotificationSourcePortType

<interface>
DiskPartitionPortType

ServiceSkeleton

PersistentServiceSkeleton

FactoryServiceSkeleton

MRFactorySkeleton

enumerateIDs()

DiskPartitionFactory

createPartition()

<interface>
DiskPartitionFactoryPortType

<interface>
MRFactoryPortType

<interface>
FactoryPortType

<interface>
GridServicePortType

<interface>
ServiceProperties

 4

checks the system id of the partition and ensures that it is
set to 0x8e (Linux LVM). The makeLinuxFileSystem()
operation takes three input parameters: the name of the file
system such as ext2 or ext3, the category of how the file
system is going to be used, and an optional label. It would
also change the system id of the partition to 0x83 for Linux,
if necessary. The category could be “news”, “largefile”, or
“largefile4”, to indicate the block size each inode represents
(4KB, 1MB, or 4MB). Given a mount point, the mount()
operation mounts the partition if a file system already exists
in the partition. The umount() operation unmounts the
mounted file system.

A service data element, DiskPartitionState, is defined in the
disk partition service. It is similar to the service data
element PartitionInformation and has information such as
its size in Kbytes, a flag if it is currently mounted, and
information on its locations specified in sectors instead of
cylinders. If it is mounted, the MountInformaiton service
data element specifies the mount point, file system, file
system size, used size, available size, used percentage, and
label. All sizes are in units of Kbytes in MountInformation.
Note that we could have separated file systems from disk
partitions to have an additional level of abstraction, or
define logical disks and/or native logical disks as specified
in CIM. On the other hand, it seems that our prototype is
adequate for a minimal and reasonable implementation in
demonstrating manageability services.

Figure 4. Browser snapshot for disk partition services

Figure 4 shows a snapshot of the service browser for disk
partition services. The partition is mounted and its
DiskPartitionState is also shown in the portType panel for
Grid services.

3.2 Linux Process Service
Clients of existing management systems, such as the CIM
Object Manager (CIMOM) from the Storage Network

Industry Association (SNIA) [10] and Pegasus from The
Open Group [11], typically enumerate all resource object
instances of certain resource type before selecting one for
management. This is often the case because clients may not
know what the valid values are for the key properties of the
resource type. For resources like processes whose sheer
number could be in the hundreds or even thousands in a
large server, the overhead could be significant. By the time
another request is made, many processes have been
terminated and new ones created, and hence new resource
object instances are generated. Most object instances are
created merely for enumeration, wasting time and system
memory. The on-demand feature of Grid services helps
eliminate this kind of unnecessary overhead in
manageability services.

The Linux process factory enumerates resource ids along
with their commands. This eases the difficulty of picking
the right process when creating its corresponding service
instance. The name string in the registry for each service
instance also includes all its command line arguments for
easy identification. Since processes are created and
terminated frequently, our implementation ensures that
every request for the enumerated resource ids (i.e. the
EnumeratedIDs service data) is up to date. This is done
through the modification of the server-side stubs. Figure 5
shows a browser snapshot for the process factory service.

Figure 5. Browser snapshot for process factory service

The Linux process service implements two operations:
terminate() and setParameter(), as defined in its portType.
The terminate() operation kills the Linux process, while the
setParameter() operation takes a <parameter, value> pair
as input and set the parameter of the process accordingly.
Valid parameters for a given process include the nice value
of the process, maximal number of child processes,
maximal number of open files, and maximal real stack size,
each of which is also in the ProcessState service data.

 5

Figure 6. Browser snapshot for Linux process services

Figure 6 shows a browser snapshot for the mozilla process
with process id 17991. Although the rlimit data structure of
a given process can be modified through the setrlimit()
system call from inside the process, we need to do it from
the outside of the process in the service. As a result we
developed a kernel module to access task structures in the
kernel and expose the needed parameters through the /proc
file system. The kernel module, sysman.o, creates an entry
in the /proc file system. A write() operation or a simple
command “echo <pid>” to the entry selects the process
with process id <pid>. Subsequent read() or write()
operations (or simple cat or echo commands) to the /proc
entry will then read and/or modify the process’ priority or
its rlimit parameters. With this simple API we are able to
change the priority of a given process through its nice value
and modify its rlimit data structure. This simple API has
proved to be sufficient and the kernel module has been
tested on Linux 2.0 to 2.4 kernels, including RedHat Linux
9.0.

3.3 Linux OS Service
The Linux OS service could be a persistent service without
a factory. To be consistent with other services we choose to
use a simple factory that inherits the MRFactory portType
but does not define its own portType. Thus the schema
path used in the deployment descriptor for Linux OS
factory is the service WSDL for managed resource factory
services, which is generated from the MRFactory portType.
The Linux OS service, on the other hand, is more
complicated than other services. This is because Linux
operating system has many tunable system parameters
exposed through the /proc file system and we decided to
include these parameters in the Linux OS service. An OS
parameter portType is used to define the get and set
functions for OS parameters, and the Linux OS portType is
defined for all other operations in the service.

One problem we face is the fact that the set of parameters
varies from one Linux system to another, depending on its

OS version, installed kernel modules, and packages. Thus,
an autowsdl program is developed to find tunable system
parameters in the Linux OS and generate corresponding
entries in the WSDL file for the OS parameter portType.
Parameters are grouped into different categories such as
kernel, file system, virtual memory, network core, network
IPv4, etc. Each category was then compiled into a Java
class as one of the generated stubs. For example, the Java
class for kernel parameters in our RedHat 9.0 system with a
2.4.20-8 kernel has 32 entries and that for the virtual
memory parameters has 8 entries. Java reflection is used in
the portType panel to display two combo boxes, one for
selecting the category and the other the individual
parameter in that category. As a result the OS parameter
portType has only two operations, getParameter() and
setParameter(), yet a user does not have to remember any
parameter name to access it through the service browser.
We implemented four operations in the Linux OS portType:
shutdown() to shutdown the system, reboot() to reboot the
system, executeCommand() to execute a given command
line which is passed in as an array of strings, and
getLoadAverages(). The executeCommand() operation
provides a mechanism for remote command execution. The
getLoadAverages() operation gives system load averages in
the past 1, 5, and 15 minutes, and may be helpful for load
balancing and resource allocation purposes.

Figure 7. Browser snapshot for Linux OS service

Figure 7 shows a snapshot for the Linux OS service. The
text area at the top shows a list of associated processes for
the Linux OS. Two combo boxes in the OS parameter
portType panel allow a user to get or set any tunable OS
parameter. The getLoadAverages button, partially covered
by the pull-down menu for selecting a kernel parameter,
and its returned values are displayed near the center of the
snapshot. The bottom half shows the result of executing the
“ls –l /home” command, along with the shutdown and
reboot buttons.

 6

3.4 System Statistics Service
While Linux OS, processes, and disk partitions are clearly
software or hardware resources, statistics on CPU
utilization, paging activity, I/O transfer rate, etc. are critical
resources for monitoring system well-being. For this we
designed and implemented the system statistics service.

The statistics factory portType has two operations:
executeSampling() and removeSamplingFile(). Given a
sampling interval in seconds, the count, and output file, the
executeSampling() operation starts statistics sampling and
store the result in the output file. This is an asynchronous
operation and the sampling command is executed in the
background. The removeSamplnigFile() operation removes
the specified file. The only service data defined in the
factory is the EnumeratedIDs, which is inherited from the
managed resource portType and lists all resource ids (i.e.
file names) in the factory. Figure 8 shows a snapshot for
the statistics factory service. The text area shows the
service data enumeratedIDs, and the operation buttons are
shown at the bottom of the window along with text fields
for their inputs and results.

Figure 8. Browser snapshot for statistics factory service

We use the Linux sar (system activity and reporting) utility
to implement the statistics service. Because of the variety
of sampling data, the system statistics service has many
portType operations, each of which updates its
corresponding service data. These operations are required
since the background sampling process may be still
gathering statistics for the selected sampling file. Service
data elements include statistics histories for CPU
utilization, process creation, I/O transfer rate, paging,
interrupt, network packets received and transmitted,
sockets, queue lengths, system loads, memory, memory
page and swap space, inode, context switching and
swapping, among others.

Figure 9. Snapshot for statistics services

Figure 9 is a snapshot for the statistics service. Each radio
button corresponds to an update operation in the statistics
portType, and labels for descriptions and command line
arguments are shown on selection of operation. The text
area at the bottom shows the service data CPUUtilization,
which includes userTime, systemTime, and idleTime
percentages at the sample time. Selecting any radio button
in the panel updates its corresponding service data.

3.5 Manageability Service for System Services
There are many system services in a Linux system,
including sendmail for mail daemon, lpd for line printer
daemon, syslog for system logging, vsftpd for secured ftp
daemon, crond for cron daemon, etc. The system service
factory inherits the managed resource portType but does not
have its own.

Figure 10. Snapshot for sendmail system service

 7

The system service portType has three operations:
startService() for starting the service, stopService() to stop
the service, and getStatus() to get the current status of the
service. A service data ServiceState is defined in the
system service portType and consists of an array of process
ids for the service, the service status such as OK or stopped,
and if the service is started (boolean). Figure 10 shows a
snapshot for the system service representing sendmail. The
text area for the association portType shows a list of
resource ids for Linux processes associated with the
sendmail system service. The startService and stopService
buttons near the center of the snapshot are used to start and
stop the service.

Figure 11 shows a snapshot of the Grid service registry in
which manageability services for Linux processes, OS, disk
partition, system service, and system statistics, along with
their factory services. Additional manageability services
are under development and will become available over
time. Note that individual services for processes are listed
with complete command line arguments so that they can be
easily identified.

Figure 11. Snapshot of Grid service registry

4. Messaging Service for Instant Notification
With the proliferation of instant messengers such as Lotus
Sametime Connect and those from MSN and AOL,
asynchronous instant message delivery has become a reality
in today’s business world. Instant messengers are so
popular that they have become indispensable tools in the IT
infrastructure of an enterprise. Leveraging such an
infrastructure from a resource management perspective
makes it worth investigating.

Notification is the ability to deliver messages from a source
to all interested parties. In the OGSI Grid world the sender
is called a notification source and the receiver is called a
notification sink. We restrict the scope to notification alone
in this section, although we understand that the instant
messenger infrastructure can be used for full blown
interaction with reference to resource management.

In general notifications are delivered in an asynchronous
manner to subscribers through some kind of messaging
intermediary software such as Java Message Service (JMS).
They could be used to notify users of critical changes in the
system, or could be handled directly by some software
application to act upon and to do some processing based on
the message, as in the spirit of software-to-software
communication.

We extend asynchronous message delivery to the world of
instant messaging, thereby delivering service data elements
to users of Lotus Sametime Connect. Changes in the
system may be delivered to a user or a group of
administrators so that they can take some actions based on
the information. This enhances the interaction between
manageability services and their users.

A persistent SameTime messaging service is developed in
our manageability framework. This Grid service
implements the notification sink portType with the
deliverNotification() operation for receiving notifications.
In addition, a Sametime messaging portType is used to
provide a registerUsers() operation. The operation takes as
parameters a hostName - host address of the Lotus
SameTime Server, a user id and password with which the
system logs on, and a list of user ids to whom instant
messages will be sent. We plan to extend the portType in
the future so that each user can specify the type of
information or service data he/she is interested in. This
could be done through a subscription expression while
subscribing to the instant message notification.

To subscribe service data elements in a given service, we
invoke the subscribe() operation of the notification source
portType in the service. The subscribe() operation takes
parameters such as the Grid Service Handle (GSH) of the
Sametime messaging service, the name of the service data
element, and the expiration time until which the target Grid
service is supposed to send change notification.

The Sametime messaging service, when activated, logs on
to the Sametime messaging server using the given user id
and password. Whenever the service data element changes
in the target grid service to which we have subscribed to,
the messaging service will receive an asynchronous
notification through the Globus toolkit notification
implementation. The Sametime messaging service then
invokes the deliverNotification() operation of the
notification sink portType every time there is a notification.
The deliverNotification() operation inspects the current list
of Sametime users who have subscribed to and delivers an
instant message to each of them through Lotus Sametime
Connect.

 8

Figure 12. An instant message from Lotus Sametime

Connect showing a service data element in XML

Figure 12 shows an instant message in which the nickname
of the login user is followed by the service data
ProcessState of the process service with id “pid17991”.
The service data element is sent in the form of XML, which
includes the process id pid, parent process id ppid, user id
uid, niceValue, etc.

Other service data elements, such as the CPUUtilization in
statistics services and DiskPartitionInformation in disk
partition services, can all be subscribed by the messaging
service and notifications through Lotus Sametime Connect
will be sent to users in the registration list.

The messaging service could be extended using other
possible communication channels like the Simple Mail
Transfer Protocol (SMTP) thereby an email can be sent to a
list of users, or SMS messages to cellular phones etc.
Ability to persist and send the message, such as durable
subscription, or notifying an alternate user id or notification
through email are some of the possibilities which can be
incorporated into future versions of the current system.

5. Summary
Manageability services are Grid services that provide
manageability functions for system resources. They
leverage the self-describing, on-demand features of Grid
services to control resources across the globe. In this study
we built a prototype for a manageability framework. It
consists of a messaging service to notify administrators of
critical changes in the system, and manageability services
for a number of Linux resources, including disk partitions,
Linux processes, Linux OS, system statistics, and system
services. The on-demand feature of manageability services
eliminates unnecessary overhead resulting from object
enumerations in existing systems such as SNIA CIMOM
and Pegasus.

Special portTypes such as the association portType and
managed resource factory portType are introduced in the
framework and inherited by services and service factories
respectively. These two portTypes are associated with their
service data elements for enumeration results. Inside each
service or service factory, instrumentation is implemented
through additional portTypes and service data elements in
order to connect the service instance to the corresponding
resource. These instrumentations include a kernel module
to modify nice values and per-process parameters, utility to
detect tunable system parameters, and numerous command
line processes on behalf of the services spawn in the
background for implementing portType operations or
getting service data elements.

Globus toolkit 3.0 beta version was just released. We will
continue the framework development to keep it compatible
with future releases of the Globus toolkit. In addition,
manageability services may benefit from merging with
Container-Managed Persistent (CMP) entity EJBs for
security reasons, and from deployment with JMX MBeans
and agents to broaden its applicability. While the wide
availability of XML processing tools eases the development
of Grid services, tools that create skeletons of
manageability services from CIM Managed Object Format
(MOF) files or UML are desirable to automate part of the
development process and speed up the development cycle.

References
1. “Autonomic Computing: IBM’s Perspective on the State of

Information Technology,” Paul Horn,
http://researchweb.watson.ibm.com/autonomic/manifesto .

2. “Web Services Description Language (WSDL),” E.
Christensen et. al., http://www.w3.org/TR/wsdl.

3. “Open Grid Services Infrastructure (OGSI),” Steve Tuecke
et.al, http://www.gridforum.org/ogsi-wg/drafts/draft-ggf-
ogsi-gridservice-29_2003-04-05.pdf.

4. “Grid Services for Distributed System Integration,” I. Foster,
C. Kesselman, J. Nick, and S. Tuecke, pp. 37 – 46, IEEE
Computer, June 2002.

5. “The Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration,” I. Foster
et.al., Technical Report, Globus project,
http://www.globus.org/research/papers/ogsa.pdf.

6. “A Simple Network Management Protocol,” RFC 1067,
http://www.ietf.org/rfc1067.txt?number=1067, IETF.

7. “Web-Based Enterprise Management Initiative,”
http://www.dmtf.org/standards/standard_wbem.php, DMTF.

8. “Common Information Model: Implementing the Object
Model for Enterprise Management,” W. Bumpus et. al.,
Wiley Computer Publishing, ISBN 0-471-35342-6.

9. “Java Management Extensions (JMX),” Sun Micro.,
http://java.sun.com/products/JavaManagement.

10. “SNIA CIMOM,” http://www.opengroup.org/snia-cimom .
11. “Pegasus CIM Object Broker Manual,” The Open Group,

http://www.opengroup.org/manual/PDF/PegasusManual.pdf.

