
RC22838 (W0307-029) July 2, 2003
Mathematics

IBM Research Report

Parsimonious Binary-Encoding In Integer Programming

 Jon Lee, Don Coppersmith
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research
Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

PARSIMONIOUS BINARY-ENCODING IN INTEGER
PROGRAMMING

DON COPPERSMITH AND JON LEE

Abstract. We describe an effective method for doing binary-encoded mod-
eling, in the context of 0/1 linear programming, when the number of feasible
configurations is not a power of two. Our motivation comes from modeling
all-different restrictions.

Introduction

We assume some familiarity with the basics of polytopes (see [7]) and integer
programming (see [6], for example).

Our motivation follows that of [2] (also see [3, 4]). In the context of integer
programming, we are expressing “colors” 0, 1, . . . , κ − 1 in binary. The number of
bits that we need is n := �log2 κ�. Lee [2] studied, in some detail, the all-different
polytope: Namely, the convex hull of m× n 0/1 matrices with all-different rows —
so m ≤ 2n. We can think of each such 0/1 matrix X as applying different colors,
from a set of 2n colors, to m objects. Our goal is to find an efficient way to handle
the case where κ is not a power of 2. Lee [2] provided one simple technique, but
it is not very effective from a polyhedral point of view. Lee’s technique is simply
to append the inequality

∑n−1
i=0 2ixi ≤ κ− 1, for each row (xn−1, xn−2, . . . , x1, x0)

of X. But already for m = 1, n = 2, κ = 2, we have the fractional extreme point
(x1, x0) = (1/2, 0).

Let k := 2n − κ be the number of n-bit strings that will not describe colors.
Clearly, k < 2n−1. We are free to choose which of the k n-bit strings will not
describe colors. Our goal is to choose them conveniently, from a polyhedral com-
binatorics point of view. In particular, we seek to cut off these points from the
standard n-cube Hn := [0, 1]n using a standard set of so-called “cropping” inequal-
ities (see [1]), so that the resulting polytope has only integer vertices (corresponding
to the κ valid colors). But our goal is to accomplish this “parsimoniously”; for ex-
amples, we may seek to minimize: (i) the number of cropping inequalities used, or
(ii) the volume of the resulting polytope.

Before continuing, it is worth remarking that although our motivation came from
coloring, the problem that we address is more fundamental than that. Generally,
we may wish to model κ “feasible configurations” as vertices of a lowest-dimensional
Hn. The general issue is how to inject the feasible configurations into the vertices
of Hn so that we can easily and efficiently describe the convex hull of the image by
linear inequalities.

Date: June 2003.
Key words and phrases. polytope, integer programming, coloring, all different,

1

2 DON COPPERSMITH AND JON LEE

1. The Problem

Let n and k be positive integers with k < 2n−1. We seek to find µ tri-partitions
of N := {1, 2, . . . , n} as (Si, Ti, Ui)

µ
i=1, so that:

(i) k =
∑µ

i=1 2
|Ui|;

(ii) |Si ∩ Tj |+ |Ti ∩ Sj | ≥ 2, for all distinct i, j;
(iii)

∑µ
i=1 w(Si, Ti, Ui) is minimized,

where w is an arbitrary function from tri-partitions to �. Soon, we will restrict
the class of w that we will analyze and give some examples. But for now, take
w(Si, Ti, Ui) := 1, so that in (iii) we are just minimizing µ.

First, we discuss the geometry of the problem. Associated with the partition
(Si, Ti, Ui) is the cropping inequality

(1.1)
∑
j∈Si

(1− xj) +
∑
j∈Ti

xj ≥ 1.

In �n, the inequality (1.1) cuts, from Hn, all vertices of the form

(1.2) (1, 1, . . . , 1, 1︸ ︷︷ ︸
Si

, 0, 0, . . . , 0, 0︸ ︷︷ ︸
Ti

, ∗, ∗, . . . , ∗, ∗︸ ︷︷ ︸
Ui

).

These generating points (1.2) are the vertices of a |U i|-dimensional face of Hn. Of
course, the inequality (1.1) removes much more from Hn than this face. The n-cube
Hn is cut at the 2|Ui|(|Si|+ |Ti|) vertices of Hn that are adjacent to the set of points
(1.2) and satisfy (1.1) as an equation. Moreover, the volume cut off is 1/|Si ∪ Ti|!.

In Figures 1–2, we see two possible choices of sets of tri-partitions when n = 3
and k = 2.

x1

x2

x3

Figure 1. µ = 2 : S1={1}, T1={2,3}, U1=∅
S2={2}, T2={1,3} ,U2=∅

Each inequality (1.1), individually, creates no fractional vertices when applied
to Hn. Condition (i) specifies that we cut off the desired number k of points.
Condition (ii) ensures that the parts of Hn cut off by each of the µ inequalities are
disjoint (see [1]). Condition (iii) seeks to minimize some criterion.

PARSIMONIOUS BINARY-ENCODING IN INTEGER PROGRAMMING 3

x1

x2

x3

Figure 2. µ = 1: S1 = {1, 2}, T1 = ∅, U1 = {3}

We refer to any set of tri-partitions satisfying (i) as an n-breakup of k. If (ii) is
also satisfied, then we have a valid n-breakup. If (iii) is also satisfied, then we have
an optimal n-breakup (with respect to w). We may omit the “n-” and/or “valid”
when it is clear from context.

With k ≤ 2n−1, a valid n-breakup always exists since we can just take any k of
the 2n−1 tri-partitions having |Si| even, Ti := N \ Si, and Ui := ∅. But this is the
most inefficient possible choice of a set of tri-partitions.

A binary breakup is a breakup with all |Ui| different, so that µ is the Hamming
weight of the binary representation of k. Obviously, when a binary breakup is
valid, it is optimal with respect to minimizing µ, so this Hamming weight is always
a lower bound on µ.

We provide further motivation by considering the case of dimension n = 4 and
k = 7 points to cut off. The interested reader can check that µ = 3 (with 2|Ui| =
4, 2, 1) is not possible. So µ cannot always be achieved as the Hamming weight of
the binary representation of k. But µ = 4 with 2|Ui| = 2, 2, 2, 1 is possible (and
optimal with respect to minimizing µ):

S1 = {2, 3}, T1 = {1}, U1 = {4};
S2 = {1, 3}, T2 = {2}, U2 = {4};
S3 = {1, 2}, T3 = {3}, U3 = {4};
S4 = ∅, T4 = {1, 2, 3, 4}, U4 = ∅.

In the next section, we characterize the optimal breakups for certain functions
w. In the remainder of this section, we fix some useful notation and introduce the
functions w that we are able to analyze.

As was already noted, the set of points of the form (1.2) is the set of vertices of a
|Ui|-dimensional face of Hn. That face is, itself, a |Ui|-cube. To keep notation less
cluttered, we will denote one of these standard subcubes of Hn by (permutations
of) the n-string

a1a2 . . . ah ∗ ∗ . . . ∗ ∗︸ ︷︷ ︸
n−h

,

4 DON COPPERSMITH AND JON LEE

where the ai are in {0, 1}. For example, the optimal 4-breakup (above) of k = 7 as

011 ∗
101 ∗
110 ∗
0000 .

For convenience, when all of the “free” components are at the end, we may write

a1 . . . ah ∗n−h .

In this case, we refer to the substring a1 . . . ah as the address of the subcube.
Notation: The size of a cube or subcube is the number of its vertices: |Hn| =

2n. The relative size of a subcube A is |A|/2n. A subcube is also called a block;
a subcube filled with unused colors is a piece. A set K of unused colors has a
number k = |K| and a mass ν = ν(K) = k/2n. If A is a subcube of Hn, we set
m(A) = mK(A) = |K∩A|/2n, and denote the density within A as ρ(A) = ρK(A) =
|K ∩A|/|A|.

We are given a (strictly) subadditive cost function c̃ on sizes of subcubes. So the
cost function satisfies c̃(2h) < 2c̃(2h−1). The functions w that we are interested in
are of the form

w(Si, Ti, Ui) := c̃(2|Ui|),
where c̃ is a strictly subadditive cost function. It will be more convenient to use
relative size in many of our arguments; fixing the ambient space Hn, we will set
c(2−h) := c̃(2n−h) as the cost of a subcube of relative size 2−h. Again, we have
c(2−h) < 2c(2−h−1). So

w(Si, Ti, Ui) = c(2−|Si∪Ti|).

Let ρ := k/2n denote the density of colors that we will not use. When ρ is a
density, we will speak interchangeably of an n-breakup of ρ or an n-breakup of
k = 2nρ. The cost of a valid n-breakup of ρ is the sum of the costs of its pieces.
We let C(ρ) denote the minimum cost of a valid breakup of ρ. If ρ =

∑
εh2−h,

εh ∈ {0, 1} then Bin(ρ) :=
∑
εhc(2−h), that is, the cost of a binary breakup of ρ,

whether or not such a breakup is valid.
We give two example cost functions. First, in the case where we count subcubes,

we have c(2−h) = 1. Certainly this choice of c is strictly subadditive. Second, if
we set c(2−h) = −1/h!, then 1 plus the total cost of a valid break up is just the
volume of Hn that satisfies the cropping inequalities associated with the breakup.
It is easy to check that this choice of c is subadditive — and strictly so, except
between h = 1 and h = 2 (which is of no concern to us). This latter choice of c is
motivated by [5].

2. The Solution

Certainly, if ρ = 2−h for some nonnegative integer h, then the trivial binary
breakup is possible (and optimal). Also, if ρ < 1/4 then a binary breakup will be
possible (and optimal); this is described in Lemma 2.1 below.

Otherwise it will turn out that any optimal breakup can be obtained as follows.
Select a largest block relative size, say relative size 2−h, recalling that the normal-
ization is such so that Hn has relative size 1. Break Hn into 2h parallel blocks, and
pay attention to the parity of the h-bit address of each block. We will leave empty

PARSIMONIOUS BINARY-ENCODING IN INTEGER PROGRAMMING 5

the 2h−1 blocks of (say) odd parity. Among the 2h−1 blocks with even parity, we
will fill all but one, two or three of them completely, and fill the remaining few only
partially. The choices of block size 2−h, the number of complete blocks, and the
layout of the partial blocks depends on the exact value of ρ.

Our theorem will show that this gives the only optimal breakups. The most
troublesome case to rule out, occurring when 11/32 < ρ < 12/32 = 3/8, is the
possibility of completely filling one block (address 000) of size 1/8, leaving three
blocks empty (address 001, 010, 100), and partially filling four blocks (addresses
110, 101, 011, 111), each to density at most 1/2. Pieces could be shared between
block 111 and any of the three neighboring blocks. In this case we need to examine
the largest pieces within the partially filled blocks, in order to conclude that the
main procedure is still optimal.

Lemma 2.1. If ρ = 1 or ρ = 1/2 or ρ ≤ 1/4, then k admits a binary breakup.

Proof. If ρ ∈ {1, 1/2, 1/4}, the result is immediate. If ρ < 1/4, we proceed induc-
tively. The base cases of n = 0, 1, 2 are trivial. So, when ρ < 1/4, we use the
four cubes of dimension n− 3, whose leading 3-tuples are the four strings of length
3 having even weight. One will accommodate a piece of relative size 1/8 (if the
binary representation of ρ has a 1 in the 1/8 place); the second, 1/16; the third,
1/32; and the fourth will accommodate the rest of ρ. Since this remainder is smaller
than 1/32, its density within the cube of dimension n− 3 is less than 1/4, and, by
induction, it admits a binary breakup. �

We say two vertices of Hn are adjacent if they share an edge, and two pairs of
adjacent vertices are parallel if their respective shared edges are parallel.

The following technical lemma will be helpful in our analysis.

Lemma 2.2. Assign to each vertex v ∈ Hn a value τ = τv ∈ [0, 1/2] ∪ {1} subject
to the following conditions:

(1) At least k vertices (with 0 ≤ k ≤ n− 1) have τv ∈ (0, 1/2];
(2) at least one vertex has τv = 1;
(3) if v, w are adjacent vertices then τv + τw ≤ 1.

Define the total value to be R = R(Hn) =
∑

v∈Hn
τv. Then we conclude:

R(H) ≤ 2n−1 − k

2
Proof. If n = 1 then we must have k = 0 and R = 1, so the conclusion is easily
seen to be true. So assume n > 1.

If exactly one vertex v has τv = 1, then each of its n neighbors w has τw = 0,
and each other vertex w has τw ≤ 1/2, so that

R(Hn) ≤ 1 +
2n − (n+ 1)

2
= 2n−1 − n− 1

2
≤ 2n−1 − k

2
as desired.

So assume that at least two vertices each have τ = 1. Select a coordinate in
which they differ, and divide Hn into H0

n−1 and H1
n−1 along this coordinate, where

each Hj
n−1 is an Hn−1, and each Hj

n−1 has at least one vertex with τ = 1.
For each j, suppose that Hj

n−1 has exactly hj vertices with τ ∈ (0, 1/2], so that
h0 + h1 ≥ k. If some hj = 0, then among the 2n−1 edges between H0

n−1 and H1
n−1,

6 DON COPPERSMITH AND JON LEE

at least k satisfy τs+τt ≤ 0+ 1
2 and the other 2n−1−k satisfy τs+τt ≤ 1. Summing,

we find

R(Hn) ≤ k

2
+ (2n−1 − k)(1) = 2n−1 − k

2
as desired.

In the remaining case, h0, h1 ≥ 1, and we can define kj = min(hj , n − 2), and
check that k0+k1 ≥ k. Applying the lemma inductively to both halves, we conclude
that

R(Hn) = R(H0
n−1) +R(H

1
n−1) ≤ 2(n−1)−1 − k0

2
+ 2(n−1)−1 − k1

2
≤ 2n−1 − k

2
.

�

We outline a procedure for finding a breakup for an arbitrary density ρ. It leaves
a few choices open, which will depend on the cost function c(·) and the structure
of ρ. Then, in Theorem 2.4, we will show that, for each subadditive cost function
c(·) and each density ρ, Procedure 1 will produce an optimal breakup, for some
setting of the choices.

Procedure 1

Given a density ρ ∈ [0, 1/2]∪ {1} and a subadditive cost function c(·), we find a
breakup ρ. Its form depends on ρ as follows:
Case 1: ρ = 1, ρ = 1/2 or ρ ≤ 1/4. (Binary representations are 1.0, 0.1, 0.01, or
0.00xxx for some unspecified continuation “xxx”).

Lemma 2.1 provides a binary breakup; and when a binary breakup exists, it is
optimal.
Case 2: ρ = 1/2 − 1/2h. (Binary representation is 0.0111 (if h = 4, as it will be
in the remaining examples)).

Lemma 2.2 shows we cannot possibly use pieces larger than 1/2h−1. Use 2h−2−1
pieces of size 1/2h−1 (corresponding to even weight words of length h− 1); use the
remaining block to accommodate the remaining piece of size 1/2h.
Case 3: 1/2 − 1/2h < ρ < 1/2 − 1/2h + 1/2h+2. (Binary representation is
0.011100xxx).

Lemma 2.2 again shows we cannot use pieces larger than 1/2h. Use 2h−1−1 pieces
of size 1/2h, leaving one block of size 1/2h and an unused mass of ρ−(1/2−1/2h) =
ρ′ × 1/2h where 0 < ρ′ < 1/4. This unused mass can be represented within that
block with a binary breakup, since its density will be less than 1/4.
Case 4: 1/2 − 1/2h + 1/2h+2 ≤ ρ < 1/2 − 1/2h + 1/2h+2 + 1/2h+3. (Binary
representation is 0.0111010xxx).

By Lemma 2.2, we cannot use pieces smaller than 1/2h. There are two possibil-
ities; evaluate both and use the cheaper.
Case 4A: We can use 2h−1 − 1 pieces of size 1/2h, leaving one block unused and
residual mass ρ − (1/2 − 1/2h) = ρ′ × 1/2h where ρ′ is between 1/4 and 3/8. Use
Procedure 1 inductively on ρ′ to solve that problem.
Case 4B: Or we can use 2h−2 pieces of size 1/2h+1, leaving two blocks. Use one to
handle the piece of size 1/2h+2. The remaining mass is ρ−(1/2−2/2h+1+1/2h+2) =
ρ′ × 1/2h+1 where ρ′ < 1/4, so it admits a binary breakup.

Remark: If our cost measure is “number of pieces” (c(1/2h) = 1) then Case 4A
is always preferable over 4B. But under a more general measure either could be

PARSIMONIOUS BINARY-ENCODING IN INTEGER PROGRAMMING 7

preferable: If ρ = .0101011, c(1/4) + 2c(1/32) + c(1/64) + c(1/128) and 2c(1/8) +
c(1/16) + c(1/64) + c(1/128) are a priori incomparable.

Case 5: 1/2−1/2h+1/2h+2+1/2h+3 ≤ ρ < 1/2−1/2h+1. (Binary representation
is 0.0111011xxx).

We cannot use pieces smaller than 1/2h. There are three possibilities; evaluate
all three and use the cheapest.
Case 5A: We can use 2h−1 − 1 pieces of size 1/2h, leaving the last block with a
density ρ′ between 3/8 and 1/2, to handled by induction. Here ρ− (1/2− 1/2h) =
ρ′ × 1/2h.
Case 5B: We can use 2h − 2 pieces of size 1/2h+1, leaving one block to fill halfway
with the piece of size 1/2h+2, and leaving a second block with density ρ′′ between
1/4 and 1/2, to be handled by induction. Here ρ − (1/2 − 2/2h+1 + 1/2h+2) =
ρ′′ × 1/2h+1. This piece is different from the one in the first case (ρ′′ �= ρ′) and
could conceivably be handled more efficiently.
Case 5C: We can to use 2h+1 − 3 pieces of size 1/2h+2. This leaves three blocks:
one accommodates the piece of size 1/2h+3 (relative density 1/2); a second, the
piece of size 1/2h+4 (density 1/4); and the third accommodates the remainder,
whose density is less than 1/4, so a binary breakup is possible. ρ− (1/2−3/2h+2 +
1/2h+3 + 1/2h+4) = ρ′′′ × 1/2h+2.

Note that each of these cases (5A, 5B, 5C) is optimal in some region. Suppose
that our objective is to minimize the number of pieces. If ρ = 1/2− 1/25 − 1/29 =
.011101111 then Case 5A is optimal with 15 pieces; Case 5B uses 19 and Case 5C
uses 32. If ρ = 1/2 − 1/25 − 1/211 = .01110111111 then Case 5B is optimal with
31 pieces; Case 5A uses 39 and Case 5C uses 34. If ρ = 1/2 − 1/25 − 1/212 =
.011101111111 then Case 5C is optimal with 35 pieces; Case 5A uses 71 and Case
5B uses 47.

This ends the description of Procedure 1; all ranges of ρ have been treated. It
remains to prove that in each case the optimal treatment is one of the possibilities
allowed by Procedure 1.

Lemma 2.3. Bin(ρ) ≤ C(ρ).
Proof. This follow from subadditivity of c(·). �

Theorem 2.4.

(1) Procedure 1 achieves optimality; it represents ρ using cost C(ρ).
(2) If 0 ≤ α, β, γ ≤ 1/2 and α+β = γ+1/2, then C(α)+C(β) ≥ C(γ)+C(1/2).

Proof. We need to prove the two clauses simultaneously by induction; the second
is only useful for maintaining the induction.

In Cases 1, 2 and 3, optimality follows from the fact that we use the largest
possible pieces (from Lemma 2.2), as many of them as possible, and use binary
breakup for the remainder.

In Case 4, Lemma 2.2 demands that no piece be larger than 1/2h.
Suppose first that there is a piece of size 1/2h, and h ≥ 3 (this is Case 4A). Then

by Lemma 2.2, using d = h ≥ 3 and k = 2, because R(H) = 2h × ρ > 2d−1 − k
2 ,

we conclude that there are not two “partial” blocks of size 1/2h (that is, each with
mass strictly between 0 and 1/2h); there is only one such block, and 2h−1−1 “full”
blocks. Optimality of our treatment of this partial block follows by induction.

8 DON COPPERSMITH AND JON LEE

If h = 2, the fact that one piece is of size 1/4 forces the rest to be confined to
the opposite block of size 1/4, so that Case 4A is the only possible treatment.

Otherwise the largest piece is at most 1/2h+1, in which case the treatment in
Case 4B is optimal (by the same argument as Cases 1,2,3).

In Case 5, Lemma 2.2 demands that no piece be larger than 1/2h.
Case 5A is when we do use a piece of size 1/2h. The treatment is similar to that

of Case 4A, and again requires breaking into subcases, depending whether h = 2
or h ≥ 3.

Optimality of Case 5C (in the event that no piece is larger than 1/2h+2) is similar
to that of Case 4B.

In Case 5B, if h = 2 we repeat the argument from 4A. If h ≥ 4, use Lemma 2.2
with d = h ≥ 4 and k = 3 to show that we cannot have ≥ 3 partial blocks. Nor can
we have one partial block (since its relative density would be strictly between 1/2
and 1). We have two partial blocks, with relative densities α, β with 0 < α, β ≤ 1/2.
By induction, it is cheaper to use two blocks γ, 1/2 with α+ β = γ + 1/2.

If h = 3, then Lemma 2.2 is insufficient, and indeed we can have one full block
and four partial blocks. The 3-bit address of the full block is 000; the addresses
of the four partial blocks are 011, 101, 110, 111. Notice that partial block 111
is adjacent to the other three, and pieces can be shared between two neighboring
partial blocks. In this case we need to rely on the following technical lemma:

Lemma 2.5. If 11/32 ≤ ρ ≤ 3/8, the outlined procedure gives a better cost than
the possibility of completely filling one subcube (address 000) of size 1/8, leaving
three subcubes empty (address 001, 010, 100), and partially filling four subcubes
(addresses 110, 101, 011, 111), each to density at most 1/2, and possibly sharing
pieces between subcube 111 and its neighbors.

Proof. Name the partially filled subcubes A = 110, B = 101, C = 011, and D =
111. We will break into cases, according to which of these subcubes are filled with
density exactly 1/2 (so contributing 1/16 to ρ) and which have a “deficit” (density
less than 1/2). In each case we will identify a block size h, related to the largest
piece within certain subcubes or the largest piece shared between two subcubes.
Let q = (1/16)/h be the number of such pieces required to fill a subcube to density
1/2.

In some cases we will replace the given configuration by one where four subcubes
of size 1/8 (000, 110, 101, 011) are filled with masses 1/8, 1/8, 1/16, ρ − 5/16
respectively, the latter being covered with at most q − 3 pieces of size h and an
optimal covering of the remaining mass. We will show that the pieces in the original
covering can be combined to form the pieces in the new covering; in particular,
that the pieces of size at least 2h (within A ∪ B ∪ C ∪ D, that is, outside of
block 000) accounted for mass at most 1/8 + 1/16 = 3/16. Thus the cost of the
new arrangement will be less than that of the original arrangement, and the new
arrangement is one of them produced by our procedure.

In other cases we will use only two subcubes of size 1/4 (00 and 11), again giving
a smaller cost arrangement that could be produced by our procedure.

Notation: we will let b2h(A) denote the total mass of pieces wholly within sub-
cube A whose individual sizes are at least 2h; b2h(AD) is the total mass of pieces
which straddle A,D (so half of the piece is in each subcube) and with sizes at least
2h; b2h(A,BD,CD) = b2h(A) + b2h(BD) + b2h(CD); and when the threshold 2h is
understood we may write b(A), b(BD), and so on (b means “big”).

PARSIMONIOUS BINARY-ENCODING IN INTEGER PROGRAMMING 9

By symmetry among A,B,C, we need only consider eight cases, labelled L1-L8
to distinguish them from the cases in Procedure 1.
Case L1: No subcubes have deficits.

Then ρ = 1/8 + 4(1/16) = 3/8, so the binary breakup ρ = 1/4 + 1/8 is possible
and thus optimal.
Case L2: Only subcube A has a deficit.

If no pieces straddle AD, then we can replace the given configuration by one in
which B = 101 is a single piece of mass 1/8, C = 011 contains a single piece of
mass 1/16, D = 111 is empty, and A = 110 remains as is.

Otherwise at least one piece straddles AD; let its size be 2h. Consider the
covering of D by pieces, some of which may be wholly contained within D, while
others are the restriction to D of pieces straddling AD or BD or CD. Since D
has no deficit, all these pieces (intersected with D) have the same size h. This
implies that all pieces straddling AD have identical size 2h. Since BD has no
deficit, and one piece intersected with BD has size h, all the pieces intersected
with BD have size h, so that b(B) = b(BD) = b(C) = b(CD) = b(D) = 0.
The only pieces of size at least 2h are contained with A or AD, so their total
mass is less than 1/16+1/16=1/8. We will sever the pieces straddling AD and, as
above, replace the given configuration by one in which B′ = 101 is a single piece
of mass 1/8, C ′ = 011 contains a single piece of mass 1/16, D′ = 111 is empty,
and A′ = 110 remains as is (the pieces straddling AD are broken in half). Because
b(A,AD) < 1/8 < 3/16 = 1/8 + 1/16 = m(B′ ∪ C ′), the new configuration has a
smaller cost than the old one.
Case L3: Subcubes A,B have deficits.

If no pieces straddle AD or BD, replace C and D by a full piece of mass 1/8 and
an empty piece, respectively. Then use the second inductive clause of Theorem 2.4
to say c(1/8) + c(1/8) + c(A) + c(B) ≤ c(1/8) + c(1/8) + c(1/16) + c(ρ− 5/16), so
that case 5A is better than the original configuration.

If there are pieces straddling AD or BD, let 2h be the largest size of such a
piece. D is covered by (intersected) pieces of size h. All pieces straddling AD or
BD have identical size 2h. Because at least one piece intersected with CD has size
h, CD is covered by (intersected) pieces of size h. So the pieces of size at least 2h
are in A,AD,B,BD. Again we replace C and D by a full piece C ′ of mass 1/8
and an empty block D′, respectively. This breaks pieces of size 2h of total mass
b(AD,BD) ≤ 2m(D) = 2(1/16) = 1/8 = m(C ′ ∪D′), so the new configuration is
no more expensive than the old one. As above, c(1/8) + c(1/8) + c(A) + c(B) ≤
c(1/8) + c(1/8) + c(1/16) + c(ρ− 5/16), so that case 5A is better than the original
configuration.
Case L4: Subcubes A,B,C have deficits.
D has no deficit so it is covered by q pieces of size h. No piece of A,B,C can

be larger than h, but pieces of size exactly 2h can straddle AD, BD or CD. Their
total mass is at most twice the mass of D, or 2/16 = 1/8. First we isolate D
from A,B,C, incurring a temporary cost of at most q × (2c(h) − c(2h)). Each of
A,B,C has 2q blocks of size h, of which q must be empty. The remaining q (in
each subcube) can be empty, full, or partially full, and are not adjacent. Of these
3q blocks of size h, if fewer than q are completely full (so the remaining 2q are at
most half full), then the total density will be less than 1/8+1/16+q(h)+2q(h/2) =
1/8 + 1/16 + 1/16 + 1/16 = 5/16, so that a binary breakup will be possible and

10 DON COPPERSMITH AND JON LEE

thus optimal (Case 3). So we assume at least q are completely full. Trade these
blocks around so that C ends up with q full blocks. Replace C and D with a single
piece C ′ (at location C) of mass 1/8, with D′ becoming empty. We have regained a
cost advantage of 2q × c(h)− c(1/8), outweighing our initial loss. Finish as before:
c(1/8) + c(1/8) + c(A) + c(B) ≤ c(1/8) + c(1/8) + c(1/16) + c(ρ − 5/16), so that
Case 5A is better than the original configuration.
Case L5: Only subcube D has a deficit.

Let h be the largest piece size intersected with D. Any pieces straddling AD
must have size exactly 2h; if larger than 2h then the part intersected with D
would exceed the maximum, and if smaller than 2h then A would be covered by
(intersected) pieces of half that size, strictly smaller than h, and would have a
deficit due to empty space opposite the large piece in D.

Suppose A contains pieces of size at least 2h. Then it completely covered with
such blocks (all the same size; half of them empty and half of them full), and
no pieces can straddle AD. Further, in this case, since D has large empty blocks
opposite the full pieces of A, and piece size bounded by h, the total mass ofD cannot
exceed 1/32. So if b(A) > 0 then b(AD) = 0 and b(BD)+b(CD) ≤ 1/16. Denote the
total mass of large pieces by M = b(A) + b(B) + b(C) + b(AD) + b(BD) + b(CD).
If b(A) = b(B) = b(C) = 0 then M ≤ 3 × 0 + 3 × 1/16 = 3/16. If b(A) > 0
and b(B) = b(C) = 0 then M is bounded by M = b(A) + [b(BD) + b(CD)] ≤
1/16 + 1/16 = 1/8. If b(A) > 0, b(B) > 0 and b(C) = 0 then M is bounded by
M = b(A) + b(B) + b(CD) ≤ 1/16 + 1/16 + 1/16 = 3/16. If b(A), b(B), b(C) are
all nonzero, then b(AD) = b(BD) = b(CD) = 0 and M = 3/16. In either case
M ≤ 3/16, so that we can only profit by replacing the current configuration by a
piece of size 1/8 at A, a piece of size 1/16 within B, a copy of the current D at
the new C ′, and nothing at D′; the two pieces of sizes 1/8 + 1/16 = 3/16 ≥ M
accommodate all the large pieces from the old configuration.
Case L6: Subcubes A,D have deficits.

Let h be the largest piece intersected with D. As above, any piece straddling BD
or CD has size exactly 2h. Consider M ′ = b(B)+ b(C)+ b(BD)+ b(CD) (ignoring
large pieces inA orAD). If b(B) = b(C) = 0 thenM ′ = b(BD)+b(CD) ≤ 2m(D) <
1/8. If b(B) = 0 and b(C) > 0 then M ′ = b(BD) + b(C) ≤ 1/16 + 1/16 = 1/8 by
arguments similar to Case 5. If both b(B), b(C) > 0, then M ′ = b(B) + b(C) ≤
1/16 + 1/16 = 1/8. In any case M ′ ≤ 1/8. We will combine B, C and the piece
of size 1/8 at 000 into a single piece of size 1/4, and let AD occupy the opposite
subcube of size 1/4. The large pieces in the old configuration that are lost in
transition to the new one are M ′ + 1/8 ≤ 1/4, so that we have only gained.
Case L7: Subcubes A,B,D have deficits.

Let hA, hB, hD denote the largest (possibly intersected) piece in A, B or D
respectively, and set h = max{hD,min{hA, hB}}.

We claim that the total deficit

3/8− ρ = (1/16−m(A)) + (1/16−m(B)) + (1/16−m(D))

is at least 3h/2, and in fact each of A,B,D contributes at least h/2 to the deficit.
If h = hD then D has deficit at least h/2; and A either has a piece of size at least
h (and so a deficit of at least h/2) or its largest piece is at most h/2 but it has an
empty block of size h opposite the full one in D (again necessitating a deficit at
least h/2). If h = hA ≤ hB then A,B each contributes a deficit of at least h/2, and

PARSIMONIOUS BINARY-ENCODING IN INTEGER PROGRAMMING 11

repeating the above argument (reversing the roles of A,D) shows that D also has
such a deficit.

Assume hA ≤ hB , implying hA ≤ h. Pieces of size at least 2h can occur in either
C or straddling CD (but not both, since C has no deficit); straddling AD but not A;
both in B and straddling BD; and not inD. We wish to show that these large pieces
have total massM at most 3/16, settingM = b(B)+b(C)+b(AD)+b(BD)+b(CD)
and recalling b(A) = b(D) = 0. If b(CD) > 0 then b(C) = 0, so that M ≤
b(B)+ b(AD)+ b(BD)+ b(CD) ≤ b(B)+2m(D) < 1/16+1/8 = 3/16. If b(C) > 0
then C is covered with large pieces, b(CD) = 0. D cannot have large pieces (since
hD ≤ h), so its mass is at most 1/32, and b(AD)+b(BD) ≤ 2m(D) ≤ 1/16, whence
M = b(B) + b(C) + b(AD) + b(BD) ≤ 1/16 + 1/16 + 1/16 = 3/16. If b(CD) =
b(C) = 0 thenM = b(B)+b(AD)+b(BD) ≤ m(B)+2m(D) = 1/16+2/16 = 3/16.
In any case the large pieces have total mass at most 3/16, and we can profitably
combine them into a piece of size 1/8 at 110 and a piece of size 1/16 at 101.
The subcube at 111 will be empty, and the subcube at 011 will have total mass
ρ − 5/16 ≤ 1/16 − 3h/2, so that we can use at most (1/16)/h − 3 pieces of size h
and optimally cover the rest with binary breakup. This is equivalent to Case 5B
(with pieces of size 1/8) followed by 5C (pieces of size h).

Case L8: Subcubes A,B,C,D have deficits.
Let hA ≤ hB ≤ hC and define h = max{hD, hB}. The large pieces (≥ 2h) are

bounded byM = b(C)+b(AD)+b(BD)+b(CD) ≤ m(B)+2m(C) < 1/16+1/8 =
3/16. We proceed as in the previous case.

�

(Returning to proof of Theorem 2.4). We still need to prove C(α) + C(β) ≥
C(γ) + C(1/2). If α allows a binary breakup, then either α = 1/2 (so that β = γ
and the result is trivial), or α ≤ 1/4, in which case γ ≤ 1/4 so that C(γ) = Bin(γ),
and

C(γ) + C(1/2) = Bin(γ) + Bin(1/2) = Bin(γ + 1/2) = Bin(α+ β)
≤ Bin(α) + Bin(β) ≤ C(α) + C(β).

So assume neither α nor β falls into Case 1. Let an optimal breakup of α use
largest piece 1/2r, and an optimal breakup of β use largest piece 1/2s, with r ≥ s.

Assume first that r > s. We have

α ≤ 1
2
− 1

2× 2r

β ≤ 1
2
− 1

2× 2s
≤ 1

2
− 1

2r

γ ≤ 1
2
− 3

2
× 1

2r

If

γ =
k

2r
+

ε1
2r+1

+
ε2

2r+2
+

1
2r

× γ′, εj ∈ {0, 1}, 0 ≤ γ′ < 1
4
,

then k + ε1 + ε2 ≤ 2r−1 − 1, so that we can represent γ within 2r−1 blocks of size
1/2r: k pieces of size 1/2r, εj pieces of size 1/2r+j (j = 1, 2) within blocks of size
1/2r, and one remaining block to represent γ′/2r with a binary breakup. So:

C(γ) ≤ kc(1/2r)+ε1c(1/2r+1)+ε2c(1/2r+2)+Bin(γ′/2r) = kc(1/2r)+Bin(γ−k/2r).

12 DON COPPERSMITH AND JON LEE

Set α = (k1 +α′)/2r with k1 = 2r−1 − 1 and 0 ≤ α′ ≤ 1/2, and β = k2/2s +(,+
β′)/2n with 0 ≤ , < 2r−s − 1 and 0 ≤ β′ < 1. We find:

C(α) ≥ k1c(1/2r) + Bin(α′/2r)

C(β) ≥ k2c(1/2s) + Bin(,/2r) + Bin(β′/2r)

Bin(α′/2r) + Bin(β′/2r) ≥ Bin((α′ + β′)/2r)

Collect some larger pieces together to equal 1/2:

C(1/2) ≥ k2c(1/2s) + Bin(,/2r) +

[
1
2 − k2

2s − �
2r

1/2r

]
c(1/2r)

Combining, we find

C(1/2) + C(γ) ≤ C(α) + C(β)
in this case, as desired.

This leaves the case r = s. If γ ≤ 1
2 − 3

2 × 1
2r , then we can just mimic the previous

proof. So assume
1
2
− 3

2
× 1

2r
< γ ≤ 1

2
− 1

2r

Further, since α, β ≤ 1
2 − 1

2×2r , we know α, β ≥ 1
2 − 1

2r . We can write

α = (2r−1 − 1)
1
2r

+
α′

2r
, 0 ≤ α′ ≤ 1

2

β = (2r−1 − 1)
1
2r

+
β′

2r
, 0 ≤ β′ ≤ 1

2

C(α) ≥ (2r−1 − 1)c(
1
2r

) + C ′(α′)

C(β) ≥ (2r−1 − 1)c(
1
2r

) + C ′(β′)

where C ′(α′) is the cost of representing α′/2r within a block of size 1/2r. Setting
γ′ + 1/2 = α′ + β′, we have (by induction)

C ′(γ′) + C ′(1/2) ≤ C ′(α′) + C ′(β′)

This is enough to show:

C(α) + C(β) ≥ (2r−1 − 1)c(1
2r) + C ′(α′) + (2r−1 − 1)c(1

2r) + C ′(β′)
≥ (2r − 2)c(1

2r) + c(1
2r+1) + C ′(γ′)

≥ c(1
2) + (2r−1 − 2)c(1

2r) + c(1
2r+1) + C ′(γ′)

≥ c(1
2) + C(γ)

The last inequality follows because the indicated breakup is valid but not necessarily
optimal.

�

PARSIMONIOUS BINARY-ENCODING IN INTEGER PROGRAMMING 13

References

1. Jon Lee, Cropped cubes, IBM Research Report RC21830 (2000), to appear in: Journal of
Combinatorial Optimization.

2. , All-different polytopes, Journal of Combinatorial Optimization 6 (2002), 335–352.
3. Jon Lee, Janny Leung, and Sven de Vries, Separating type-I odd-cycle inequalities for a bi-
nary encoded edge-coloring formulation, IBM Research Report RC22303 (2002), to appear in:
Journal of Combinatorial Optimization.

4. Jon Lee and François Margot, Manuscript in preparation, (2003).
5. Jon Lee and Walter D. Morris, Jr., Geometric comparison of combinatorial polytopes, Discrete

Applied Mathematics 55 (1994), no. 2, 163–182.
6. George L. Nemhauser and Laurence A. Wolsey, Integer and combinatorial optimization, John

Wiley & Sons Inc., New York, 1999, Reprint of the 1988 original, A Wiley-Interscience Publi-
cation.

7. Günter M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, vol. 152, Springer-
Verlag, New York, 1995, Revised edition, 1998.

IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598 USA

E-mail address: {dcopper,jonlee}@us.ibm.com

