
RC22834 (W0306-176) June 30, 2003
Computer Science

IBM Research Report

Approximately Optimal Control of Fluid Networks

Lisa K. Fleischer, Jay Sethuraman1

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

1Columbia University, New York,

NY 10027

APPROXIMATELY OPTIMAL CONTROL OF FLUID NETWORKS

LISA FLEISCHER∗ AND JAY SETHURAMAN†

Abstract. We give an approximation algorithm for the optimal control problem in fluid net-
works. Such problems arise as fluid relaxations of multiclass queueing networks, and are used to find
approximate solutions to complex job shop scheduling problems. In a network with linear flow costs
and linear, per-unit-time holding costs, our algorithm finds a drainage of the network, that for given
constants ε > 0 and δ > 0 has total cost (1 + ε)OPT + δ, where OPT is the cost of the minimum
cost drainage. The complexity of our algorithm is polynomial in the size of the input network, 1

ε
,

and log 1
δ
. The fluid relaxation is a continuous problem. While the problem is known to have a

piecewise constant solution, it is not known to have a polynomially-sized solution. We introduce a
natural discretization of polynomial size and prove that this discretization produces a solution with
low cost. This is the first polynomial time algorithm with a provable approximation guarantee for
fluid relaxations.

1. Introduction.

1.1. Problem description and formulation. Motivated by the optimal con-
trol of multiclass queueing networks, we consider a class of continuous-time multi-
commodity flow problems in a directed network. Specifically, we are given a directed
network N = (V ∪{s}, A), with commodities k = 1, . . . ,K, and a sink s; all capacities
and costs are non-negative and commodity-dependent. For commodity k, node v has
storage capacity ak(v), per-unit-time linear holding cost hk(v), and initial supply of
d◦k(v); edge e has flow-rate capacity µk(e), and linear flow cost ck(e). The flow-rate
capacity is an upper bound of the flow-rate of commodity k on edge e if e is fully
devoted to commodity k. If the use of edge e is divided among several commodities,
then the flow-rate capacity for commodity k is µk(e) multiplied by the fraction of edge
e alloted to commodity k. Thus, the constraint on edge capacity can be expressed as

∑
k

fk(e, t)
µk(e)

≤ 1,

where fk(e, t) is the flow-rate of commodity k on e at time t.
The multiflow problem with holding costs (MHC): We seek a flow (over

time) that eventually drains all supplies to the sink s, obeys all the capacity con-
straints, while minimizing total flow and holding costs.1 For this problem, it is pos-
sible that the optimal solution has exponential complexity: the number of changes
in the flow pattern may be exponential in the network size. Our main result is an
efficient algorithm for finding a near-optimal feasible flow: given constants ε > 0 and
δ > 0, we find a solution with total cost at most (1 + ε)OPT + δ, where OPT is the
cost of the minimum cost drainage. The complexity of our algorithm is polynomial in
the size of the input network, 1

ε , and log 1
δ . Our result extends to generalizations of

∗Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, PA
15213, USA, Email: lkf@andrew.cmu.edu. Supported in part through NSF CAREER Award CCR-
0049071 and NSF Award EIA-0049084, and in part through IBM Watson Research Center.

†Department of Industrial Engineering and Operations Research, Columbia University, New York,
NY 10027, USA, Email: jay@ieor.columbia.edu. Supported in part through NSF CAREER Award
DMI-0093981 and IBM Faculty Partnership Award.

1While the problem is defined with only one sink, this is without loss of generality: for any v ∈ V
with hk(v) = 0 we create an arc from v to s with infinite capacity, zero cost, (for commodity k) and
impose an infinitesimal holding cost on v.

1

MHC that include piecewise-constant costs and capacities, convex holding costs, and
arbitrary additional convex constraints.

We consider two versions of MHC, and give the same guarantee for both. The
free flow version, in which commodity k is allowed to travel on any set of paths to
reach the sink s; and the fixed paths version, where commodity k must travel along a
pre-specified path (or set of paths), and the problem is to determine when to continue
flow along each arc in the path.

The problem of finding the optimal flow rates f(·, ·) for the free-flow version may
be formulated as a continuous linear programming problem as described below. We
discuss modifications necessary to handle the fixed-paths version in Section 4.2.

Minimize∑
k

[
∑
e∈A

ck(e)
∫ ∞

0

fk(e, t) dt +
∑
v∈V

hk(v)
∫ ∞

0

dk(v, t)dt]

subject to

∀ v ∈ V, t ∈ R+, dk(v, t) = d◦k(v) −
∫ t

0

[
∑

e∈δ+(v)

fk(e, θ) −
∑

e∈δ−(v)

fk(e, θ)]dθ

∀e ∈ A, t ∈ R+,
∑

k

fk(e, t)
µk(e)

≤ 1

∀v ∈ V, t ∈ R+, k = 1, 2, . . . ,K, 0 ≤ dk(v, t) ≤ ak(v)

∀e ∈ A, t ∈ R+, k = 1, 2, . . . ,K, fk(e, t) ≥ 0

In this formulation, δ+(v) and δ−(v) represent the set of edges leaving and en-
tering v respectively; and dk(v, t) represents the storage of commodity k in node v at
time t. The first set of constraints conserves flow for each commodity-node pair at
each point in time; the second set of constraints restricts the total amount of work
an edge can perform at any moment of time; and the final set of constraints enforces
the storage capacity for each commodity-node pair at each time.

Continuous linear programs were introduced by Bellman [7, 8], who studied a
linear optimal control problem in production planning. In spite of a tremendous
amount of effort, general continuous linear programs remain difficult to solve [2].
Our interest in these problems is due to their ability to model a variety of dynamic
resource allocation problems, described next; fortunately, the problems of interest in
these applications have a special structure [2, 31], which we exploit to provide efficient
solutions.

1.2. Motivation. The production planning problem faced by a manufacturer
owning a network of flexible machines can be described as follows. The manufacturer
produces K products, and a priori estimates of the demand for each product is avail-
able. Each product is produced by processing raw material through a fixed sequence
of machines (“stages”), requiring varying amounts of processing time at each of the
machines in this sequence. Holding costs are used at each stage for each product to
capture the opportunity cost of the resources invested. The objective is to produce
the required quantities of the various products at minimum cost.

2

If all of the data are known with certainty, this is a simply a job shop schedul-
ing problem with the holding cost objective, which is already notoriously difficult to
solve exactly. Moreover, an optimal schedule is usually not robust to changes in the
problem data. This is an important limitation because, in practice, several additional
difficulties arise: the processing time for each product at each stage may be random;
the demand estimates may need to change because of additional orders or cancella-
tions for certain products. These additional features can be modeled using stochastic
processes, leading to the notion of a multiclass queueing network.

Multiclass queueing networks serve as useful models for problems in which sev-
eral types of activities compete for a limited number of shared resources [13, 15, 21].
Examples include shared computer systems, manufacturing systems that produce dif-
ferent types of products, and telecommunication systems where heterogeneous traffic
types (email, file transfers, video etc.) share common resources (buses in a local
area network, routers in gateways). The optimal control problem in a multiclass
queueing network is to find an optimal allocation of the available resources to activ-
ities over time. Recognizing the importance and the inherent intractability of this
problem, the research community has focused its attention, for the most part, on
developing tractable approximations [4, 11, 12, 22, 23, 27, 29, 36]. Two promising
classes of approximations have emerged as a result: Brownian approximations and
Fluid approximations. Both of these approximations arise as formal limits of multi-
class queueing networks under (different) time and space scalings. Brownian models
typically make use of the mean and variance of the associated stochastic processes
in deriving a simpler control problem; unfortunately, except for problems that are
essentially one dimensional, this control problem is itself intractable [21]. Fluid re-
laxations, the subject of this paper, ignore the variance of the associated stochastic
processes, and depend only on their mean.

Fluid relaxations are deterministic, continuous approximations to stochastic, dis-
crete networks. Essentially, we replace discrete jobs moving stochastically through a
network by a continuous, deterministic fluid flow. In addition, we allow a resource to
be “shared” among multiple activities simultaneously. Any optimal control problem in
a multiclass queueing network can be addressed using a three-step approach: (a) for-
mulate the appropriate fluid relaxation of the problem; (b) solve the fluid relaxation;
and (c) use the optimal solution to the fluid relaxation to derive an implementable so-
lution for the original control problem. (This is similar in spirit to deriving reasonable
solutions to integer programs based on solving their linear programming relaxations.)
In fact, the most successful methods for controlling multiclass queueing networks rely
on the BIGSTEP approach [23], which results in discrete-review policies. In such a
policy, the state of the queueing network is reviewed at discrete points in time. At
each review point, a processing plan is formulated for the next review period based
on the work present in the system. The computation of this processing plan is essen-
tially a fluid relaxation (of the sort described earlier) in which the initial supplies are
the observed workload. This plan is then translated to an implementable plan in the
actual system, at the end of which the system is reviewed again. The implementation
question is also non-trivial because the jobs are discrete, processing times are vari-
able, etc. The success of this approach depends on the efficiency of solving the fluid
relaxation and the effectiveness of the “translation” scheme.

Given an optimal (or near-optimal) solution to the fluid relaxation, effective trans-
lation schemes have been designed for various problem classes. Recent applications
of this approach include near-optimal schedules for deterministic job shop problems

3

with the makespan and holding cost objectives [9, 10], asymptotically optimal sched-
ules for stochastic job shops with the makespan objective [14], and asymptotically
optimal schedules for multiclass queueing networks [6, 28]. All of these results rely
on the solution to associated fluid relaxation(s). While the fluid relaxation for the
makespan objective is solvable in closed form, the case of linear holding costs is sig-
nificantly more difficult. In this paper, we shall focus on the problem of solving this
fluid relaxation efficiently. For this and related problems, we provide the first efficient
algorithm with a provable performance guarantee.

1.3. Previous work and related problems. Fluid relaxations belong to a
specially structured class of continuous linear programs called state constrained sep-
arated continuous linear programs (SCSCLP). In the absence of upper bounds on
storage, these are called separated continuous linear programs (SCLP). The flow-rate
functions on the edges are the “control” variables, and the storage at the nodes are the
“state” variables; the term “separated” refers to the absence of state feedback. SCLPs
were first introduced by Anderson [1] as a continuous model for job shop scheduling.
Anderson, Nash, and Perold [3] characterized the extreme point solutions to SCLP.
In addition, for problems with linear data, they showed the existence of an optimal
solution in which the flow-rate functions are piecewise constant (hence, piecewise lin-
ear node-storages) with a finite number of pieces. The complexity of SCLP is still
unresolved; in fact, the size of the optimal solution may be exponential in the input
size.

In a series of papers [31, 32, 33, 34], Pullan carried out an extensive study of
SCLPs and variants; he proposed an elegant dual for this problem, established strong
duality, and designed a class of convergent algorithms, based on time-discretization.
Pullan’s algorithm starts with a guess of the breakpoints in the optimal solution. With
respect to this fixed set of breakpoints, the problem can be solved as a linear program.
To compute a lower bound, another linear program with twice as many breakpoints
is constructed, with a slightly modified cost function; the cost function is modified in
such a way that every feasible solution to its dual can be used to construct a feasible
solution to the dual of the original continuous linear program with identical cost.
Thus, by solving these two (ordinary) linear programs, one can estimate the duality
gap. If the gap is not small enough, the number of breakpoints is doubled, with a
new breakpoint added at the midpoints of the original breakpoints. As one can see,
a naive implementation of this algorithm becomes impractical soon; to overcome this
difficulty, variants have been developed in which redundant breakpoints are identified
and removed every once in a while [30], leading to the so-called adaptive discretization
algorithms. Luo and Bertsimas [26] introduced SCSCLP, established strong duality,
and proposed a convergent class of algorithms for this problem. Their algorithm is
also based on time discretization, removes redundant breakpoints, but solves quadratic
programs in intermediate steps. Recently, Weiss has announced a simplex algorithm
for separated continuous linear programming [37]. All of these algorithms guarantee
convergence, but provide neither a bound on the number of iterations needed, nor a
bound on the number of breakpoints in the solution computed.

In the special case when all holding costs are equal, the problem is solved by a
flow that minimizes the total supply left in the network at every moment in time.
Optimal solutions for this problem (called an earliest arrival transshipment) along
with polynomial time algorithms to compute it are described in [20, 16]. A more
complicated problem that is not known to have a polynomial-sized solution is the
problem of minimizing the total time flow takes to reach the sink from a specified

4

source when it takes flow time to travel from the tail of an edge to the head of an
edge. This is the earliest arrival flow problem with transit times. For this problem,
Hoppe and Tardos described a fully polynomial approximation scheme [25]. When
in addition there are multiple sources, a fully polynomial approximation scheme is
described in [17].

One key difference between universally quickest flows (with uniform holding costs
and with or without travel times) and MHC (with general holding costs) is that an
optimal solution to MHC may require sending flow on non-simple paths, while optimal
solutions to universally quickest flows never require this.

The MHC problem on a line – a tandem network – for the special case when
holding costs are nondecreasing as they approach the sink s is solvable in polynomial
time [5].

1.4. Our Contribution. Our main contribution is the first provably efficient
algorithm for approximately solving MHC: our algorithm works for both the free-flow
and the fixed-paths versions. Given constants ε > 0 and δ > 0, we find a solution
with total cost at most (1 + ε)OPT + δ, where OPT is the cost of the minimum cost
drainage. The complexity of our algorithm is polynomial in the size of the input
network, 1

ε , and log 1
δ . This algorithm is described in Section 4

Our main result extends to generalizations of MHC that include piecewise-constant
data, convex holding costs, and arbitrary additional convex constraints. These exten-
sions are discussed in Section 5.

Our algorithm also uses time discretization, but, in contrast to previous ap-
proaches for MHC and SCLP, our algorithm works with a fixed time partition. A
fixed time partition is used previously in the approximation scheme to minimize total
time the flow spends in the network when there are transit times and multiple sources
[17]. We prove that the optimal instantaneous holding cost function is a convex, de-
creasing function, and use this to devise strong lower bounds for the problem based
on the time partition. We use a time expanded network with side constraints, with
network copies representing geometrically increasing units of time. Our algorithm
finds a flow with constant flow rates within each time interval in the partition. This
is in contrast to prior discretization-based algorithms [31, 26] which adaptively refine
the discretization, and are unable to bound the number of breakpoints in the com-
puted solution. Our approximation scheme provides a systematic way to control the
solution complexity: if a solution with a small number of breakpoints is desired, our
scheme could be adapted by suitably choosing ε and δ.

In addition to providing the desired solution, our algorithm also provides a bound
on the sub-optimality of the given solution. In particular, our algorithm may be used
in an adaptive setting: given a solution produced by our algorithm, the contribution
towards improving the approximation guarantee of individual breakpoints can be
assessed, and then removed if deemed small enough. Alternatively, the algorithm
can start with a coarse discretization and then the returned solution and bound will
suggest which intervals would be best to refine in order to improve the value of the
solution.

This is especially significant because the number of pieces in an optimal solution
may not be polynomially bounded in the input size. Indeed, recently Röte [35] devel-
oped a family of examples that suggests exponential growth in the number of pieces
in an optimal solution. Moreover, solutions with frequently changing controls may be
unusable in practice.

2. Preliminaries.
5

2.1. Input form and size. Our network has n = |V | vertices and m = |E|
arcs. While the control problem in fluid networks is defined for arbitrary input, we
assume that we are handling numerical input specified as the ratio of two integers, the
maximum of which is bounded by U . Thus the size of the input to the problem can
be expressed as a polynomial in terms of n, m, and logU . We denote this polynomial
by p(n,m, logU).

Without loss of generality, we assume that the capacity function u is integral. This
can be done by multiplying capacities and demands by the least common multiple of
capacity denominators, and dividing the costs by the identical number. The solution
to the resulting problem has the same cost as the original, and can be transformed into
a solution to the original problem simply by dividing the flow rate at each moment of
time by the same scaling factor.

Our algorithm requires a bound on the optimal time-horizon — the amount of
time required by the optimal flow to empty the network. A trivial upper bound on the
optimal time horizon, if finite, is simply

∑
k

∑
v∈V d◦k(v), since at worst, the network

drains flow at a rate equal to the minimum capacity, which is at least one if the problem
is feasible. Thus, for the rest of the paper, we assume T =

∑
k

∑
v∈V d◦k(v) ≤ n|U |n.

2.2. Notation and Definitions. We use f(t) to denote control f at time t.
We use f(e) to denote the K-component vector of functions of time that describe the
control of each commodity on arc e. We use f(e, t) to denote the vector of specific
commodity flow values on e at time t. An optimal control is denoted f∗.

Control f and initial storage d◦ induce a vector of vertex storage functions, de-
noted df . We use df (t) to denote df vector evaluated at time t. We use df (v) to
denote the storage function at v. We use df (v, t) to denote the storage at v at time
t. When f is clear from context, we may use d instead of df . The storage function
vector of an optimal control f∗ is denoted d∗.

We abbreviate the objective function
∑

k[
∑

e∈A ck(e)
∫ ∞
0

fk(e, t) dt +
∑

v∈V hk(v)∫ ∞
0

dk(v, t) dt] as
∫ T

0
cTf(t)+hTd(t) dt, for the appropriate upper bound T , and refer

to the instantaneous value at t as cTf(t) + hTd(t).
Given an interval (of time) [a, b) or [a, b], the length of the interval is b− a.

3. Structure and Use of the Discretization. A key tool in our algorithm is
a non-uniform time expanded network. Section 3.1 describes the structure and prop-
erties of this network. Section 3.2 describes some structure of the optimal solution.
Section 3.3 combines the content of these two previous sections to develop a new lower
bound for the optimal control problem that we use to prove approximate optimality
of our algorithm.

3.1. Time-expanded networks. We can compute a feasible, but not, in gen-
eral, optimal control by using a uniform time-expanded network. A time-expanded
network of N = (V,A) with time horizon T is denoted N T and contains a copy of N
for every time interval in [0, T) of the form [θ, θ+1) for θ = 0, 1, . . . , T − 1. The copy
for interval [θ, θ+1) is denoted Vθ. The copies of vertex v and arc e in Vθ are denoted
vθ and eθ, respectively. The flow capacity restrictions on e ∈ A are interpreted as
flow capacity restrictions for eθ for each θ = 0, . . . , T − 1. In addition, if storage is
permitted at v, then there is a holdover arc from vθ to vθ+1 of capacity ak(v) for each
commodity k = 1, . . . ,K, for all θ = 0, . . . , T − 1. Finally, there are holdover arcs
(sθ, sθ+1) of infinite capacity for all θ = 0, . . . , T − 1.

A flow in the time-expanded network N T corresponds to the control f obtained
by interpreting the flow on arc eθ as the flow rate on e in the interval [θ, θ + 1) and

6

t=

1

1

1

[0,1) [2,3)

0.1

1.9

v

0.9 2.9

2.11.1

t=

t=

2

1

1

1

[1,2)

Fig. 3.1. The flow in a time-expansion of a network fragment consisting of 3 nodes and two
arcs: one with capacity 2 and another with capacity 1. The pipes below depict the behavior of the
corresponding flow over time at times 0.1, 0.9, 1.1, 1.9, 2.1, 2.9. In the interval [0, 1), the reserve
bucket is gradually filled by excess flow arriving at node v. In interval [1, 2) this reserve flow sits at
node v since the arc leaving v is full. In interval [2, 3) the reserve bucket is gradually emptied.

interpreting the flow on arc (vθ, vθ+1) as the storage level at v at time θ + 1. Since
the obtained flow rates are constant on unit intervals, this completely specifies f .
Similarly, any control f corresponds to a flow x in N T : x is obtained by averaging f
on unit intervals. See Figure 3.1 for an illustration of this correspondence.

We now discuss how to assign costs to arcs in N T so that the cost of a flow
in N T is the same as the cost of the corresponding control. This corresponding
control is constant over unit intervals which implies that the storage function d is
linear over unit intervals. We begin by examining the cost behavior for a single
interval. Since d is linear in this interval, the holding cost at v in interval [θ, θ + 1)
is

∫ θ+1

θ
hTd(v, t) dt = 1

2 [h
Td(v, θ) + hTd(v, θ + 1)]. As the flow on the holdover arc

entering vθ corresponds to d(v, θ), we assign a cost of 1
2h to this arc to account for

holding cost of flow that starts the interval at v. Similarly, since the flow on the
holdover arc leaving vθ corresponds to d(v, θ), we assign a cost of 1

2h to this arc to
account for holding cost of flow that ends the interval at v. Flow that stays at v incurs
both costs. We do this for all intervals.

Putting the intervals together into one network, we create the time-expanded
network with costs. This is a modification of a time expanded network N T created
by adding a new vertex v′θ for each vertex vθ in N T . See Figure 3.2. The arc set of

7

v′0 v0 v′1

V2

v1

V1

v′2 v2

V0

1
2h

1
2h

1
2h

1
2h

1
2h

Fig. 3.2. A schematic sketch of the modified time-expanded network with holding costs. The
flow on arc (vi−1, v′i) (or arc (v′i, vi)) denotes flow stored at v at time i.

N T is modified by replacing each holdover arc (vθ, vθ+1) with two arcs (vθ, v
′
θ+1) and

(v′θ+1, vθ+1). The new arcs each have the capacity of the old arc, and cost hk(v)/2
for commodity k. For each vertex v ∈ V , the arc (v′0, v0) is introduced with capacity
d◦k(v) and cost hk(v)/2 for commodity k, k = 1, . . . ,K. Arc eθ has cost ck(e) for
commodity k. For NT , denote this modified network with costs as N T

c . Note that,
aside from the first vertex v′0, the set of added vertices are unnecessary for accurate
computation so far. We add them to separate the contribution to the holding cost of
each interval. This becomes more important in Section 3.1.1 where we modify N T

c

further.
Theorem 3.1. A flow x in N T

c that sends, for all v ∈ V , k = 1, . . . ,K, d◦k(v)
units of flow from v′0 to sT corresponds to a control f in N with the same cost.

Proof. Given x, let f be the piecewise constant flow obtained by interpreting
xk(eθ) as the flow rate of commodity k on e in [θ, θ + 1) for all k ∈ {1, . . . ,K},
e ∈ A. Since f is constant on unit intervals, the rate of drainage from v ∈ V in
[θ, θ + 1) is constant on this interval. Thus the holding cost at v in this interval is∑

k
1
2hk(v)|dk(v, θ)−dk(v, θ+1)|+hk(v)min{dk(v, θ), dk(v, θ+1)}. For 0 ≤ θ ≤ T−2,

this is captured by x as the cost of the flow of commodity k on (v′θ, vθ) plus the cost
of the flow of commodity k on (vθ, v

′
θ+1). For θ = T − 1, this is the cost of flow of

commodity k on (v′T−1, vT−1), since dk(v, T) = 0 for all k. The flow cost on this
interval is simply the sum of the flow costs on arcs in Vθ.

Corollary 3.2. If f∗ sends flow at a rate that is constant on unit intervals,
then a minimum cost flow in N T

c yields a minimum cost control.
Unfortunately, we cannot use Corollary 3.2 to obtain an optimal control f∗ in

general since there is no guarantee that f∗ is constant on unit intervals. If f∗ sends
a lot of flow from node v at the beginning of an interval, and very little at the end,
then the holding cost at v during the interval will be significantly lower with f∗ than
with the flow obtained by averaging f∗ over the interval. For example, consider a
buffer with holding cost 1 and one unit of flow, and an arc leaving the buffer with
capacity ten. If the flow is sent at maximum capacity from the start, then the holding
cost is

∫ 1/10

0 (1 − 10x)dx = 1/20. If the flow is kept in the buffer as long as possible
and sent at maximum capacity at the end of the unit interval, the holding cost is
9/10+

∫ 1/10

0 (1−10x)dx = 19/20. The average of either of these flows is the flow that
sends flow at rate 1/10 of capacity throughout the unit interval, and this has holding
cost

∫ 1

0
(1 − x)dx = 1/2. There are symmetric cost disparities for the case of flow

8

[0, ∆) [∆, ∆ + ∆′) [∆ + ∆′, ∆ + ∆′ + ∆′′)

µ∆

1
2h∆ 1

2h∆′ 1
2h∆′1

2h∆

µ∆′ µ∆′′

1
2h∆′′

Fig. 3.3. A schematic sketch of the condensed time-expanded network with holding costs and
capacities of network arcs both multiplied by the interval length.

that is entering the buffer. We will address this difficulty by refining the intervals of
discretization selectively. A key structural property that allows for this is given in
Lemma 3.6.

Even if f∗ is constant over unit intervals, the algorithm implied by computing a
minimum cost flow in N T

c is pseudopolynomial: its complexity depends polynomially
on |U |, and hence is exponential in the size of the input parameter log |U |. Thus, to
obtain a polynomial algorithm, it is necessary to work with smaller networks.

3.1.1. Nonuniform Time-Expanded Networks. Instead of using Vθ to rep-
resent one unit of time, we can instead use Vθ to represent a time interval of length ∆.
Then, the capacity of commodity k on each arc in Vθ is multiplied by ∆, and the cost
on arcs entering and leaving Vθ are also multiplied by ∆. (That is, cost of commodity
k on (v′θ, vθ) and (vθ, v

′
θ+1) is multiplied by ∆ for all v ∈ V , k = 1, . . . ,K, as in Fig-

ure 3.3.) Flow in such a “condensed” time-expanded network corresponds to a control
by dividing the flow on arc eθ by ∆: If Vθ corresponds to the interval [a, a+ ∆) then
the control sends flow onto eθ at rate x(eθ)/∆ for this entire interval. The storage level
of commodity k at v at time a+α∆ for α ∈ [0, 1] is (1−α) xk(v′θ, vθ)+α xk(vθ, v

′
θ+1).

The effect on the corresponding control of condensing the interval [a, a + ∆) in the
time-expanded network to just one copy of N is to average the control over a longer
interval – an interval of length ∆. Thus, the coarser the time-expanded network, the
higher the cost of the minimum cost flow and the corresponding control.

A set B of consecutive breakpoints in [0, T] with 0, T ∈ B defines a set of disjoint
intervals that covers [0, T). The corresponding time-expanded network, denoted N T

c,B,
is the time expanded network that contains a copy of V for every such interval. The
proof of the following theorem is similar to the proof of Theorem 3.1.

Theorem 3.3. A flow x in N T
c,B that sends, for all v ∈ V , k = 1, . . . ,K, d◦k(v)

units of flow from v′0 to sT corresponds to a control f in N with the same cost.

3.2. Structure of an Optimal Solution. In this section, we describe the struc-
ture of an optimal solution and show that the optimal instantaneous holding cost
function is convex and decreasing. This is used crucially in establishing lower bounds
for the fluid relaxation.

Anderson, Nash, and Perold [3] characterize the extreme point solutions to a
class of continuous linear programs that include fluid relaxations. In particular, they
prove the following (proof omitted), but do not give any bound on the number of

9

breakpoints of f∗.
Lemma 3.4 ([3] Theorem 4). For any instance of MHC, there always exists a

piecewise constant f∗.
Corollary 3.5. cTf∗(t) is a piecewise constant function of t.
It is easy to see that an optimal solution may send flow on non-simple paths. In

particular, it may be better to send excess supplies to a vertex with cheap holding
costs while waiting for sufficient capacity to the sink. However, as the following lemma
implies, the the total holding cost accrued in a unit interval decreases with time.

Lemma 3.6. hTd∗(t) is a convex, decreasing function of t.
Proof. If hTd∗ is not convex, then there is a lower tangent l to hTd∗ with dis-

continuous intersection with hTd∗. Let 0 < t1 < t3 < t2 be such that hTd∗(t1) and
hTd∗(t2) are on l, hTd∗(t3) is not on l, and for all t1 ≤ t ≤ t2, hTd∗(t) is on or
above l. Modify f on the interval [t1, t2) by replacing f(e, t) with the average flow
rate 1

t2−t1

∫ t2
t1

f(e, t) dt for all e ∈ A and all t ∈ [t1, t2). Call the new control
f̄ . Since f obeys capacity constraints, so does f̄ . Note that df̄ (t1) = d∗(t1) and
df̄ (t2) = d∗(t2) but that for t ∈ (t1, t2), df̄ changes linearly from d∗(t1) to d∗(t2); i.e.
df̄ (t) = t2−t

t2−t1
d∗(t1) + t−t1

t2−t1
d∗(t2). Since d∗ is nonnegative, so is df̄ . By choice of t1

and t2, the total holding cost over [t1, t2) is strictly less with df̄ . Since in addition∫ t2
t1

cTf∗(t) dt =
∫ t2

t1
cTf̄(t) dt, this contradicts the optimality of f∗. Hence hTd∗ is

convex.
Since hTd∗(0) = hTd◦ > 0, hTd∗(T) = 0, and hTd∗ is convex, hTd∗ is also

decreasing.
Notice that the above proof extends to show that hTd∗(t) is convex decreasing

even when f∗ is restricted to send flow of commodity k along a prespecified path.
This proof extends trivially to the case of a control computed via a minimum cost

flow in N T
c,B. We summarize this in the following corollary.

Corollary 3.7. The piecewise constant control f obtained from a minimum cost
flow in N T

c,B yields a storage function vector d(t) so that hTd(t) is a convex, decreasing
function of t.

3.3. Two Strong Lower Bounds. Theorem 3.1 describes how to obtain upper
bounds on the cost of a minimum cost control. To obtain a lower bound, we combine
ideas of sections 3.1 and 3.2. We give two lower bounds. The second is stronger
than the first. A geometric interpretation of holding cost portion of these two lower
bounds is presented in Figure 3.4. The top line in each graph is the instantaneous
holding cost of the optimal solution as a function of time. Thus the total holding
cost is the area under this line. Given a set of breakpoints B = {b1, b2, . . . , b|B|} with
0 < b1 < · · · < b|B| = T , the bottom function in the graph on the left is the decreasing
step function,

lB(t) := hTd∗(bθ), for all t ∈ (bθ−1, bθ], and for all θ ∈ {1, . . . |B|}, (3.1)

where b0 = 0. The bottom function in the graph on the right is the convex, decreasing,
piecewise linear function l′B(t) defined over the interval t ∈ (bθ−1, bθ] for all θ ∈
{1, . . . , |B|} as the line through (bθ, h

Td∗(bθ)) and (bθ+1, h
Td∗(bθ+1)). Since hTd∗ is

convex and decreasing (by Lemma 3.6), we have that lB(t) ≤ l′B(t) ≤ hTd∗(t) for all
t ∈ [0, T). Thus, the area of each shaded region is a lower bound on the optimal
holding cost. Note that, by definition, all three functions lB, l′B, and hTd∗ concur at
the breakpoints in B.

10

Fig. 3.4. Graphical description of the two lower bounds. The top curve is the function hTd∗.
The shaded region at left shows the area under l. The shaded region at right shows the area under
l′.

Lemma 3.8. For any set of positive, ordered breakpoints B = {b1, . . . , b|B|},
∫ b|B|

0

cTf∗(t) dt+
|B|∑
θ=1

(bθ − bθ−1) hTd∗(bθ) (3.2)

is a lower bound on the cost of an optimal control f∗.
Proof. It suffices to show that h :=

∑|B|
θ=1(bθ −bθ−1) hTd∗(bθ) is a lower bound on

the holding cost of the optimal control. Note that h is the integral of lB(t) over [0, b|B|].
Since lB(t) ≤ hTd∗(t) for all t ∈ (0, b|B|], we have

∫ b|B|
0

lB(t)d(t) dt ≤ ∫ b|B|
0

hTd∗(t) dt.

The area under l′B(t) in the interval [bθ−1, bθ) is (bθ−bθ−1)hTd∗(bθ) plus the area of
the right triangle above hTd∗(bθ). This can be computed as the slope of the hypotenuse
times the square of the base. This quantity is hTd∗(bθ)−hTd∗(bθ+1

bθ+1−bθ
(bθ − bθ−1)2. Defining

rθ as bθ−bθ−1
bθ+1−bθ

, this whole area can be rewritten as (bθ − bθ−1) [(1 + rθ

2)hTd∗(bθ) −
rθ

2 hTd∗(bθ+1)].
Lemma 3.9. For any set of positive, ordered breakpoints B = {b1, . . . , b|B|},

∫ b|B|

0

cTf∗(t) dt +
|B|∑
θ=1

(bθ − bθ−1) [(1 +
rθ

2
)hTd∗(bθ)− rθ

2
hTd∗(bθ+1)] (3.3)

is a lower bound on the cost of an optimal control f∗.
Proof. It suffices to show that h′ :=

∑|B|
θ=1(bθ − bθ−1) [(1 + rθ

2)hTd∗(bθ) −
rθ

2 hTd∗(bθ+1)] is a lower bound on the holding cost of the optimal control. Note
that h′ is the integral of l′B(t). Since l′B(t) ≤ hTd∗(t) for all t ∈ (0, b|B|], we have that∫ b|B|
0

lB′(t)d(t) dt ≤ ∫ b|B|
0

hTd∗(t) dt.
Without knowing f∗, we cannot compute the lower bounds described in Lem-

mas 3.8 and 3.9. The next two lemmas describe computable lower bounds. This is
11

useful in applying our algorithm in an adaptive setting, as discussed in the remarks
at the end of Section 4.1.

In both Lemma 3.10 and Lemma 3.11, we use slightly different time-expanded
networks. Let N T

B be a condensed time expanded graph with copies of networks
corresponding to intervals defined by the breakpoints in the positive, ordered set
B = {b1, . . . , b|B|}, setting b0 = 0. We omit the use of the intermediate vertices v′, by
replacing (vbθ

, v′bθ+1
) and (v′bθ+1

, vbθ+1) with (vbθ
, vbθ+1), and by removing initial arcs

(v′0, v0). The arc flow costs are as in N T
c,B. For Lemma 3.10, the cost on holdover arc

(vbθ
, vbθ+1) is h× (bθ+1− bθ) (instead of 1

2h(bθ+1− bθ + bθ − bθ−1), the sum of costs on
(vbθ

, v′bθ+1
) and (v′bθ+1

, vbθ+1) in N T
c,B). Recall that flow on arc (vbθ

, vbθ+1) represents
the flow at node v at time bθ+1.

Lemma 3.10. If x′ is a minimum cost flow in N T
B for intervals corresponding to

breakpoints B, f ′ is the corresponding control, and d′ is the corresponding vector of
storage functions, then

∫ b|B|
0

cTf ′(t) dt +
∑|B|

θ=1(bθ − bθ−1) hTd′(bθ) ≤
∫ b|B|
0

cTf∗(t) +
hTd∗(t)dt.

Proof. The static flow x yields a control f ′ and corresponding storage vector d′

that minimizes the quantity
∫ b|B|
0 cTf ′(t) dt+

∑|B|
θ=1(bθ − bθ−1)hTd′(bθ). Thus, this is

at most
∫ b|B|
0

cTf∗(t) dt +
∑|B|

θ=1(bθ − bθ−1) hTd∗(bθ). Applying Lemma 3.8 finishes
the proof.

For Lemma 3.11, since flow on arc (vbθ
, vbθ+1) represents the flow at node v at time

bθ+1, the cost on holdover arc (vbθ−1 , vbθ
) is set to [(1 + rθ

2)(bθ − bθ−1)− rθ−1
2 (bθ−1 −

bθ−2)]h = [(1 + rθ

2)bθ − (1 + rθ+rθ−1
2)bθ−1 + rθ−1

2 bθ−2]h for 2 ≤ θ ≤ r − 1, and
(1 + r1

2)(b1 − b0)h for θ = 1. Denote this network by N ′T
B .

Lemma 3.11. If x′ is a minimum cost flow in N ′T
B for intervals corresponding to

breakpoints B, f ′ is the corresponding control, and d′ is the corresponding vector of
storage functions, then

∫ b|B|

0

cTf ′(t) dt +
|B|∑
θ=1

(bθ − bθ−1) [(1 +
rθ

2
)hTd′(bθ) − rθ

2
hTd′(bθ+1)]

=
∫ b|B|

0

cTf∗(t) + l′B(t)dt

≤
∫ b|B|

0

cTf∗(t) + hTd∗(t)dt.

Proof. The static flow x yields a control f ′ and corresponding storage vector d′

that minimizes the quantity
∫ b|B|
0

cTf ′(t) dt +
∑|B|

θ=1(bθ − bθ−1) [(1 + rθ

2)hTd′(bθ) −
rθ

2 hTd′(bθ+1)]. Thus, this is at most
∫ b|B|
0 cTf∗(t) dt+

∑|B|
θ=1(bθ−bθ−1) [(1+ rθ

2)hTd∗(bθ)−
rθ

2 hTd∗(bθ+1)]. Applying Lemma 3.9 finishes the proof.

4. An Approximation Scheme for Minimum Cost Control. We first de-
scribe the approximation scheme for MHC with free flow. In section 4.2, we show how
to modify this in the setting of both simple and nonsimple fixed flow paths.

4.1. Free flow controls. Our approximation scheme for MHC uses a time ex-
panded network with network copies representing geometrically increasing units of
time. A more complicated time expanded network with geometrically increasing units
of time was used previously in [17] for approximating earliest arrival flows with transit
times.

12

Our discretization has size proportional to 1√
ε
. We begin by presenting a simpler

argument that uses a discretization that is linear in 1
ε . Our simpler argument uses

the lower bound in Lemma 3.8, while the refined argument uses the lower bound in
Lemma 3.9.

The discretization for the linear-size guarantee uses 1
2ε(�log ThTd◦

δε �) copies of N .
These copies are partitioned into q := �log ThTd◦

δε � sets of cardinality 1
2ε each. Denote

these sets by N0, N1, . . . , Nq−1. The size of the intervals in each set depend on a
parameter ρ defined as

ρ := δ/hTd◦.

N0 is the set of intervals of length 2ρ covering interval [0, ρ
ε). N1 is the set of intervals

of length 2ρ covering interval [ρ
ε ,

2ρ
ε). For 1 < i < q − 1, Ni is the set of intervals

of length 2iρ covering interval [2
i−1ρ
ε , 2iρ

ε). Nq−1 is the set of intervals of length
Tε
2 covering interval [T

2 , T). Let B′ be the set of breakpoints corresponding to the
endpoints of these intervals.

Theorem 4.1. A control with cost at most (1 + ε)OPT + δ and size that is
polynomial in p(n,m, logU), linear in 1

ε , and logarithmic in 1
δ can be computed in

time polynomial in p(n,m, logU), 1
ε , and log 1

δ .
Proof. We prove that the control that corresponds to the minimum cost flow x in

the time-expanded network based on breakpoints B′ has cost at most (1+ ε)OPT+ δ.
We compare the cost of the control f̄ obtained by averaging f∗ over each interval

defined by consecutive breakpoints in B′ to the lower bound implied by f̄ as described
in Lemma 3.8. This lower bound is

∫ T

0
cTf∗(t) dt+

∫ T

0
lB′(t) dt. Let d̄ be the supplies

induced by d◦ and f̄ . We show that

∫ T

0

hTd̄(t) dt ≤ δ + (1 + ε)
∫ T

0

l(t) dt. (4.1)

Since f̄ corresponds to a flow in the discretized time expanded network, the control
f corresponding to x has cost at most the cost of f̄ . Combined with the fact that∫ T

0 cTf∗(t) dt =
∫ T

0 cTf̄(t) dt and Lemma 3.8, this observation and (4.1) imply the
theorem.

Since hTd̄(t) and lB′(t) are decreasing functions on (0, T], we can evaluate their
integrals by considering the area under each curve in horizontal strips.

Consider first the horizontal strip from hTd̄(ρ
ε) to hTd◦ as depicted in Figure 4.1.

The area of the difference hTd̄(t)− l(t) in this strip can be broken down to the sum of
areas of hTd̄(t)− l(t) over each interval of length 2ρ. Since hTd̄ is convex, decreasing,
and equals the decreasing step function l at the end points, this difference is the sum
of areas of triangles each with base 2ρ, and total height bounded by hTd◦. Thus the
difference in the areas in this topmost strip is at most δ.

Now consider any horizontal strip defined by the interval [hTd̄(T/2j−1), hTd̄(T/2j)]
for j = 0, . . . , q − 1. We will show that the area under curve hTd̄(t) that intersects
this strip is at most 1 + ε times the area under curve l(t) that intersects this strip.
Since this is true for all j; and summed over all j, these strips cover the interval
[0, hTd̄(2δ

cTd◦)], this implies inequality (4.1).
First note that l(t) and hTd̄(t) meet at both t = T/2j and t = T/2j−1. Thus,

both areas include the area of the strip to the left of t = T
2j : this is the area of the

rectangle with height Hj := hTd̄(T/2j) − hTd̄(T/2j−1) and width T
2j . Both areas

13

Time

Holding
cost
hTd

2δ
hTd◦

δ
εhTd◦

l(t)

hT d̄(t)

hTd◦

2δ
εhTd◦

4δ
εhTd◦

Fig. 4.1. The medium shaded region corresponds to the area of hTd̄(t) − l(t) between points
hTd◦ and hTd̄(δ

εhTd◦) on the vertical axis. The lightly shaded region is the strip for j = q − 2.

The dark shaded region corresponds to the area of hTd̄(t) − l(t) between points hTd̄(T/2q−3) and
hTd̄(T/2q−2) on the vertical axis.

include no area to the right of t = T
2j−1 . Consider now the area in the strip along

the horizontal axis from T
2j to T

2j−1 . In this interval, time is discretized into intervals
of length Tε

2j . Since l(t) and hTd̄ agree at all endpoints of these intervals, the area
between the hTd̄ and l(t) in this strip is the area of the triangle with height equal to
the height of the strip and base equal to the length of the discretized interval. Thus
this area is Hj × Tε

2j+1 . With our previous observations on the area to the left and
right in this strip, this implies that in this strip, the ratio of the area under hTd̄(t) to
the ratio under l(t) is at most (1 + ε).

Theorem 4.2. A control with cost at most (1 + ε)OPT + δ and size that is

polynomial in p(n,m, logU), linear in
√

1
ε and logarithmic in 1

δ can be computed in

time polynomial in p(n,m, logU), 1
ε , and log 1

δ .

Proof. We prove that the control that corresponds to the minimum cost flow x in
the time-expanded network based on breakpoints B′ has cost at most (1+8ε2)OPT+δ.

We compare the cost of the control f̄ obtained by averaging f∗ over each interval
defined by consecutive breakpoints in B′ to the lower bound implied by f̄ as described
in Lemma 3.9. Let d̄ be the supplies induced by d◦ and f̄ . This lower bound is the sum
of

∫ T

0
cTf∗(t) dt and the integral of the convex, decreasing, piecewise linear function

14

Fig. 4.2. The triangles between hTd̄, l′, and evenly spaced breakpoints stack together to form
one triangle that fits inside the triangle between hTd̄, l, and the first two breakpoints.

l′B′(t). We show that
∫ T

0

hTd̄(t) dt ≤ δ + (1 + 8ε2)
∫ T

0

l′B′(t) dt. (4.2)

Since f̄ corresponds to a flow in the discretized time expanded network, the control
f corresponding to x has cost at most the cost of f̄ . Combined with the fact that∫ T

0
cTf∗(t) dt =

∫ T

0
cTf̄(t) dt and Lemma 3.9, this observation and (4.2) imply the

theorem.
In the proof of Theorem 4.1, the area between hTd̄(t) and lB′(t) in the interval

[0, ρ
ε) is bounded by δ. This argument can be easily extended to hold for the interval

[0, 2ρ
ε), since the breakpoints in this interval are all the same distance 2ρ apart. Since

l′B′(t) ≥ lB′(t) for all t ∈ [0, T], the area between hTd̄(t) and l′B′(t) in the interval
[0, 2ρ

ε) is bounded by δ.
We now consider the area between hTd̄(t) and l′B′(t) in the interval [2

j−1ρ
ε , 2jρ

ε)
for j ≥ 2. This region is divided into 1

2ε triangles: let τij be the triangle defined by

l′B′(t), hTd̄(t) and the interval [2
j−1ρ
ε + 2jρ(i− 1), 2j−1ρ

ε + 2jρi], for i = 1, . . . , 1
2ε . See

Figure 4.2. Let σij be the corresponding triangle defined by the same interval, hTd̄(t),
and lB′(t). Thus τij ⊆ σij . The base of both τij and σij is 2jρ. The slope of the
bottom line of τij (i.e the slope of l′B′(t) in interval [2

j−1ρ
ε +2jρ(i−1), 2j−1ρ

ε +2jρi]) is
the same as the slope of the top line of τi+1,j (i.e. the slope of hTd̄(t) in the interval
[2

j−1ρ
ε +2jρi, 2j−1ρ

ε +2jρ(i+1)]). Thus, we can stack these triangles together to form

a new triangle of base 2jρ and height at most hTd̄(2j−1ρ
ε) − hTd̄(2jρ

ε). This triangle

is contained in the triangle σ1j . Thus
∑
log T ε

ρ �
j=2 area(σ1j) is an upper bound on the

area between hTd̄(t) and l′B′(t) in the interval [2ρ
ε , T]. We now bound this area.

Since hTd̄(t) is convex and decreasing, we have that

hTd̄(2j−1 ρ

ε
+2jρ(i−1))−hTd̄(2j−1 ρ

ε
+2jρi) ≥ hTd̄(2j−1 ρ

ε
+2jρi)−hTd̄(2j−1 ρ

ε
+2jρ(i+1)),

15

for all j ≥ 2, 1 ≤ i ≤ 1
2ε . Thus area(σij) ≥ area(σi+1,j). Also,

hTd̄(2j−1 ρ

ε
− 2j−1ρ)] − hTd̄(2j−1 ρ

ε
) ≥ 1

2
[hTd̄(2j−1 ρ

ε
) − hTd̄(2j−1 ρ

ε
+ 2jρ)].

for all j ≥ 2. Thus, area(σ1j) ≤ 4 area(σi,j−1). This implies that area(σ1j) ≤
8ε

∑1/2ε
i=1 area(σi,j−1), and hence

∑
log Tε
ρ �

j=2 area(σ1j) ≤ 8ε
∑
log T ε

ρ �
j=1

∑1/2ε
i=1 area(σij).

In Theorem 4.1 it is proved that this latter summation is at most ε OPT. Thus we

have that
∑
log Tε

ρ �
j=2 area(σ1j) ≤ 8ε2 OPT, which implies the theorem.

Remarks. 1. The constant in Theorem 4.2 is not tight. With a more careful
comparison of areas, it can be shown that the discretization yields a solution of value
at most (1 + 2ε2)OPT + δ.

2. While Theorem 4.2 yields a firm guarantee on the quality of the solution
obtained, Lemmas 3.10 and 3.11 may be used to obtain a specific guarantee for each
particular instance. The specific guarantee may show that the actual approximation
is of better quality than Theorem 4.2 promises. Thus, Lemmas 3.10 and 3.11 in
conjunction with Theorem 3.3 can be used in an iterative manner to find a good
discretization for any specific instance: starting with a very coarse discretization, one
could iteratively refine only those intervals with large difference between the upper
and lower bounds, while leaving large areas of the discretization at a coarse level.

3. In practice, it is desirable to have a control with few breakpoints. Thus, after
computing the approximate flow, we can use Lemma 3.10 to remove breakpoints that
are not necessary for the approximation guarantee.

4. Theorems 4.1 and 4.2 also hold in the setting of convex flow costs c, since
averaging c over an interval only reduces total costs.

4.2. Fixed flow paths. In this section we show how to modify the approach
described in the previous sections to handle versions of the problem where the flow
path for a commodity is fixed a priori.

Simple paths. If the supply originating at vertex v must follow a fixed path
to the sink, we can incorporate this into the discretization by treating the supply
from this sink as a single commodity. In the case when the path is simple, we can
force it to follow the path by changing the capacity of arcs not on this path to 0
for this commodity. The resulting problem is a multicommodity flow problem on
a polynomially sized network, which can be solved in polynomial time via linear
programming.

Nonsimple paths. In the case when the path is not simple, we handle the path
specification more carefully. In this case, it is not sufficient to restrict the flow of
the commodity to arcs on the path, since the flow could then “skip” the cycle, or
travel the cycle more times than specified. Instead, we could list the paths in the
time-expanded network that the flow could follow. There are an exponential number
of such paths, however, so we cannot afford to list them all explicitly. We argue here
that the resulting, path-based linear program can be solved in polynomial time by
keeping only an implicit representation of the paths.

We start by describing the path-based linear program corresponding to the time-
expanded network with breakpoint set B. Let Pk be the set of permissible paths
for commodity k. For a vector, such as c, defined on the arcs in the time expanded
network, we let c(P) :=

∑
eθ∈P c(eθ).

16

minimize ∑
P∈Pk

c(P)x(P)

subject to ∑
P∈Pk

x(P) ≥ dk, k = 1, . . . ,K
∑

k

∑
P∈Pk:eθ∈P

x(P)/µk(e) ≤ 1, ∀ e ∈ A, ∀ θ ∈ B.

This LP has an exponential number of variables. The column pricing problem is,
given vectors w ∈ R

|B|×A, find for each commodity k, the permissible path P ∈ Pk

minimizing

c(P) +
∑

eθ∈P

weθ

µe
.

We can define the distance of edge e for commodity k as c(e) + weθ
/µe, reducing

the pricing problem to a restricted shortest path problem: find the shortest path
among all those in Pk. This shortest path problem can be solved exactly by a simple
labeling algorithm even if the permissible path for commodity k is non-simple. Fix a
commodity k; suppose its associated path visits a node v l times. Then the label for
each copy vθ of v in the time expanded network will be an l tuple (γ1, γ2, . . . , γl), with
γi representing the shortest path from the source to vθ with i visits to v (including
the last). The entry γi for node vθ depends only γi for node vθ−1 and the label of
its predecessor in this path, and so can be computed efficiently. This labeling scheme
can be used to identify the shortest path P ∈ Pk, solving the pricing problem. This
implies, via the ellipsoid algorithm [19], that we can solve the LP in polynomial time.

In practice, we would embed the polynomial time, restricted shortest path sub-
routine within a column-generation framework for solving these linear programs.

4.3. Infinite capacity arcs. In addition to the modification suggested at the
end of section 4, we suggest a modification here that will improve the number of
discretizations needed in the case that there are infinite capacity arcs. In particular,
we show how to improve the estimate of the cost computed in the first moments
of time in such a case. This is not covered in general by Corollary 3.2, since one
simple usefulness of infinite capacity arcs is to allow an arbitrary amount of flow to
be transported instantaneously from one node to another. Any flow using infinite
capacity arcs in such a manner will not be constant over any non-zero interval of time
in which they are used. This is particularly important in the first interval of time.
To capture the usage of infinite capacity arcs at time 0, we modify N T

c by adding
the infinite capacity arcs of N to the vertex set V ′

0 := {v′0 | v ∈ V ∪ {s}}. That is,
for each arc e ∈ A that has infinite capacity, we include a copy e′0 in V ′

0 with infinite
capacity and 0 cost. This modified network now allows for instantaneous shipment of
flow along infinite capacity arcs at the start of an otherwise piecewise constant control
f .

4.4. Modelling continuous input streams and buffer loss. Continuous,
constant rate input streams can easily be included in the model as follows: The
constant rate problem can be first solved separately by solving a standard flow problem

17

in the network N to obtain a continuous constant flow f . The remaining fixed demand
problem is then solved in the residual network of f in N .

In some settings with finite buffer capacity, flow may be lossed due to buffer
overflow. There is a natural penalty for loss of such flow. This can be modelled by
introducing an additional node to the time-expanded network to model lost flow, and
adding an arc from every vertex to this node with cost equal to the cost of flow loss
for that commodity at that node.

5. Generalizations. We consider three distinct generalizations of the basic mul-
tiflow problem with holding costs: (a) piecewise constant data; (b) holding cost func-
tions that are convex in the amount of storage; and (c) general constraint matrices.
Our treatment so far has been restricted to the case of constant data, linear holding
costs, and a network matrix. Each of these generalizations is fairly straightforward,
and is discussed in isolation; however, the algorithm we propose is able to handle any
combination of these generalizations.

5.1. Piecewise constant data. Let J = {β0, β1, . . . , βρ} be the set of break-
points of the input data. In the interval [βi, βi+1), the capacities and costs are con-
stant, while these quantities may change at the points in J . In addition, at each
breakpoint β ∈ J a new set of demands given by vector d◦(β) may enter the network.
Let OPTρ be the cost of the optimal solution to this problem.

For this problem, Lemma 3.6 does not hold: it is not true that hTd∗ is a decreasing
function, even within an interval [βi, βi+1).2 Even though hTd∗ is not decreasing, the
next Lemma establishes that it is convex inside each interval [βi, βi+1), i = 0, . . . , ρ−1.

Lemma 5.1. For MHC with piecewise constant data changing at breakpoints in
J , the holding cost hTd∗(t) is a convex function of t between consecutive breakpoints.

Proof. The proof is identical to the proof of convexity in Lemma 3.6: since
capacity constraints stay constant between breakpoints, averaging the flow between
any two points in this interval is feasible and linearizes hTd between the points.

We modify the approximation algorithm in Section 4 by modifying the discretiza-
tion to address the differences between the problem with constant data and the prob-
lem with piecewise constant data. Firstly, in the piecewise constant data setting, the
initial instantaneous holding cost hTd◦ is no longer a bound on the maximum holding
cost. Instead, let D◦ :=

∑
β∈J

∑
v d

◦
v(β), and let H := maxβ maxv:hv(β)<∞ hv(β).

Then H ×D◦ is an upper bound on the instantaneous holding cost.
More seriously, with piecewise-constant data the expression (3.2) is no longer a

lower bound on the cost of the optimal solution, since hTd∗ is no longer a decreasing
function. Instead, we have the following generalization. For a set B of breakpoints of
the discretization with J ⊆ B, let Bi := {βi = bi

0, . . . , b
i
ri

= βi+1} be the intersection
of B with [βi, βi+1]. If the point µi that minimizes hTd∗ over the interval [βi, βi+1] is
in B, then it is easy to see that

∫ βi+1

βi

cTf∗(t) dt +
ri∑

θ=1

(bi
θ − bi

θ−1) min{hTd∗(bi
θ), hTd∗(bi

θ−1)} (5.1)

is a lower bound on the holding cost of the optimal solution in the interval [βi, βi+1).
If µi /∈ B, the next lemma shows that it is still possible to lower bound the cost of the

2Consider the network consisting of three nodes {a, b, s}. There is holding cost 1 at a, holding
cost 10 at b, and holding cost 0 at s. There is one unit at a. In the first time unit, there is an arc (a, b)
with capacity 1. In the second time unit, there is an arc (b, s) with capacity 1. The instantaneous
holding cost starts at 1 and increases linearly to 10 by time 1.

18

optimal solution with the integral of a function that is constant on intervals of the
discretization, for an appropriately defined discretization.

Lemma 5.2. Let J = {β0, β1, . . . , βρ} be the set of breakpoints of the input data
to MHC. And let B with J ⊆ B satisfy ∀i ∈ {0, . . . , ρ−1}, that each interval described
by consecutive breakpoints in Bi is adjacent to another such interval of the same or
greater length. Then,

∫ T

0

cTf∗(t) dt+
ρ−1∑
i=0

ri∑
θ=1

(bi
θ − bi

θ−1)min{hTd∗(bi
θ), hTd∗(bi

θ−1)} (5.2)

is a lower bound on the cost of the optimal control.
Proof. As in the proof of Lemma 3.8, it suffices to show that

∑ρ−1
i=0

∑ri

θ=1(b
i
θ −

bi
θ−1)min{hTd∗(bi

θ), hTd∗(bi
θ−1)} is a lower bound on the holding cost of the optimal

control. On domain [βi, βi+1], Lemma 5.1 asserts that hTd∗ is a convex function.
Thus, on domain [bi

θ−1, b
i
θ), the function hTd∗ is either increasing, decreasing, or con-

vex with a minimum in (bi
θ−1, b

i
θ). In the first two cases, (bi

θ−bi
θ−1)min{hTd∗(bi

θ), h
Td∗(bi

θ−1)}
is clearly a lower bound on

∫ bi

bi
θ−1

hTd∗(t) dt. The last case — hTd∗ is convex with a

minimum in (bi
θ−1, b

i
θ) — occurs at most once in [βi, βi+1]. In this case, it could be

that the line 3(t) = min{hTd∗(bi
θ), hTd∗(bi

θ−1)} does not satisfy 3(t) ≤ hTd∗(t) for all
t ∈ [bi

θ−1, b
i
θ). (See Figure 5.1.) We establish the lemma by showing that the area

of the region in [βi, βi+1] that lies above hTd∗(t) but below 3(t) can be bounded by
the area that lies below hTd∗(t) but above the lower bound in an interval adjacent to
[bi

θ−1, b
i
θ).

By the assumptions on B, and without loss of generality, assume that θ < ri and
bθ−bθ−1 ≤ bθ+1−bθ. Specifically, we will argue that the area above hT d∗(t) but below
3′(t) = hTd∗(bi

θ) in [bi
θ−1, b

i
θ) is at most the area above 3′(t) but below hTd∗(t) in the in-

terval [bi
θ, b

i
θ+1). Call this first region R and this second region R′. Since the area of R′

is slack in the approximation of hTd∗ by
∑ri

θ=1(b
i
θ−bi

θ−1) min{hTd∗(bi
θ), h

Td∗(bi
θ−1)},

and since 3(t) ≤ 3′(t) for all t, this will establish the lemma.
Since hTd∗ is convex, there is a subgradient g to hTd∗ at bθ that satisfies g(t) ≤

hTd∗(t) for all t ∈ [βi, βi+1]. Note that R is completely contained in the triangle τ
formed by 3′ and g in the interval [bi

θ−1, b
i
θ). Thus its area is bounded by the area

of τ . In contrast, R′ completely contains the triangle τ ′ formed by 3 and g in the
interval [bθ, bθ+1). Since τ and τ ′ are symmetric triangles and τ ′ is at least as big as
τ (by the assumption on θ), we have that the area of R is at most the area of R′.

Note that if the discretization used in Section 4 contains J , then it satisfies the
conditions of Lemma 5.2 as long as there are at least three points of B in every interval
[βi, βi+1].

In order to obtain a guarantee of (1+ε)OPTρ+δ for MHC with piecewise constant
data, we will need to use a separate discretization for each interval of the form [βi, νi]
or [νi, βi+1].

For each interval [βi, νi],, we will make an argument similar to the proof of The-
orem 4.1. For each interval [νi, βi+1], we use a discretization that starts with small
intervals at βi+1] and moves to larger intervals as it approaches νi. Then we can apply
a symmetric argument to that of Theorem 4.1.

Theorem 5.3. A solution to MHC with piecewise constant cost and capacity
functions with at most ρ breakpoints with cost at most (1 + ε)OPTρ + δ and size

19

τ

hTd∗(t)

(t)

bθ+1bθ−1 bθ

τ ′
′(t)

g(t)

Fig. 5.1. Illustration of the argument in the proof of Lemma 5.2. The lightly shaded region is
R, the darker region is R′. The dark point is µ.

linear in ρ, 1√
ε
, and log δ, and polynomial in p(n,m, logU) can be computed in time

polynomial in p(n,m, logU), 1
ε , and log 1

δ .
Proof. As with the proof of Theorem 4.1, we compare the cost of the piecewise-

constant solution obtained by averaging the optimal solution over intervals in a partic-
ular discretization (described below), to the lower bound given by (5.1) using the same
discretization. Due to the similarity with the proof of Theorem 4.1 we describe here
only the modifications to the discretization and proof that are necessary to extend
that result to piecewise-constant data.

We apply the bounding argument in the proof of Theorem 4.1 to each interval
[βi, µi] and [µi, βi+1] (one of which may be empty) for all i = 0, . . . , ρ− 1. Since hTd∗

is decreasing on [βi, µi] but increasing on [µi, βi+1] we use a discretization that is very
fine close to βi and βi+1 and course in the middle of the interval [βi, βi+1].

The key observations and modifications to the discretization that make this work
are as follows:

1. Since µi and νi won’t generally coincide, we will be able to apply the argument
in the proof of Theorem 4.1 directly only to one of the two intervals [βi, µi]
and [µi, βi+1]. For the other interval, it is not hard to see that the argument
in the proof of Theorem 4.1 is not hurt by consistently replacing sets Nj for
all j < q′ with proportionately smaller intervals.

2. To account for the different bound on the maximum instantaneous holding
cost, we replace hTd◦ with HD◦ in our determination of the length and
number of intervals. Thus, at every breakpoint in J , the discretization starts
with intervals of length 2δ

HD◦ .3

3. Without further modification, an argument based on this discretization would

3The use of HD◦ is a coarse overestimate. This could be reduced in practice (and in theory) by
replacing this with the maximum holding cost in this interval, times the sum of demands input up
through this interval minus the time elapsed to the start (or end) of the interval.

20

yield a bound of (1+ε)OPTρ+2ρδ, since we would obtain a δ for the topmost
strip in [βi, νi] and another δ for the topmost strip in [νi, βi+1], for all i =
0, . . . , ρ − 1. To get an additive factor of just δ, we reduce the length of the
initial intervals by dividing them by 2ρ, to get intervals of length δ

ρHD◦ . This
results in a total additive factor of δ for all the topmost strips in the intervals
[βi, νi] and [νi, βi+1]. To maintain the multiplicative factor of (1 + ε) on all
other horizontal strips, we must divide the length of all other intervals also
by 2ρ.

Thus, within [βi, νi], we use a discretization with 1
2ε(�log ρ(βi+1−βi)HD◦

δε �) intervals.
These intervals are partitioned into q := �log ρ(βi+1−βi)HD◦

δε �) sets of cardinality 1
2ε

each. The first two sets have intervals of length δ
ρHD◦ . Interval lengths double suc-

cessively in subsequent sets. The intervals that cover [νi, βi+1] start at βi+1 at length
δ

ρHD◦ , and increase as they move back towards νi. The total number of breakpoints

over [0, T] is thus at most ρ
ε (�log ρTHD◦

δε �), and hence the solution complexity is poly-
nomial in p(n,m, logU), 1

ε , and log 1
δ .

5.2. Convex holding costs. Let hk,v(x) be the instantaneous holding cost in-
curred in storing x units of commodity k at node v. We assume that hk,v(x) is convex
in x, for all k and v ∈ V . Let OPTc be the cost of the optimal solution. As before,
any control f to MHC determines dk(v, t), the storage of commodity k at node v at
time t. Let

H∗(t) =
∑

k

∑
v∈V

hk,v(d∗k(v, t)),

where d∗k is induced by an optimal control f∗. The extension of Lemma 3.6 to this
setting is the following.

Lemma 5.4. H∗(t) is a convex, decreasing function of t.
Proof. The proof is similar to the proof of Lemma 3.6. If H∗ is not convex,

then for some t1, t2, H∗(λt1 + (1 − λ)t2) > λH∗(t1) + (1 − λ)H∗(t2) for every λ ∈
(0, 1). Modify f on the interval [t1, t2) by replacing f(e, t) with the average flow
rate 1

t2−t1

∫ t2
t1

f(e, t) dt for all e ∈ A and all t ∈ [t1, t2). Call the new control
f̄ . Since f obeys capacity constraints, so does f̄ . Note that df̄ (t1) = d∗(t1) and
df̄ (t2) = d∗(t2) but that for t ∈ (t1, t2), df̄ changes linearly from d∗(t1) to d∗(t2); i.e.
df̄ (t) = t2−t

t2−t1
d∗(t1)+ t−t1

t2−t1
d∗(t2). Since d∗ is nonnegative, so is df̄ . The instantaneous

holding cost incurred at any time t ∈ [t1, t2) under control f̄ is

∑
k

∑
v∈V

hk,v

(
t2 − t

t2 − t1
d∗k,v(t1) +

t− t1
t2 − t1

d∗k,v(t2)
)
,

which, by convexity of the storage cost function hk,v, is at most

t2 − t

t2 − t1

∑
k

∑
v∈V

hk,v(d∗k,v(t1)) +
t− t1
t2 − t1

∑
k

∑
v∈V

hk,v(d∗k,v(t2)).

By the definition of H∗ and the choice of t1, t2, the latter expression is

t2 − t

t2 − t1
H∗(t1) +

t− t1
t2 − t1

H∗(t2) < H∗(t),

contradicting the optimality of f∗. Hence H∗(t) is convex in t.
21

As before, since H∗(0) > 0, H∗(T) = 0, and H∗ is convex, H∗ is also a decreasing
function.

Consider the interval partition I with breakpoints 0 = b0 < b1 < · · · < br = T .
Since H∗ is a decreasing function, the expression

∫ T

0

cTf∗(t) dt+
r∑

θ=1

(bθ − bθ−1) H∗(bθ)

is a lower bound on the optimal cost.
We now explain briefly why the approximation scheme outlined in Section 4.1

and its analysis remain valid for the case of convex holding costs. For convenience, we
reproduce the description of the time expanded network used there; note that H(0),
the instantaneous holding cost incurred at time 0, is independent of the control used.
The discretization uses 1

2ε(�log TH(0)
δε �) copies of N , partitioned into q := �log TH(0)

δε �
sets of cardinality 1

2ε each. Denote these sets by N0, N1, . . . , Nq−1. N0 is the set of
intervals of size 2δ

H(0) covering interval [0, δ
εH(0)). N1 is the set of intervals of size 2δ

H(0)

covering interval [δ
εH(0) ,

2δ
εH(0)). For 1 < i < q−1, Ni is the set of intervals of size 2iδ

H(0)

covering interval [2i−1δ
εH(0) ,

2iδ
εH(0)). Nq−1 is the set of intervals of size Tε

2 covering interval
[T
2 , T). Let I ′ be the set of all these intervals, and let B′ be the set corresponding to

the endpoints of these intervals.
Theorem 5.5. The control f that corresponds to the minimum cost flow x in

the time-expanded network based on intervals I ′ has cost at most (1 + ε)OPTc + δ.
Proof. Let l(t) := H(bθ) for all t ∈ (bθ−1, bθ], for all θ = 1, . . . r. Let f̄ be

obtained by averaging f∗ over each interval in I ′, inducing the storage function d̄
with the corresponding holding cost function H̄ . As in the proof of Theorem 4.1,
our task essentially reduces to bounding the area between the curves H̄(t) and l(t).
Specifically, the theorem follows if we show that

∫ T

0

H̄(t) dt ≤ δ + (1 + ε)
∫ T

0

l(t) dt

Since H̄(t) and l(t) are decreasing functions on (0, T], we can evaluate their in-
tegrals by considering the area under each curve in horizontal strips. Note that
H̄(t) = l(t) for all t ∈ B′. Consider first the horizontal strip from H̄(δ

εH(0)) to H(0).
The area of the difference H̄(t)−l(t) in this strip is the sum of areas of H̄(t)−l(t) over
each interval of size 2δ

H(0) . Since H̄ is convex, decreasing, and equals the decreasing
step function l at the end points, this difference is at most the sum of areas of trian-
gles, each with base 2δ

H(0) , and total height bounded by H(0); thus, the difference in
the areas in this topmost strip is at most δ. A similar argument establishes that the
area between the curves H̄(t) and l(t) in any horizontal strip defined by the interval
[H̄(T/2j−1), H̄(T/2j)] (for j = 0, . . . , q − 1) is within (1 + ε) of the area under l(t).

Corollary 5.6. A solution to the MHC problem with convex holding costs of
value at least (1 + ε)OPTc + del with size linear in 1√

(ε)
and log 1

δ and polynomial in

p(n,m, logU) can be computed in time polynomial in p(n,m, logU), 1
ε , and log 1

δ .

5.3. General dynamics. Consider the following problem, which we will call
the generalized multiflow problem with holding costs:

22

Minimize
∫ T

0

{c′f(t) + h′d(t)} dt
subject to

d(t) = d(0)−
∫ t

0

G f(s)ds, t ∈ [0, T]

Hf(t) ≤ 1, t ∈ [0, T]
d(t) ≤ a, t ∈ [0.T]

d(t), f(t) ≥ 0, t ∈ [0, T].

Here c, h, f(t), d(t), and a are vectors, and G, H are matrices with appropriate
dimensions. Let OPTg be the objective function value of the optimal solution. Our
treatment of MHC so far has been restricted to the case in which G is a network
matrix. However, there are practical settings in which G is not a network matrix. For
instance, consider a flexible service system to which m different types of jobs arrive;
the service system may be operated in any one of n processing configurations. Each
configuration specifies the rate at which the m job types are processed. (Note that
configurations may process multiple job types simultaneously.) Suppose we wish to
operate this service facility so as to optimize some measure of the jobs in the system.
A (crude) model for this problem is to let the rows and columns of G represent
the m job types and the n processing configurations respectively; thus, Gij would
represent the quantity of job type i processed per unit time while operating the
service facility in configuration j. The f vector tracks the amount of time spent
in each configuration, and the d vector keeps track of the number of jobs in the
system. (The other constraints admit the usual interpretation.) Such models and
their extensions have been the subject of recent papers [18, 24], to which we refer
the interested reader; we simply note that continuous linear programming problems
with general G matrices arise as useful models in connection with complex scheduling
problems. We outline briefly how the methods proposed here naturally extend to the
case of a general G matrix.

If G is not a network matrix, there is no natural interpretation of the discretiza-
tion in terms of a time expanded network. Instead, it is convenient to view the
discretized problem as a (large) linear programming problem. The discretization re-
mains the same as the one used in Section 4.1, with the breakpoints denoted by
0 = b0, b1, . . . , br = T , where r = 1

2ε(�log TH(0)
δε �). The continuous linear program-

ming problem then reduces to solving the linear programming problem

Minimize
r∑

θ=1

{c′f(θ) +
(bθ − bθ−1)

2
(h′d(θ) + h′d(θ − 1))}

subject to
d(θ) = d(θ − 1)−G f(θ)(bθ − bθ−1), θ = 1, 2, . . . , r

Hf(θ) ≤ 1, θ = 1, 2, . . . , r
d(θ) ≤ a, θ = 1, 2, . . . , r

d(θ), f(θ) ≥ 0, θ = 1, 2, . . . , r.

In this discrete linear program (DLP), the variables f(θ) represent the constant
flow rate in the interval (bθ−1, bθ], and the variables d(θ) represent the storage at time

23

bθ; the storage at any intermediate time epoch t ∈ (bθ−1, bθ) varies linearly between
d(θ − 1) and d(θ).

Clearly, the instantaneous holding cost function induced by an optimal control
remains convex and decreasing (analog of Lemma 3.6). This property implies the
following result via an argument identical to the one used in proving Theorem 4.1; we
omit the details.

Theorem 5.7. A solution to the generalized MHC problem with cost at most
(1 + ε)OPTg + δ can be computed in time polynomial in p(n,m, logU), 1

ε , and log 1
δ .

General Convex Constraints. The instantaneous holding cost function induced by
an optimal control also remains convex and decreasing when there are general convex
constraints in addition to linear constraints. Thus our approximation guarantees also
hold in this context.

6. Conclusions. We have described an algorithm that finds a solution to the
multicommodity flow problem with holding costs (MHC) that has value at most
(1 + ε)OPT + δ and runs in time polynomial in p(n,m, logU), 1

ε and log δ. The
MHC problem is motivated by fluid relaxations of stochastic scheduling problems and
has been studied before as a motivating special case of separated continuous linear
programming. Our algorithm guarantees simultaneously

• a polynomial bound on the run time,
• a solution with value that is arbitrarily close to the optimal solution, and
• a solution with size that is polynomial in the size of the input.

This last property is especially significant since optimal solutions may have size that
is exponential in the size of the input.

Moreover, our algorithm is practical: it requires solving just one polynomially-
sized linear program. In addition, we provide a strong lower bound that may be used
to obtain good solutions with fewer breakpoints.

Finally, we show that our algorithm is quite general: modifications of it work to
provide the same guarantees with convex holding costs, piecewise constant data, and
arbitrary convex constraints.

REFERENCES

[1] E. J. Anderson, A continuous model for job-shop scheduling, PhD thesis, University of Cam-
bridge, 1978.

[2] E. J. Anderson and P. Nash, Linear Programming in Infinite-Dimensional Spaces, John
Wiley & Sons, New York, 1987.

[3] E. J. Anderson, P. Nash, and A. F. Perold, Some properties of a class of continuous linear
programs, SIAM J. Control and Optimization, 21 (1983), pp. 758–765.

[4] F. Avram, D. Bertsimas, and M. Ricard, Fluid models of sequencing problems in open
queueing networks: an optimal control approach, in Stochastic Networks, F. P. Kelly and
R. J. Williams, eds., vol. 71 of Proceedings of the International Mathematics Association,
Springer-Verlag, New York, 1995, pp. 199–234.

[5] F. Avram, D. Bertsimas, and J. Sethuraman, Optimal control of fluid tandem networks,
Manuscript in preparation, (2002).

[6] N. Bauerle, Asymptotic optimality of tracking policies in stochastic networks, Annals of Ap-
plied Probability, 10 (2000), pp. 1065–1083.

[7] R. Bellman, Bottleneck problem and dynamic programming, Proc. Nat. Acad. Sci., 39 (1953),
pp. 947–951.

[8] , Dynamic Programming, Princeton University Press, New Jersey, 1957.
[9] D. Bertsimas, D. Gamarnik, and J. Sethuraman, From fluid relaxations to practical al-

gorithms for high multiplicity job shop scheduling: the holding cost objective, Operations
Research, (2002).

24

[10] D. Bertsimas and J. Sethuraman, From fluid relaxations to practical algorithms for job shop
scheduling: the makespan objective, Mathematical Programming, 92 (2002), pp. 61–102.

[11] H. Chen and A. Mandelbaum, Discrete flow networks: Bottleneck analysis and fluid approx-
imations, Mathematics of Operations Research, 16 (1991), pp. 408–446.

[12] , Hierarchical modeling of stochastic networks, part i: fluid models, in Stochastic Model-
ing and Analysis of Manufacturing Systems, D. D. Yao, ed., New York, NY, 1994, Springer-
Verlag, pp. 47–105.

[13] H. Chen and D. D. Yao, Fundamentals of Queueing Networks: Performance, Asymptotics,
and Optimization, Springer-Verlag, New York, 2001.

[14] J. G. Dai and G. Weiss, A fluid heuristic for minimizing makespan in job-shops, Operations
Research, (2002).

[15] J. Filipiak, Modelling and Control of Dynamic Flows in Communication Networks, Springer
Verlag, Berlin, 1988.

[16] L. Fleischer, Faster algorithms for the quickest transshipment problem, SIAM J. on Opti-
mization, 12 (2001), pp. 18–35.

[17] L. Fleischer and M. Skutella, The quickest multicommodity flow problem, in 9th Interna-
tional Integer Programming and Combinatorial Optimization Conference, 2002, pp. 36–53.

[18] N. Gans and G. van Ryzin, Optimal control of a multiclass, flexible queueing system, Opera-
tions Research, 45 (1997), pp. 677–693.

[19] M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in
combinatorial optimization, Combinatorica, 1 (1981), pp. 169–197.

[20] B. Hajek and R. G. Ogier, Optimal dynamic routing in communication networks with con-
tinuous traffic, Networks, 14 (1984), pp. 457–487.

[21] J. M. Harrison, Brownian motion and stochastic flow systems, John Wiley & Sons, 1985.
[22] , Brownian models of queueing networks with heterogenous customer populations, in

Stochastic Differential Systems, Stochastic Control Theory and Applications, W. Fleming
and P. L. Lions, eds., Proceedings of the International Mathematics Association, Springer-
Verlag, 1988, pp. 147–186.

[23] , The bigstep approach to flow management in stochastic processing networks, in Stochas-
tic Networks: Theory and Applications, F. P. Kelly, S. Zachary, and I. Ziedins, eds., Oxford
University Press, 1996, pp. 57–90.

[24] , Stochastic networks and activity analysis, in Analytic Methods in Applied Probability.
In Memory of Fridrih Karpelevich, Y. Suhov, ed., American Mathematical Society, 2002.

[25] B. Hoppe and É. Tardos, Polynomial time algorithms for some evacuation problems, in Proc.
of 5th Annual ACM-SIAM Symp. on Discrete Algorithms, 1994, pp. 433–441.

[26] X. Luo and D. Bertsimas, A new algorithm for state-constrained separated continuous linear
programs, SIAM Journal on control and optimization, 37 (1999), pp. 177–210.

[27] C. Maglaras, Dynamic Control of Stochastic Processing Networks: A Fluid Model Approach,
PhD thesis, Stanford University, August 1998.

[28] , Discrete-review policies for scheduling stochastic networks: Trajectory tracking and
fluid-scale asymptotic optimality, Annals of Applied Probability, 10 (2000), pp. 897–929.

[29] S. P. Meyn, Stability and optimization of queueing networks and their fluid models, in Math-
ematics of Stochastic Manufacturing Systems, G. G. Yin and Q. Zhang, eds., vol. 33 of
Lectures in Applied Mathematics, American Mathematical Society, 1997, pp. 175–200.

[30] A. B. Philpott and M. Craddock, An adaptive discretization algorithm for a class of con-
tinuous network programs, Networks, 26 (1995), pp. 1–11.

[31] M. C. Pullan, An algorithm for a class of continuous linear programs, SIAM Journal on
Control and Optimization, 31 (1993), pp. 1558–1577.

[32] , On the solution of a class of continuous linear programs, SIAM Journal on Control and
Optimization, 32 (1994), pp. 1289–1296.

[33] , Forms of optimal solutions for separated continuous linear programs, SIAM Journal on
Control and Optimization, 33 (1995), pp. 1952–1977.

[34] , A duality theory for separated continuous linear programs, SIAM Journal on Control
and Optimization, 34 (1996), pp. 931–965.

[35] G. Röte. Personal communication, 2002.
[36] J. Sethuraman, Scheduling Multiclass Queueing Networks and Job Shops using Fluid and

Semidefinite Relaxations, PhD thesis, Massachusetts Institute of Technology, September
1999.

[37] G. Weiss, A simplex based algorithm to solve separated continuous linear programs. Unpub-
lished manuscript, 2002.

25

