RC22839 (W0307-031) July 3, 2003
Computer Science

IBM Research Report

Adaptive Resource Management and Workload Scheduling
for a Peer Grid

Vijay K. Naik, Swaminathan Sivasubramanian, Sriram Krishnan
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

="/"—="S= Research Division
i _=__=?=_ Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. Ithas been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distributionoutside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g, payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home



Adaptive Resource Management and Workload Scheduling for a Peer
Grid

Vijay K. Naik*

Abstract: Business applications are typically
run on dedicated servers belonging to a single ad-
ministrative domain. The advent of the Open
Grid Services Architecture (OGSA) has opened
new avenues for executing business workloads on
a platform consisting of non-dedicated resources
from multiple administrative domains, using the
Grid paradigm. However, the popular implemen-
tations of OGSA do not adequately address the
needs of business and commercial applications. In
this paper, we discuss the key requirements im-
posed by transactional business applications and
how these requirements affect the underlying grid
architecture. Instead of using resources that are
dedicated for a single type of grid computations,
we consider a grid architecture that pools together
resources that may be shared according to individ-
ual local policies. We discuss the logical architec-
ture of a such a grid with particular emphasis on
transparent resource management and workload
scheduling. We also discuss some of the design
choices we have made and present performance
results to show the effects of transient resources
(because of policy-based sharing) on the through-
put delivered to grid workload.

1. Introduction

The Open Grid Services Architecture (OGSA)
defines a uniform service semantics (the Grid ser-
vice) and standardized basic mechanisms required
for creating and composing distributed comput-
ing systems in terms of web services related con-

*Correpsonding author, IBM T. J. Watson Research Center,
P. O. Box 218, Yorktown Heights, NY 10598. vknQus.ibm.com
TDept. of Computer Science, Vrije Universiteit, Amsterdam,
The Netherlands. swami@cs.vu.nl
iDep‘c of Computer Science, Indiana University, Blooming-
ton, IN 47405.srikrish@cs.indiana.edu

Swaminathan Sivasubramaniant

Sriram Krishnant

cepts [6]. With this service oriented approach of
OGSA, Grid computing has become an attractive
platform for deploying business applications and
for supporting commercial workload. Standard-
ized Web-based protocols such as HTTP for trans-
port and Web services for application life-cycle
management provide easy to adopt programming
models for application developers without sacri-
ficing the scalability offered by the Web. OGSA
makes it possible to manage and administer large
scale systems, in a standardized manner, across
multiple administrative domains. Using the Grid
architecture it is possible to associate individual
policies with each participating Grid resource and
these policies can determine the manner in which
a resource is be shared by grid and non-grid work-
load.

This opens the door to the possibility of devel-
oping a distributed computing platform for deliv-
ering business services with certain level of guar-
antees using inexpensive but large number of un-
derutilized resources such as the desktop systems.
Over the past few years, desktop systems have
become more powerful than mid-size systems of
the yesteryear. The operating systems and mid-
dleware technologies make it possible to harness
their inherent capabilities. Thus, in principle, the
desktop systems in a corporate intranet form an
ideal set of resources for off-loading peak demands
on backend servers, for testing and deploying new
releases of backend applications, or for improving
availability and responsiveness of existing mission
critical backend infrastructure.

However, harnessing these resources and apply-
ing them in an aggregate manner for supporting
business processes is a hard problem. The prob-



lems are primarily related to the conflicting re-
quirements placed by the desktop users and the
users of the business applications (i.e., the Grid
users). For the desktop users, interactivity, re-
sponsiveness, and security are of prime concern.
From the point of view of the Grid client, dis-
covery, responsiveness, and security are of prime
concern. While the desktop users want the entire
system at their disposal when they want to use it,
for the Grid clients it is cumbersome to go hunt-
ing for idle resources, suitable for their computa-
tions, over the intranet. Moreover, existing grid
enabling toolkits such as Globus (versions 2.x and
3.0) do not adequately address the business ap-
plication requirements, which we explain in more
detail in Section 2. Similarly, the job and resource
management tools commonly used by the scientific
community do use the same performance metric as
those demanded by the commercial workload.

In [9], we have defined an architecture that ex-
tends the service-oriented architecture of OGSA to
address the specific requirements discussed in this
paper. In that paper, we presented a three layer
architecture consisting of Grid Service Layer, Log-
ical Resource Layer, and Physical Resource Layer,
with a focus Physical Resource Layer. The Physi-
cal Resource Layer has the necessary mechanisms
for monitoring and predicting the future interac-
tive workload.

In this paper, we focus on the Grid Service
Layer of the architecture and describe in detail
the manner in which architecture is laid out and
the system is designed so transactional Grid ser-
vices can be scheduled and run in a predictable
manner while using unpredictable set of desktop
resources. Using the services provide by this layer,
Grid services can adapt to the changing set of re-
sources and provide uninterrupted service to Grid
clients. We discuss the design of this layer and
present performance data to show that the system
can efficiently utilize available cycles by deploying
Grid services on idle desktop systems just-in-time
to satisfy the demand from Grid clients.

We refer to the grid defined by our architecture
as peer grid because, using this architecture, it is
possible to develop a grid entirely on top of re-
sources at the edge of the network, such the desk-

top systems. No dedicated resources are needed
even for supporting management services.

The rest of the paper is organized as follows.
In the next section, we describe the requirements
placed on the architecture by the transactional
business oriented workload and also the require-
ments arising from the use of shared resources
such as desktop systems. We then describe the
highlights of the architecture with emphasis on the
Grid Service Layer. In Section 3, we discuss the
design and implementation of the Gateway that
acts as the coordinator between the deployed Grid
services and the Grid clients. Performance results
from an implementation of our architecture are de-
scribed in Section 4. In Section 5, we discuss how
our work relates to other work in the literature.
Finally, we present our conclusions in Section 6.

2 An Approach for Developing a Peer
Grid Using Desktop Resources

2.1 Transactional Business Services

As mentioned in the introductory section, this
work is driven by two objectives:

i. To deploy and enable transactional business
services as Grid services (e.g., financial, ac-
counting, billing, e-commerce, customer re-
lations, or supply-chain management related
transactions).

ii. To use desktop based resources to provision
such transactional services.

Both of these objectives give rise to design param-
eters that differ significantly from those that are
common to traditional Grid designs that cater to
scientific and engineering applications. In the fol-
lowing paragraphs, we highlight the requirements
posed by the transactional business applications
and services and contrast these against the re-
quirements posed by the scientific and engineering
applications.

Transactional business services exhibit high de-
gree of interactivity with human operators and/or
with databases that hold business state informa-
tion. The time spent interacting with the external



environment is typically comparable to the time
spent in performing local computations. More-
over, the frequency of interactions with the exter-
nal environment is relatively high. On the other
hand, typical scientific and engineering applica-
tions start with a state encapsulated in a small
number of static files or other objects and evolve
that state over a period of time and/or space.
Such computations can continue in batch mode
without significant interactions with a database or
with a human operator. The time spent in batch
mode can be order of magnitude higher than the
time spent interacting with the external environ-
ment.

One effect of the interactivity is that business
services need to be much more sensitive to re-
sponse time constraints posed by the users. This
is not only because of the human factors involved
(e.g., on-line shoppers may not have patience for
long response time delays), but also because of the
role played by these applications in time sensitive
business processes. In such cases, any processing
delays can result in financial losses and /or compet-
itive disadvantages. Typical response times are of
the order of seconds or minutes.

The flip side of response time is the throughput,
which is a measure of the number of transactions
performed per unit time. Although many types of
business interactions tend to be bursty (i.e., low
activity followed by sudden rise in the demand,
which is again followed by weak demand), they
also require that the service throughput should
rise with demand, without deteriorating the re-
sponse time. Unless enough resources are allo-
cated at all times to handled the peak demand,
this means that necessary resources must be allo-
cated dynamically and on demand. Moreover, the
resource management mechanisms must be sen-
sitive in the changes in the workload and must
respond rapidly so the response time and overall
throughput do not deteriorate.

Finally, many of the business processes are mis-
sion critical. This means the business services and
the state information they process, must be avail-
able to corporate customers at all times — 24 hours
a day and 7 days a week. This results in the high
availability requirements on the on-line business

services. At the minimum, services need to re-
cover gracefully from failures and user data is not
to be lost.

In contrast, typical scientific and engineering
applications have low response time requirements
and no availability requirements to speak of, but
they do have reliability and service time require-
ments. This means users of such applications, who
many times are also the application developers,
are more flexible about the turnaround time as
long as their applications run to completion in
a reliable manner. The job arrival patterns are
much less bursty and demand on resources fluc-
tuates within a narrow range. Because of these
characteristics, Grid systems catering to users of
scientific applications emphasize services related
to reservation mechanisms, job queuing, launch-
ing, checkpointing, migration, file transfers, and
S0 on.

In short, typical Grid systems used for scien-
tific computing workloads provide services that
focus on maintaining high utilization of Grid re-
sources. But such systems provide inadequate or
no support for response time guarantees, contin-
uous availability of applications, work-flow type
of application setup, or for dynamic provisioning
of resources in response to changes in the request
arrival patterns. As pointed out above, such ser-
vices are important in the context of transactional
business applications. To provide these services,
the Grid architecture needs to provide monitoring
mechanisms to evaluate the rate at which different
types of requests are processed, analytic capabili-
ties to determine if these processing rates are ade-
quate, prediction capabilities to anticipate future
demand and resources needed to satisfy the de-
mand. Such a Grid architecture also needs to pro-
vide support for deploying services that can per-
sist and remain available even if the underlying
resources become unavailable for some reason.

In Section 2.3 we describe a Grid architecture
that responds to response time and availability re-
quirements.



2.2 Desktop-based Resources

The second objective of our work is to utilize
unused desktop-based resources and, more gener-
ally, to effectively share resources across multiple
domains.

The primary objective of desktop systems is to
provide the desired level of interactivity and to
create an environment that is conducive to high-
levels of productivity in a collaborative environ-
ment. The nature of the desktop-based interactive
applications is such that the demand on the desk-
top resources occurs in frequent, but short bursts
and the load dissipates rapidly.

Thus, there are many unused cycles, but their
frequency and duration are highly unpredictable.
Moreover, the desktop users (or administrators)
may set policies that enforce conditions under
which desktop resources may be used for deploying
Grid services.

Clearly, for effective utilization of desktop sys-
tems in a Grid, one needs to take into account
the following requirements: (i) Utilize the desktop
system whenever conditions allow it to be used
in Grid computations, and (ii) not to schedule
any computations on a desktop system, beyond
its available capacity.

The first requirement implies that a mecha-
nism is needed to accurately predict when a desk-
top system becomes available for Grid computa-
tions. The second requirement implies that the
Grid workload assigned to a desktop-based Grid
node should match the available capacity. Note
that desktop policies may not allow full utiliza-
tion of the maximum available capacity of a desk-
top system. For example, a policy may specify
the maximum fraction of the CPU, memory, and
network bandwidth that a particular Grid service
may use at any given time.

Clearly, the desktop resource availability and
capability is more predictable when the desktop
user is away from the system (e.g., in the evening
and night hours). This information can be gath-
ered and analyzed by running a monitoring agent
on the desktop to understand the daily, weekly,
monthly and seasonal patterns in “macro” usage
of the system. Even when the desktop system is

being used by the desktop user, there are many
opportunities for running Grid workload on the
system under the specified policies. However, be-
cause of the unpredictable nature of the interactive
usage, only short term predictions about the fu-
ture usage by interactive applications can be made
with a given level of confidence.

Thus, to effectively utilize desktop-based re-
sources, the Grid architecture needs to provide
support for monitoring desktop resource usage
patterns, both for the interactive workload as well
as for the Grid workload. It needs to incorporate
analytical mechanisms to predict resource avail-
ability and capabilities at various time intervals
in the future. Furthermore, the system needs to
be able to bound the uncertainties in the predic-
tions. We now describe our architecture that takes
into account these requirements.

2.3 Architecture Overview

Availability and responsiveness to the changes
in the client demands are the key criteria that a
transactional service provider must meet. The pri-
mary figure-of-merit (i.e., expected QoS) for such
services is throughput and response time. This
means the architecture should be able to deliver a
requested service on demand from the clients and
it should be able to adjust the capacity of each
service so as to meet the intensity of the demand.
The client requests can be complex (e.g., requests
resulting in a work-flow), request arrival rates can
be unpredictable, and clients may have multiple
levels of service-level-agreements (SLA) with the
service provider. The architecture needs to ad-
dress these requirements.

The use of desktop based resources gives rise
to a different set of requirements. The primary
purpose of desktops is to serve the desktop users
by providing a high degree of interactivity and
responsiveness. These resources are to be used
to provision the transactional services according
to some policy defined by the desktop user or by
system administrators. Each desktop may have a
unique local policy, which may change over time.
Examples of local desktop policies include: (i) in-
teractive workload always has the highest prior-



ity, (ii) allocate no more than a certain percent
of the desktop resources to Grid services at any
given time, (iii) dedicate certain fraction of the
resources for Grid computations, (iv) allow par-
ticipation in the Grid computations only during
certain time of the day or on certain days of the
week. Thus, policy enforcement requires evalua-
tion of certain conditions, which may be static and
predictable or dynamic and unpredictable such as
the current interactive workload. Moreover, poli-
cies may be defined using a combination of static
and dynamic conditions. The architecture needs
to take into account policies and the heterogeneity
in the capacities associated with each desktop re-
source while addressing the availability, through-
put, and responsiveness requirements associated
with the transactional services.

Intuitively, the desired architecture needs to fa-
cilitate (i) deployment of appropriate Grid ser-
vices on the desktop resources, and (ii) route client
requests to appropriate Grid service instances.
These tasks are made challenging because of (i)
the uncertainties in the resource availability for
deploying a Grid service at any given instance in
time and (ii) the uncertainties in the client de-
mand on a Grid service at any instance in time.
If we assume that there are enough idle desktop-
based resources available to meet demand at any
given time, then the task of the architecture is (i)
to identify and match Grid client requests with
Grid service instances with appropriate capacity
(i.e., with ability to respond within prescribed
time limits), and (ii) to deploy Grid service in-
stances on appropriate desktop resources so as to
empower them with the desired capacity just-in-
time for delivering the service.

Although there are enough desktop resources
available on an aggregate basis, identifying the
once that can provide the desired capabilities at
any given time requires good prediction mecha-
nisms. Since there is an element of randomness
in the demand and in the resource availability, it
is also important to quantify the uncertainties in
the predictions. One way to achieve this is by
monitoring the behavior of each desktop resource
over a sufficiently large time interval and then by
comparing the observed behavior with behavior

predicted by the prediction model (after suitably
priming the predictor with initial conditions). The
extent of the mismatch between the two is a mea-
sure of the quality of the predictor and hence can
be used to determine the uncertainty in the pre-
dicted values by the predictor for that system.
Since these systems are dynamic, uncertainties in
the prediction models need to be evaluated con-
tinuously.

SLA monitor

& Demand g =~ Request/

predictor Response
~Resource I A
Configuration Scheduler i
quration (o _ o — | & !
& Mapping Router !
Tables Grid
__________ Service |
Layer i
_ i
Grid i
E ............ Service 1 | L LU SRR A
i 4
v - Virtual !
Grid Grid Service Grid Service Resourcd
Resource Container1 | ="ttt Container n Layer !
Manager !
|
Virtual Virtual Virtual Virtual !
Machine 1 Machine2 | =+ Machinej [ =+ Machine m !
N B il B Bl X
I i
le=— Desktop 1 "I Desktop 2 | ""I'_'{ Desktop i | .I Desktop M | i
e e
!
Physicall

— Resourcé
Legend Database Layer |
Server *

{———) Request/Response
- == Control Flow

-+ Mapping

Physical Connection

Figure 1. Layered architecture for the Peer Grid.
The Grid Service Layer consists of the Grid Ser-
vices, Scheduling and Routing Services. Logi-
cal Resource Layer consists of the Container for
Web Services, Virtual Machines, and the Vir-
tual Machine Managers. Physical Resource Layer
consists of the physical resources and the Host
Agents.

Given the ability to monitor, predict, and esti-
mate the uncertainties in the predictions, the ar-
chitecture is basically reduced to scheduling ap-



propriate number of service instances, mapping
the service instances on to the physical resources,
and routing client requests to appropriate ser-
vice instances. The rest of this section gives an
overview of our architecture and briefly describes
the orchestration of monitoring analysis & predic-
tions, allocation, mapping, scheduling operations
described above.

The architecture is defined using a layered ap-
proach. This allows addressing the requirements
of Grid workload and of transactional Grid ser-
vices separately from the requirements of interac-
tive workload and desktop related policies. The
architecture, as shown in Figure 1, has three lay-
ers: (i) The Grid Service Layer, (ii) The Logical
Resource Layer, and (iii) The Physical Resource
Layer. In the following, we describe the salient
features and functionality of each layer. For de-
tails on the three layers of the architecture, please
refer to [9].

Each layer is associated with Control and Man-
agement Components (CMCs). The interactions
among the CMCs and the functionality they pro-
vide largely define the architecture. The SLA
Monitor and Demand Predictor, shown in Figure 1
is one such CMC. This component monitors re-
quest arrivals per Grid service type and per Grid
client class basis. It also monitors SLA violations
on a per client basis. In addition, predictions on
future arrival rates are made for each Grid service
type. Based on the predicted arrivals and avail-
able Grid service capabilities, a scheduling strat-
egy for request processing is adopted to meet the
SLA requirements. This process is repeated fre-
quently as arrival patterns change and/or as the
Grid service capabilities change. Some of exam-
ples of scheduling strategies are weighted round
robin, priority based scheduling (with priorities
derived from SLAs), one-to-many scheduling (i.e.,
simultaneous processing of a request on multiple
Grid service instance to overcome uncertainties in
service capabilities), and so on.

The CMCs in the Physical Resource Layer en-
force desktop related policies, monitor and analyze
the interactive workload, and predict the short
range availability and capability of the desktop
system for a particular Grid service. This are de-

scribed in more detail in [9]. The CMCs in the
Logical Resource Layer act as coordinators be-
tween the Grid Service Layer and Physical Re-
source Layer.

The Grid Resource Manager (GRM) shown in
Figure 1 acts as a facilitator across all three lay-
ers. The main function provided by GRM is to
discover desktop resources that are available and
capable of deploying one or more Grid services. It
also detects when a desktop resource is no longer
available for deploying Grid services. A second
key function provided by GRM is to allocate the
predicted capacities of each participating desktop
resource to Grid services requiring the resource
during that future time interval. It tries to lo-
cate and allocate as many resources to each Grid
service as possible making sure that the conflicts
caused by sharing are minimized. To perform this
task, GRM collects from each desktop the desktop
usage and policy related data and predicted avail-
abilities from the CMC (known as Host Agent)
running on that desktop. It normalizes the raw
capacity of the desktop against a standard plat-
form. In case the desktop node is to be shared
among multiple Grid services, it further reduces
the available capacity in proportion to the share
made available for other Grid services. This repre-
sents the maximum normalized capacity available
to a particular Grid service. It then takes into
account the predicted available capacity as a frac-
tion of the total capacity and uses that to compute
the predicted available capacity from a desktop re-
source for each Grid service. This forms the pre-
dicted allocation of desktop resources to predicted
Grid services requiring resources. It also computes
the uncertainty in each prediction and makes this
information available to the Scheduler & Router
component of the Grid Service Layer. This infor-
mation is represented by the Resource Configura-
tion & Mapping Tables shown in Figure 1.

The Scheduler uses this information to deter-
mine the number of service instances to deploy for
each Grid service for which it anticipates demand.
The number of instances deployed is proportional
to the allocated capacity and to the expected de-
mand. When requests arrive, the Router routes
those requests to the physical resources where the



service instance is actually deployed.

The Scheduler also takes into account the un-
certainty in the predicted allocations. When the
uncertainty is high, it may decide to schedule a re-
quest on more than one service instance simulta-
neously, making sure that the the service instances
are mapped on-to distinct physical resources. In
such cases, the Router replicates a request and
multicasts it to multiple instances of the same
Grid service.

In the above, for simplicity we have described
the architecture with one Grid system to serve all
the Grid clients. However, the architecture de-
scribed here is more general than that. In its gen-
erality, when a class of Grid services are to be
deployed in anticipation of a particular Grid work-
load, a Scheduler & Router object is spawned off.
This can be accomplished using a Grid service fac-
tory method described in [6]. As described above,
the Scheduler is provided with a list of Grid Ser-
vices for which requests are expected and a set
of Mapping Tables are provided. In creating the
Mapping Tables, sharing of physical resources by
other virtual Grid environments and desktop users
is taken into account. Based on the priorities and
policies, GRM calculates the availability and ca-
pability factors for each Grid environment sepa-
rately. It also assigns probabilities to indicate the
uncertainties in its performance predictions. Note
that the same physical resource may participate in
two different different virtual grid organizations
and it may be assigned different capability and
uncertainty factors in the two virtual grid organi-
zations.

3 Gateway Architecture and Design

In this section, we discuss the functionalities of
our Scheduler & Router component. We also dis-
cuss in detail the choices available for designing
this component and present their relative merits
and demerits. Finally, we describe the prototype
implementation of our design.

3.1 Gateway Requirements

An important component of our architecture is
the request scheduler responsible for scheduling re-
quest requests from Grid clients, based on the rel-
ative priorities of the requests and their SLA re-
quirements. Another essential component is the
request router, which routes the client request to
the Grid node that actually performs the trans-
action. It also maintains the status of various re-
quests. This component works closely with the
scheduler and monitors the status of execution of
each request. It is capable of restarting a request,
if a request fails (possibly due to a Grid node fail-
ure, network failure etc.) to ensure that the Grid
clients get the guaranteed QoS.

In our system, we view the above two com-
ponents that perform these two functionalities
(scheduling and Router) as a single logical com-
ponent and refer to it as the Gateway. Gateway is
the entry point for the Grid clients, to which they
submit their service requests. It can be viewed as
a logically centralized component. However, if re-
quired (for reasons of scalability), it can be imple-
mented as a federation of gateways, as described
in section 3.2.2.

In a peer Grid using desktop resources, in ad-
dition to scheduling and request tracking, Gate-
way must be capable of handling the variability
in resource availability and smoothen it so that
Grid clients do not see the effects of variability. In
our system, this is handled by the Grid Resource
Manager, which co-ordinates with various CMCs
of physical and Grid layers, and smoothens the
variability in the resource availability of the desk-
tops. As noted before, the process of handling this
variability can be done in two ways: (i) predict-
ing the resource availability in a Grid node and
scheduling based on that prediction or (ii) sched-
ule assuming they are available all the time and
migrate the request, if they become unavailable
during the course of execution of a request. In our
system we adopt the first approach, as our Grid
applications are transactional workloads, where
the execution time is much smaller compared to
those of the batch-computing applications. The
overhead introduced in migrating an active trans-



action can be comparable to the service time of
a transaction itself. However, the success of the
first approach design relies on the accuracy of the
prediction mechanisms.

3.2 Gateway Design and I mplementation

In this subsection, we concentrate on the design
of the Gateway and its interaction with GRM.

In our design, we make a clear demarkation
of resource prediction models from on-line alloca-
tion and scheduling components. Such a demarka-
tion is required for the following two reasons: (i)
The availability of each Grid node is governed not
only by its (interactive workload) usage pattern
but also by the local policy set by the desktop
user. Hence, resource prediction must be done
separately taking these factors into account and
(ii) Separation of resource prediction components
from allocation and scheduling components allows
the system to use different resource prediction al-
gorithms without affecting other system behavior.

In our system, the scheduling and resource al-
location components are also separated. Thus,
the Gateway schedules the request onto logical re-
source pools and routes it to the actual Grid nodes
based on the routing and mapping tables popu-
lated by the GRM. The GRM (resource allocator)
is responsible for allocating the Grid nodes onto
these logical resource pools such that the overall
Grid throughput is maximized. The advantage of
this approach is that the Gateway can schedule
the calls oblivious of change in the constituents of
the Grid nodes. However, as noted in the preced-
ing section, the Gateway (through the SLA mon-
itor) must communicate with GRM and inform
its expected Grid service demand, to ensure that
enough resources are allocated to each of Grid ser-
vices serviced by it.

3.2.1 Design Choices

The design of Gateway can be done in several
ways: For example, Gateway can be built us-
ing network-level redirector such as such as IBM
Network Dispatcher [2]. The other way to build
the Gateway is by modifying the application-level

transaction scheduler. In the following, we dis-
cuss the relative merits and demerits of these two
approaches:

e Network-level solution: Gateway Router can
be built using network-level redirector. Then,
logical resource pools are built as a clus-
ter of servers managed by these redirector.
The requests to the pool can be routed using
network-level redirectors. GRM can allocate
or deallocate nodes by invoking the appropri-
ate APIs provided by the redirectors. A sim-
ilar approach is used in the system proposed
by [7]. The primary advantage of this ap-
proach is its performance. Since all the rout-
ing is done in network level, it does not suffer
the overhead of call marshaling and unmar-
shaling. However, it has the following disad-
vantages: It assumes that all the servers are
equally capable of serving all Grid services. If
not, then it requires the use of one network-
level redirector for each Grid service. Thus,
this approach lacks flexibility in adding new
Grid services dynamically. Further, network
redirectors are built for server clusters and is
not suitable for our desktop pools, where the
maximum number of desktop nodes in a pool
can be relatively high, with dynamic change
in their availability.

e Application-level solution: Gateway can also
be built using application level redirector.
In this approach, the Gateway receives ser-
vice requests from clients, unmarshals them
and based on the type of service required,
it schedules the routing table populated by
the GRM for that service. GRM, by popu-
lating a per-service routing table, essentially
creates a per-service resource pool, based on
which the Gateway Router schedules the ser-
vice requests. The primary advantage of
this approach is that this design can support
different type of Grid services, without any
changes or addition of new hardware. Fur-
ther, this design can possibly manage a larger
resource pool. However, this approach intro-
duces some processing overhead as it needs to
marshal and unmarshal a service request.



In our system, we adopt the application-level
solution as it is more flexible to add/remove more
Grid services dynamically. We have also observed
that the overhead introduced by processing the
request at application-level is negligible compared
to the overall service execution time.

3.2.2 Gateway Implementation

In our system, we have implemented GRM as a
Web service and is deployed in IBM WebSphere
Application Server [3]. Similarly, Gateway Router
is also implemented and deployed as a Web ser-
vice. The Grid clients make their Grid service
calls as Web service calls to the Gateway Router.
However, since the Grid clients make Web service
calls as if the service is running on the gateway,
we have to implement our router in such a way
that forwarding of request from the Gateway to
the Grid node is transparent to the client.

In WebSphere Application Server (versions 4.x
and 5.x), every Web service call is being trapped
by its appropriate RPCProvider, as defined in
Apache SOAP [1]. This provider is responsible for
locating the actual class and method that needs to
be invoked to make a (Web-service based) trans-
action. In our system, we implemented a new
provider (which is in conformance with regulations
of Apache SOAP specifications) that similarly re-
ceives this request at the Gateway. However in-
stead of finding a method to invoke, it makes a
call to a forward method of Gateway Router Ser-
vice. This method receives the call object and
consults the routing table for that service request,
and forwards requests to different Grid nodes on
a weighted round robin fashion.

By implementing a new provider, we have made
no changes to WebSphere or its SOAP implemen-
tation and have just added a new plug-in to sup-
port our new provider. Thus, Grid clients make
service requests as normal Web service calls with
no change in their code. The GRM Web ser-
vice populates the routing tables of the Gateway
Router by making a standard Web service call.

3.3 Design Scalability

The design described above assumes a central-
ized Gateway and a centralized GRM. Such a sys-
tem will have scalability problems as the number
of desktop nodes increases and/or the number of
Grid clients rises. However, this scalability issue
can be addressed in several different ways. In the
following, we briefly describe some of these con-
cepts.

3.3.1 Federated Gateways

One way to alleviate the Gateway congestion is to
provide multiple Gateways, each responsible for
serving a subset of Grid clients using a subset of
Grid nodes. The problem to address here is that of
load balancing among the Gateways. One possi-
bility is to use DNS servers and another possibility
is to use a network dispatcher type of mechanism
in front of the Gateways. Both of these approaches
suffer the shortcomings described above and in [4].
We now describe third approach which is more ap-
propriate when Grid clients perform many trans-
actions within a session. When a new session is to
begin, a Grid client registers for that session with
a single well known Grid Registry. As a part of
the registration the client receives address to one
of the multiple Gateways that is capable of serv-
ing the client requests. The Registry keeps track
of the current load on multiple Gateways and ran-
domizes new client requests among lightly loaded
possible Gateways.

Similarly, GRM allocates Grid nodes among
multiple Gateways by knowing the current load
among the Gateways. If it detects that some of
the Gateways are not able to keep up with their
demand, then it readjusts the current allocations
among the Gateways and resets the Mapping Ta-
bles provided to each Scheduler & Router.

3.3.2 Hierarchical Control Structure

Another potential source of bottleneck in scaling
up the system is the GRM and associated control
structure. Here again the answer is to provide
an hierarchy of GRMs. At the lowest level, each
GRM looks after a manageable number of Grid



nodes and then it forwards the allocation infor-
mation to the GRM at the next higher level. The
GRM at the top level has the consolidated infor-
mation from all GRMs. This is then forwarded to
the one or more Gateways in the system.

3.3.3 Databases

In case of commercial applications, client state is
typically stored in backend database servers. This
information may be accessed multiple times when
a single transaction is being processed. Thus, in
a large Grid system, a single backend database
server can be a source of bottleneck. If the
database is mostly used for retrieving informa-
tion (e.g., content distribution or page serving),
then the bottleneck problem can be alleviated by
replication and periodic refresh. However, when
transactions result in database update, the back-
end databases need to consistent with one an-
other. While the database community has de-
veloped solutions to provide concurrent database
systems, we admit that for a large scale system,
the database subsystem may prove to be the true
source of bottleneck for certain class of applica-
tions.

4 Performance Evaluation
4.1 Performance Modeling

We model the inherent variability and disparate
capabilities of the resources that are part of our
Peer Grid in the following manner.
model, we try to infer the maximum throughput
that is deliverable to a Grid client by our system,
and compare it with our observations.

From our

Assuming that a set of resources 0..m are avail-
able to be utilized, we associate a normalization
factor, f;, with each resource 7. This factor qual-
ifies the capabilities of a computing resource, and
is the ratio of the capabilty of a particular resource
with that of the best one available. Thus f; varies
in the set (0..1].

We assume a set of types of requests from Grid
clients 0..n. For each request, we define the nor-
malized service time, s;, which is the time required

10

by a Grid node with f; = 1 to service a request
of type j. In addition, we define the node ser-
vice time, s;;, as the time required by the node :
to service a request of type 7. It follows from the
definition that s;; = s;/f;. We note here that both
sj and s;; are defined assuming that the nodes on
which they are running are fully available for the
Grid workload, without any timesharing or multi-
tasking.

The availabilties of each resource are predicted
at regular intervals, 6¢. This availability is a func-
tion of time (which varies from 0 to T'). We define
p;i(t) as the fraction of the i*" resource available at
time ¢. p;(t) varies from 0 (when the machine is
not available to the Grid) to 1 (when the machine
can be fully dedicated to the Grid workload).

If a;(t) is the actual fraction of resource i avail-
able at time ¢, and da is the time interval between
our observations of resource availabilty (note that
da need not necessarily be the same as dt), 4;;(q),
the maximum number of requests for service j that
can potentially be processed by node ¢ over time
0..q is equal to E?i%a a;j(txda)* fixda/sj. The max-
imum number of requests that can potentially be
processed by the Grid, A;(q), equals i Ai;(q).

If O;(q) is the observed number of requests for
service j that are processed in our implementa-
tion during time 0..q, we can define the observed
efficiency of our system, 0;(q), as O;j(q)/A;(q)-

It is worth noting that our model has a few
limitations. In particular, it assumes no latencies
between the Grid client and the Gateway, and be-
tween the Gateway and the Grid node. In addi-
tion, we neglect the scheduling overhead at the
Gateway.

4.2 Experiment Setup

We tested the performance of our system on
a small scale with a set of five Grid nodes. We
logged the CPU utilizations of the interactive
workloads of desktops used by the administrative
personnel in our lab. These logs were used to simu-
late the interactive workloads on three of our Grid
nodes. By doing this, we are able to simulate a real
world situation where idle cycles can be used from
desktops serving common users. These desktops



Node | Service Times (ms)
Node 1 914
Node 2 912
Node 3 1060
Node 4 1384
Node 5 1652

Table 1. Individual service times for each Grid
node

will typically be highly available for Grid users as
compared to the ones serving as development and
production machines. We assumed two of our Grid
nodes to be available all the time.

From our experiments, we compare the ob-
served throughput (O;(¢)) with the maximum
available throughput (A;(¢)) and determine the
efficiency of our system. This efficiency depends
on the accuracy of our predictions, and the asso-
ciated overheads (as noted in the preceding sub-
section). Also, we verify that our predictions are
reasonably accurate for the type of workloads we
used in our experiments.

In order to measure the maximum observed
throughput, we had to generate enough requests
to keep the Grid nodes busy at all times they were
available. To do so, we created a traffic generator
that would generate a request as soon as it would
receive a response to its prior call. In addition, this
traffic generator is multi-threaded ensuring that
multiple requests can be made in parallel, in or-
der to keep all the Grid nodes busy at all available
times.

4.3 Performance Analysis

The individual service times for our transaction
on different Grid nodes is as shown in Table 1. We
calculate the normalization factors f; for each of
the Grid nodes from the individual service times.
We computed the actual availabilities of the indi-
vidual Grid nodes, a;(t), from the utilization logs
used for simulating the interactive workload on the
desktops and is given in 2. As seen in the table,
the average availability of the three non-dedicated
Grid nodes is close to 100%. This is because the

11

Node | Availability | Prediction Accuracy
Node 1 100% -

Node 2 100% -

Node 3 99% 90%

Node 4 99% 89%

Node 5 99% 93%

Table 2. Average Availability of each Grid node
and the Prediction Accuracy

CPU utilization of interactive workload is bursty
in nature and lasts for a short period, thereby pro-
viding a high average availability. For example,
the actual availability of Node 3 can be seen in
Figure 2, and its bursty usage pattern is apparent
from it.

100

80

60

CPU Availabilty

40 1 -

Time

Figure 2. The actual usage pattern for Node 3

From the Table 2 and Table 1, we computed the
maximum number of requests that can be poten-
tially served A;(q), where ¢, the duration of the
experiment, is 3570 seconds. A;(g) is found to be
equal to 15872.

We observed that our system was able to ser-
vice 14594 requests during the same time (O;(q)).
Thus, the efficiency of our system, o;(q), is 0.92.
Apart from the overheads in the system, a poten-
tial factor that can cause a decrease in the effi-
ciency is a faulty prediction scheme. From Table



2, we can see that our predictions are accurate
for around 90% of the times for each of the Grid
nodes.

Thus, in our simple study, we observe an effi-
ciency factor of 0.92, which implies that it is able
to utilization 90% of the unutilized desktop re-
sources for running transaction workloads. How-
ever, we note that our studies are very simple in
nature as they are conducted with relatively small
number of desktops. We are planning to simulate
this setup with more number of desktops using
our model and analyze for higher number of grid
nodes, in future.

5. Related Work

There are several groups working on resource
management for Peer Grids, although their ap-
proaches differ due to their varying motivations
and requirements.

One of the leading projects addressing schedul-
ing for the Grid is Condor. Condor is a special-
ized workload management system for compute-
intensive jobs [11]. It provides mechanisms for
job queuing, scheduling, resource monitoring and
resource management. The ClassAd mechanism
provides a way of matching job requirements with
resource offers. A central manager is responsible
for scheduling the jobs on resources by matching
these ClassAds. Certain types of jobs can also be
checkpointed and migrated if the availability of the
resources change during the course of execution of
the job. Our target workloads are not the typical
long-running scientific workloads that Condor tar-
gets, but are instead transactional workloads that
have shorter turn-around times. Hence, migration
does not make much sense in our case. In addition,
evaluation of complicated ClassAds may be too
much of an overhead for transactional workloads.
In our case, requests from Grid clients for these
transactions may arrive at a high rate. This neces-
sitates replication of services so that requests from
Grid clients can be processed in parallel. Con-
dor is not based on such a request-response model,
and does not need to replicate any jobs explicitly.
To ensure higher throughput, it is also imperative
that we predict the availability of our resources.

12

Condor does not do any prediction of resource
availability, and this makes sense in the case of
long-running computational workloads, since the
availability of resources can not be accurately pre-
dicted over long lengths of time. However, in our
case, each request from a Grid client can be ser-
viced in a short period of time, and predictions can
be made reasonably accurately for shorter time in-
tervals.

Another class of applications that are related
to our work are the several projects dealing
with Volunteer Computing, viz. Bayanihan [10],
SETI@home, distributed.net, Entropia [5], etc.
Typically, all such applications try to leverage cy-
cles from voluntary underutilized resources on the
Internet, and deal with applications that are em-
barrassingly parallel. In general, no guarantees
are provided for the performance that can be ob-
tained from such a set of resources. The schedul-
ing policies of most such systems are not very
complicated, since the participating resources pull
work from a centralized Work Manager as and
when they run out of work to execute. There
is generally enough work to be pulled from such
Work Managers to keep all the resources busy
when they would otherwise be idle. In our case,
we don’t have a pool of work to keep distributing
among the Peer resources. Instead, the amount
of work to be done depends on the outstanding
requests from the Grid clients. Thus, our work
differs from traditional Volunteer Computing in
the type of workloads that we target.

Leff et al [7] try to address delivering Service
Level Agreements (SLAs) for commercial (trans-
actional) workloads. However, their emphasis is
not on leveraging idle cycles from resources, but
reconfiguring resources inside a resource pool so
that the number of resources that are currently
serving customer requests are optimal for the
SLAs agreed upon. They provide the scheduling of
requests at a network level, using a Network Dis-
patcher (ND) [2], which is a load-balancing switch
that distributes requests across a server cluster.
However, a ND deals with requests at the packet
level, and is oblivious to the type of service being
requested. Hence, it is not very suitable to deal
with requests to multiple services in the same re-



source pool. In addition, since it is at the net-
work level, it is not very conducive for any kind
of application-level scheduling. Currently, there
is no prediction information being used, although
it is part of their long term goals. Crawford et
al [4] have also discussed a Grid using dedicated
set of servers for deploying financial and content
distribution type of applications. They describe a
Topology Aware Grid Services Scheduler (TAGSS)
for dynamic creation and deployment of Grid ser-
vices.

6 Conclusions

In our previous work [9], we presented a three
layer architecture for building a Desktop-based
Peer Grid consisting of the Grid Service Layer,
Logical Resource Layer, and Physical Resource
Layer, with an emphasis on the Physical Layer.
In this paper, we focussed on the Grid Service
Layer, and presented how this layer provides the
requisite services so that Grid clients can use the
varying set of resources effectively. We described
the design and architecture of the Gateway, which
relies on performance prediction to compute the
idle cycles that can be provided by the desktop
machines, and route requests from Grid clients to
the resource most likely to remain idle during the
duration of the execution. We also presented a
simple model for our system, and verify it with
our experiments. We found that our simple pre-
diction algorithm performs reasonably well for the
type of resources that we target.

Our preliminary results are encouraging and
lead us believe that the concepts presented here
can be used for off-loading peak demands on back-
end servers, for testing and deploying new releases
of backend applications or for improving the avail-
ability of existing mission critical backend infras-
tructure, by sharing underutilized resources across
an organization.

In the future, we plan to test our system with
several other prediction algorithms. We also plan
to perform experiments involving more desktop
machines in our department to verify the scalabil-
ity of our architecture, and identify possible bot-
tlenecks.

13

References

[1]
2]

3]

[4]

[5]

[7]

8]

[10]

[11]

Apache SOAP, as of July 2003.
http://ws.apache.org/soap/.

IBM Network Dispatcher, as
of July 2003. http://www-
3.ibm.com/software/network/dispatcher/.

IBM  WebSphere, as of July  2003.

http://www.ibm.com/websphere/.

C. H. Crawford, D. M. Dias, A. K. Iyengar,
M. Novaes, and L. Zhang. Commercial Appli-
cations of Grid Computing, Jan. 2003. IBM Re-
search Report, RC22702, IBM T. J. Watson Re-
search Center, Yorktown Heights, NY, USA.
Entropia PC Grid Computing. DC-
Grid Platform, as of  July 2003.
http://www.entropia.com/dcgrid_platform.asp.

I. Foster, C. Kesselman, J. Nick, and S. Tuecke.
Grid Services for Distributed System Integration.
Computer 35(6), 2002.

A. Leff, J. T. Rayfield, and D. M. Dias. Service-
Level Agreements and Commercial Grids. In
IEEFE Internet Computing, Special Issue on Grid
Computing, July 2003.

Z. Luo, S. Chen, S. Kumaran, L. Zhang, J. Chung,
and H. Chang. A Web-Service-Based Deployed
Framework in Grid Computing Environment,
May 2002. IBM Research Report, RC22470, IBM
T. J. Watson Research Center, Yorktown Heights,
NY, USA.

V. K. Naik, S. Sivasubramanian, D. F. Bantz, and
S. Krishnan. Harmony: A Desktop Grid for Deliv-
ering Enterprise Computations, To appear in the
Proceedings of Grid 2003. Also available as IBM
Research Report, RC22832, IBM T. J. Watson
Research Center, Yorktown Heights, NY, USA.
L. Sarmenta. Web-based Volunteer Computing
using Java. In Proc. 2nd Intl. Conference on
Worldwide Computing and its Applications, 1998.
T. Tannenbaum, D. Wright, K. Miller, and
M. Livny. Beowulf Cluster Computing with Linux,
chapter 15, Condor - A Distributed Job Scheduler.
MIT Press, 2002.



