
RC22840 (W0307-042) July 7, 2003
Computer Science

IBM Research Report

Implementing flexible Data Collection and Aggregation for
Performance Management with the CIM Metrics Model

Alexander Keller 1 , Oliver Benke 2 , Markus Debusmann 3 , Andreas Köppel 4 ,  Heather
Kreger 5 , Andreas Maier 2 , Karl Schopmeyer 6

1 IBM T.J. Watson Research Center, Yorktown Heights, NY, USA,
2 IBM Germany Lab, eServer Systems Management, Böblingen, Germany,

3 FH Wiesbaden, Dept. of Computer Science, Wiesbaden, Germany,
4 SAP AG, Systems Management, Walldorf, Germany,
5 IBM Corporation, Research Triangle Park, NC, USA,

6 The Open Group,

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research
Center , 
P. O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



Implementing flexible Data Collection and Aggregation for
Performance Management with the CIM Metrics Model

Alexander Keller1, Oliver Benke2, Markus Debusmann3,
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Abstract— We describe new extensions to the CIM Met-
rics Model, termedBaseMetrics Submodel, whose scope is to
define schema extensions capable of specifying and subse-
quently instantiating new performance measurement data
at the runtime of a system. The model has been developed
by the Metric Extensions Working Group of the Distributed
Management Task Force (DMTF) in which the authors ac-
tively participate. The BaseMetrics submodel has been re-
cently adopted by the CIM Technical Committee and is part
of the new version 2.7 of the CIM schema. In addition,
we present an extension to the BaseMetrics submodel that
allows the definition and aggregation of arbitrary perfor-
mance data at runtime to address the requirements of ser-
vice level agreements and workload management systems.
Two examples illustrate the applicability of the model to
real-life data collection and aggregation scenarios in dis-
tributed computing environments.

I. INTRODUCTION AND MOTIVATION

The Common Information Model (CIM) [1], [2] is a
conceptual framework for describing managed resources
and management information in enterprise and service
provider environments. CIM consists of over 1000 classes
and associations defining managed resources that have
been developed over the last 5 years by the Distributed
Management Task Force (DMTF). In its various Com-
mon Schemas, CIM defines a taxonomy of various types
of managed resources, such as systems, applications, net-
works and network elements. Management information
that applies to all types of managed resources is defined
in the Core Schema from which all the Common Schemas
are derived. CIM provides a consistent definition and
structure of data, using object oriented techniques, and it
is based on UML.

While the vast majority of the CIM standardization
effort has been devoted to defining and improving the

CIM models of resource instrumentation, additional work
on management services is now taking place. Manage-
ment services are generic, domain-independent function-
ality that should be defined and implemented only once;
the best-known examples to date are the ISO–OSI Man-
agement Functions [3] for Network and Systems Manage-
ment. In CIM, examples of this kind of functionality are
services for specifying and applying management poli-
cies, Service Level Agreements (SLAs), Service Level
Objectives (SLOs), and capturing and manipulating man-
aged resource metrics. Metrics are numerical informa-
tion (counters and gauges) that indicate how a managed
resource is performing.

Generally, CIM support for performance management
comprises the information that developers have defined at
the design time of a managed resource model, typically
as properties in subclasses of CIM StatisticalData.
Having such static definitions of performance measure-
ment data makes it difficult to add new attributes to a class
without disrupting existing management systems because
they assume that the interface of a managed object (its
properties and operations) remains constant once it is de-
fined. On the other hand, there is a need to dynamically
define new metrics during the runtime stage of managed
resources, as illustrated by the following scenarios:

Dynamic service provisioning: IT resources are al-
located and provisioned for specific applications and re-
source aggregations. Autonomic and Grid technologies
[4] are pushing provisioning to be done on a per-request
basis. This means that the actual IT resources used by an
application may vary throughout the lifetime of the ap-
plication. Consequently, the metrics from different IT re-
sources need to be associated with a service when it is
provisioned.



Service Level Management: Once a Service Level
Agreement (SLA) has been negotiated between a cus-
tomer and a service provider, its definitions – comprising,
among other, the service parameters and their allowable
value ranges – are deployed to the managed resources and
subsequently instantiated. To ensure a maximum of ac-
curacy, an SLA often contains the precise definitions on
how lower-level resource data is aggregated into higher-
level service parameters. This information needs to be
sent to already deployed managed resources whenever a
new SLA has been negotiated. In a second step, the SLA
monitoring infrastructure needs to be automatically provi-
sioned to enforce the SLA.

Metric aggregation for Workload Management:
New virtual IT resources may be defined that aggregate
other IT resources: database clusters, connection pools
and portal servers wrapping web application servers are
examples for such virtual resources. It is necessary to
promote some of the metrics defined for the underlying
resources to the new virtual resource to appropriately de-
scribe the performance of a virtual resource.

All of these examples have in common that new per-
formance management information is defined after the
underlying resources (and the management agents that
surface their data) have been deployed and provisioned.
More specifically, new information is defined – and with-
drawn – at the runtime of managed resources, when the
static instrumentation schemas cannot be modified to ac-
commodate new data.

With the availability of the CIM Metrics Model in the
recently released version 2.7 of CIM, there is now a means
to introduce such new performance management informa-
tion at the runtime of a managed resource. In this paper,
we describe the underlying concepts and design principles
of the CIM Metrics Model and give implementation ex-
amples that have served as proof-of-concepts for the adop-
tion of the model.

The paper is structured as follows: Section II describes
the design principles and underlying concepts of the cur-
rent CIM Metrics Model, which is presented in section III.
Section IV presents the IBM z/OS Resource Management
Facility, a performance data collection system for main-
frame clusters, and how the CIM Metrics Model could
be used to expose its data via CIM. Section V gives an
overview of the Metric Aggregation and Summarization
Model, an extension to the CIM Metrics Model, targeted
for inclusion into the upcoming CIM version 2.9, along
with a description of its prototype implementation. In sec-
tion VI, we discuss the applicability of the CIM Metrics
Model for monitoring and enforcing SLAs. Section VII
concludes the paper and presents future work items.

II. REQUIREMENTS AND CORE CONCEPTS

The CIM Metrics Model is built on the concept of the
dynamic definition, manipulation, and use of arbitrary
metric information for all kinds of objects in the CIM class
hierarchy. In this section, we describe the requirements
the Metrics Model needs to address.

A. Late Binding of Metrics to any Type of Resource

The development of the BaseMetrics model started with
the assumption that metrics could effectively be defined as
objects rather than attributes in classes or associated sta-
tistical classes. This enables modelers to associate a met-
ric definition and its corresponding values with a managed
resource (services, applications, systems, devices, etc.) ei-
ther at design time or at runtime. In addition, the model
should support the definition of arbitrary metrics at the
runtime stage of a resource, thus permitting administra-
tors to define new metric data in addition to the measure-
ment data defined by the developer of a managed resource,
which is typically represented by properties of the class
StatisticalData1 or one of its subclasses. It should
be possible to introduce new metrics, metric aggregations
and complex calculations as new separate definition and
value classes, which are then associated with a resource
while it is executing. Extending an existing CIM statistics
class with a new property would change the interface of
the class, which is not possible at runtime in CIM once the
class is loaded into the CIM Object Manager. The Metrics
Model, in contrast, separates the definition of the metric
from the instance representing the value of the metric.

Another major objective was to create a model so that
metrics can be dynamically defined and attached to any
kind of CIM object representing a managed resource.
Whereas the StatisticalData class and its subclasses
require their static association to a specific CIM class
representing a managed resource (naming properties are
propagated from the class representing the managed re-
source to the class holding its statistical data), the Metrics
Model should allow metrics to be dynamically associated
with any kind of resource in the CIM class hierarchy. Such
late binding offers a number of advantages in the ability
to attach metrics to components of the model after these
components have been defined: It provides for the defi-
nition of flexible, dynamically extensible meta-data with
very fine granularity. In addition, it allows publishing the
semantics of the measurement data, i.e., providing a def-
inition for the management application to help it under-
stand what the data means.

1For CIM classes, we omit the prefix ’CIM ’ from their description.
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In addition, there are a number of reasons for separating
the definition aspects of a metric from its value(s):

A metric definition may apply to several different types
of resources. Reusing the same definition class ensures
that the metric has the same semantics across different re-
sources.

A management application must be able to understand
what all the possible metrics for a resource are, even if the
resource is not yet installed, running, or some metrics do
not have values.

The meta-data for a metric definition is different from
the meta-data for a metric value. In analogy to the
ObjectType macro in SNMP-based management [5], a
metric definition needs an identifier and name, as well as a
datatype, a unit, and a flag to indicate which kinds of cal-
culation can be applied to a metric when it is further pro-
cessed by a management application. Each metric value,
in contrast, needs at least an identifier, a name, a link to
its definition, as well as a timestamp.

Finally, there may be many values of a metric over time,
but the same definition applies to all of them. There is no
need to replicate the definition for each value instance.
In fact, replicating the information causes doubt that the
semantics are the same for all instances of a metric across
different resource types.

In addition to these basic principles, we have identified
further requirements that existing resource management
systems pose on the way metrics should be defined. They
are detailed below.

B. Address different Performance Data Access Types

For performance monitoring, we identified three impor-
tant access types that typical systems management appli-
cations might want to use:

1) Volatile or current data, where a management appli-
cation would like to see only the most current per-
formance value;

2) Long-term monitoring, where a data collector stores
collected performance values for future use.
This data access type typically requires a per-
formance repository, optionally with wrap-around
buffers to automatically discard older values, or a
mechanism to systematically condense the data over
time so that the available granularity is reduced over
time.

3) Asynchronous access to performance data, where
the application subscribes for events and gets no-
tified later with an event if the given criteria are
met (e.g., threshold exceeded, or application state
change). Such a subscription mechanism is cur-
rently being designed, but not yet part of the model.

For synchronous access, a Volatile property of the class
representing a metric value could be used to distinguish
between access to current data and long-term monitoring.
If it is set to true, there is only one metric value instance
for a given pair of managed resource and metric definition.
If Volatile is set to false, a time series of performance
values can be constructed by creating a separate metric
value object for each individual measurement.

C. Drill-down Capabilities for Metrics

An important task in performance management is the
ability to “drill down” to the root cause of a given prob-
lem. Systems management software can either help the
human administrators significantly in navigating to the
root cause of the problem, or it may analyze and solve
the problem without human intervention. Such problem
analysis can be done in four different ways [6]:

1) Changing the selected metric: In order to look at the
problem from a different view, like asking for CPU
utilization instead of memory utilization numbers.

2) Changing the analyzed resource: For having a
closer look at the resource object representing the
database management system instead of looking
at the resource object representing the application
server which makes use of the DBMS.

3) Navigating through the time dimension: For iden-
tifying when exactly the problem started to occur
and finding out what happened at a specific point in
time.

4) Navigating through a user-defined (”breakdown”)
dimension: For drilling-down on the metric by an
arbitrary dimension. Examples are drill-down by
delay/wait reason and drill-down by user or user
group.

Making use of the breakdown dimension capabilities
is comparable to the drill-down operation in data ware-
houses, where one wants to analyze a given situation in
more detail. A simple example is illustrated in figure 1.

DelayPercentage

DelayPercentage
BreakdownDimension = “DelayReason”

BreakdownValue = “Network”

DelayPercentage
BreakdownDimension = “DelayReason”

BreakdownValue = “CPU”

Fig. 1. Breakdown of a delay metric
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Here, the analysis starts with a “delay” metric for a
given resource. If, for example, a DBMS experiences de-
lays during 60% of a time interval, the performance an-
alyzer of a workload manager needs to find out why the
DBMS is delayed, and which resources should be allo-
cated for the DBMS to speed it up. By using the CIM
Metrics model, it should be possible to ask for metrics
with breakdown dimension “DelayReason”. With a met-
ric definition object, a CIM instrumentation should be able
to specify which breakdown dimensions it is able to of-
fer. The instrumentation may reply that the DBMS was
delayed 40% of the time due to network congestion and
20% of the time due to CPU resource contention.

ResourceConsumption

MetricName = “ResourceConsumption”
BreakdownDimension = “ServiceClass”

BreakdownValue = “GOLDJ2EE”

MetricName = “ResourceConsumption”
BreakdownDimension = “ServiceClass”

BreakdownValue = “GOLDMDB”

MetricName = “ResourceConsumption”
BreakdownDimension = “ServiceClass”

BreakdownValue = “SILVERJ2EE”

Fig. 2. Breakdown of a resource consumption metric

For a second example (figure 2), we assume a sys-
tem capable of grouping transactions by a mixture of user
groups and business applications, and where one can de-
fine the transaction group goals for response times as ser-
vice level objectives. If a group of very important cus-
tomers is using a J2EE application server with a relational
database back end, their transactions would be grouped in
service class GOLDJ2EE.

Breakdown dimensions yield an N-dimensional data
hypercube of performance data with dimensions time, re-
source, metric and various user-defined breakdown di-
mensions (see figure 3). Very simple performance mon-
itors only implement two dimensions: resource and met-
ric. The time dimension is implemented if the perfor-
mance monitor supports long-term analysis. This requires
a performance data repository, which may be a relational
database, or another kind of reliable data store. For long
term monitoring, there is often support to condense or dis-
card older performance values. The breakdown dimension
is currently only implemented by some advanced moni-
tors as it is complicated to implement it in an efficient
way so it can be used for daily systems management tasks
without compromising the performance.

The simplified data cube in figure 3 represents the di-
mensions of performance management data for a managed
resource, in this case a web server. The service classes
are called GOLDJ2EE, SILVERJ2EE and GOLDMDB. The
available metrics are called CPUUtil, IOIntensity and

PageInRate
10AM-11AM
GOLDJ2EE

PageInRate
11AM-12AM
GOLDJ2EE

PageInRate
12AM-1PM
GOLDJ2EE

IOIntensity
10AM-11AM
GOLDJ2EE

IOIntensity
11AM-12AM
GOLDJ2EE

IOIntensity
12AM-1PM
GOLDJ2EE

CPUUtil
10AM-11AM
GOLDJ2EE

CPUUtil
11AM-12AM
GOLDJ2EE

CPUUtil
12AM-1PM
GOLDJ2EE

Metric
= “CPUUtil”
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Fig. 3. Breakdown dimensions of performance management data

PageInRate. Some of the data values are associated to
the time interval 10AM-11AM, some to the time interval
11AM-12AM and some to the interval 12AM-1PM.

For a more detailed discussion of an implementation
that uses breakdown dimensions, the reader is referred to
[7] and [8].

III. THE CIM METRICS MODEL V2.7

The CIM Metrics Model, recently released as part of
CIM version 2.7, is partitioned into two distinct submod-
els:

� The Unit of Work submodel: It provides a means to
carry out response time measurements against an ap-
plication that is instrumented according to the Appli-
cation Response Measurement (ARM) specification
[9]. The corresponding CIM Unit of Work submodel
was standardized as part of CIM version 2.5.

� The BaseMetrics submodel: This model was re-
cently adopted by the DMTF and released as part
of CIM version 2.7. It is the subject of this paper.
The Metric Aggregation and Summarization exten-
sions to this model, described in section V, are cur-
rently being discussed in the DMTF Metric Exten-
sions Working Group for possible inclusion in CIM
version 2.9.

The BaseMetrics model comprises two classes:
� BaseMetricDefinition: This is the meta-data

for CIM Metrics. An instance of this class is created
for each metric that is to be defined.

4



MetricDefinition

Validity: uint16

ManagedElement

Caption : string
Description : string
ElementName : string

BaseMetricDefinition

Id : string {key}
Name: string
DataType: uint16 {enum}
Calculable: uint16 {enum}
Units: string
BreakdownDimensions: string[ ]

BaseMetricValue

InstanceId : string {key}
MetricDefinitionId: string {required}
MeasuredElementName: string
TimeStamp: datetime
Duration: datetime
MetricValue: string
BreakdownDimension: string
BreakdownValue: string
Volatile: boolean

MetricForMEMetricDefForME

*

*

* *

*

1

MetricInstance

Fig. 4. BaseMetrics Submodel of the CIM 2.7 Metrics Model

� BaseMetricValue: This is the value container
class for instances of BaseMetric information. One
metric value is contained in each instance of this
class and every one of its instances is associated with
an instance of BaseMetricDefinition.

In addition, several associations are defined. They re-
late any type of CIM managed resource (defined as sub-
classes of ManagedElement), metric definitions, and
metric values:

� MetricDefForME defines which BaseMetricDe-

finition objects are available for a given resource
(i.e., ManagedElement).

� MetricInstance allows the traversal from a
BaseMetricDefinition to one or more BaseMe-
tricValue objects that may exist.

� MetricForME allows finding all BaseMetricVa-
lue objects for a given ManagedElement.

In addition to these classes and associations, figure 4
also depicts a MetricDefinition class, which has a
property Validity. This class, however, is not part of
the BaseMetrics model, but belongs to the Unit of Work
model, which had been specified before work on the Base-
Metrics model had started. One of the properties of this
class was Validity, which indicates when a metric can be
considered valid: Some metrics are valid only at the be-
ginning of a unit of work (e.g., bytes to transfer), while the
unit of work is running (e.g., percent complete), or when
the unit of work is finished (e.g., pages printed). How-
ever, this information is only relevant in the context of
units of work (such as batch jobs, user-initiated interac-
tive operations, transactions executed under the control of
a TP Monitor) and not needed by a general purpose metric
definition. In addition, general purpose metrics are not as-
sociated to a unit of work, but to a ManagedElement. In

CIM, the way to remove attributes from existing classes
without breaking existing implementations and compati-
bility of the model is to create a new superclass. Thus,
BaseMetricDefinition is defined as the new base
class of the Metrics model; it contains all the previously
defined properties, without the Validity property.

A. Details of the BaseMetricDefinition class

The purpose of BaseMetricDefinition is to pro-
vide a mechanism for introducing a new metric definition
at runtime. An instance of BaseMetricsDefinition
defines a single metric with the following properties:

Id: an identifying property (a key) that has no seman-
tics. The usage scenario is that a CIM client application
may ask for all BaseMetricDefinitions associated to
a given resource.

Name: a descriptive name of the metric (e.g., ”Request-
Rate”).

DataType: a standard CIM data type like ”string”,
”uint32”, ”real64”.

Calculable: an enumeration that defines the character-
istics of calculations that may be performed on this met-
ric. The possible values are: 1) ”Non-calculable”: arith-
metic makes no sense, 2) ”Non-summable”: it makes
no sense to sum this value over many instances of
BaseMetricValue, 3) ”Summable”: It is reasonable to
sum this value over many instances, such as the number
of errors.

Units: identifies the specific units of a value, like Bytes
or Packets.

BreakdownDimensions: an array of strings that defines
the breakdown dimensions for this metric definition. See
section II-C for more details on BreakdownDimensions.

B. Details of the BaseMetricValue class

Once the meta-data for a metric has been defined
by means of an instance of BaseMetricDefinition,
the values for a metric are gathered in instances of the
BaseMetricValue class. One value is stored in each in-
stance. The properties in this class are:

InstanceId: an identifying property for the object that
has no semantics.

MetricDefinitionId: the reference to the BaseMe-

tricDefinition instance for a BaseMetricValue in-
stance.

MeasuredElementName: a descriptive name for the
managed element being measured. This property is re-
quired if no association to a ManagedElement is defined,
but may be used in other cases to provide supplemental
information. It allows metrics to exist independently of
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a ManagedElement. In addition, keeping the name of
the measured element as a property may be more effi-
cient than traversing the MetricInstance associations
if a very large amount of BaseMetricValues exist for a
given BaseMetricDefinition.

TimeStamp: the time when the value of a metric in-
stance is computed or retrieved from the instrumentation.
For a given BaseMetricValue instance, its TimeStamp
changes whenever a new measurement snapshot is taken
if the property Volatile (see below) is true. A management
application may establish a time series of metric data by
retrieving the instances of BaseMetricValue and sort-
ing them according to their TimeStamp.

Duration: the time duration over which this metric
value is valid. This property should not exist for time
stamps that apply only to a point in time but should be
defined for values that are considered valid for a certain
time period (e.g., sampling).

MetricValue: the measured value itself, stored as a
string. The value can be converted into a numeric CIM
data type by looking up the DataType property of the as-
sociated class BaseMetricDefinition.

BreakdownDimension: if present, specifies one Break-
downDimension from the BreakdownDimensions array
property, defined in the associated BaseMetricDefini-

tion class. This is the dimension along which this set of
metric values is broken down. See section II-C for more
details.

BreakdownValue: the value of the BreakdownDimen-
sion property defined for this metric value instance.

Volatile: a boolean value indicating that the value for
succeeding points in time may use the same object and just
change its properties (such as the MetricValue or Time-
Stamp). If false, the existing objects remain unchanged
and a new object is created for each new measurement. A
more detailed discussion is provided in section II-B.

IV. IMPLEMENTATION EXAMPLE: Z/OS RMF

The z/OS Resource Measurement Facility (RMF), is
the strategic IBM tool for performance monitoring of the
z/OS mainframe operating system. Having a CIM inter-
face to RMF provides the following benefits:

� The RMF data store can be accessed by remote,
platform-independent management applications. To
support this, standardized metric definitions with
common semantics need to be defined.

� For integration of systems management applications
of various disciplines – like a performance monitor
for DB2, a performance monitor for WebSphere, and
a high-availability software package – having a com-
mon data model and sharing parts of the conceptual

model enables a mixture of “best of breed” solutions,
and it is easier for software vendors to enter the mar-
ket as they do not need to implement a complete soft-
ware framework anymore.

While the CIM model is independent of any imple-
mentation architecture, the DMTF interoperability pro-
tocols implement operations to manipulate CIM objects.
A CIM Client sends operation requests to a CIM Server,
which processes the operations. In typical implementa-
tions, the CIM Server is split into two major components:
the CIM Object Manager (CIMOM) and one or more CIM
Providers. The CIMOM is responsible for protocol and
operation processing, security, and respositories; the CIM
Provider is the glue code between the resource instrumen-
tation and its CIM object representation.

RMF already has a persistent data store for performance
monitoring values that offers powerful searching capabil-
ities and which is highly optimized for performance and
minimal memory footprint. CIM compliant access to this
performance data can be implemented by encapsulating
the proprietary access methods for the existing z/OS RMF
performance repository with CIM providers. Note that
this does not create a new CIM based performance data
repository, but uses the existing one. Whenever a CIM
client application asks for performance data, the RMF
Metrics provider would forward this request to the exist-
ing z/OS RMF performance infrastructure and return the
result.

As z/OS RMF supports breakdown dimensions to query
the repository by job, workload or service class, the CIM
BaseMetrics model maps directly to corresponding RMF
metrics.

A. RMF Architecture with CIM Provider

IBM zSeries mainframe computers are typically used in
a cluster environment using Parallel Sysplex2 technology.
On every z/OS operating system image, one RMF data
gatherer is running. The data gatherer gets data periodi-
cally and writes data samples once per data collection cy-
cle (default: 100 seconds). The performance data samples
are stored for some period of time in a VSAM hierarchical
database, which is an integral part of the z/OS operating
system. As the performance of this data store is critical
to the overall system and accordingly optimized, there is
no motivation to replace it with a CIM Object Manager.
By using the CIM BaseMetrics model, one is able to ap-
ply an object-oriented model while keeping a hierarchi-
cal data store underneath. Figure 5 depicts this layered

2A Sysplex is a cluster of mainframes, tightly coupled using shared
storage in the Coupling Facilities.
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RMF Gatherer
VSAM database

RMF Gatherer
VSAM database RMF Gatherer

VSAM database

RMF Gatherer
VSAM database

CIM Client

z/OS Parallel Sysplex

RMF Sysplex Data Server

RMF Distributed Data Server (XML over HTTP)

CIM Provider

CIM Object Manager (CIMOM)

Fig. 5. Providing a CIM interface to the z/OS RMF data store

architecture. Using the RMF Sysplex Data Server, every
RMF instance in the Sysplex has access to all performance
data sysplex-wide. On top of the Sysplex Data Server is
the Distributed Data Server, which maps the RMF data
into XML over HTTP format. This interface could be ex-
ploited by a CIM Metrics Provider on top of z/OS RMF.

B. Important CIM Resource Classes in the RMF Context

For the implementation of a RMF CIM Metrics
provider, the most important resource classes are
ComputerSystem as a representation of the logical
partition in which the operating system is running,
OperatingSystem, Process, UnixProcess, Net-

workPort and FileSystem.
The following use cases illustrate the usage of the CIM

BaseMetrics model in the z/OS RMF context:
a) Use Case 1: Get current free physical memory of

z/OS Operating System: In this simple case, a manage-
ment application has to enumerate BaseMetricValue

instances that are associated to OperatingSystem for
a given BaseMetricDefinition instance. Ideally, the
key of the base metric definition instance can be used in
the association call. If no specific time stamp is given, the
RMF provider assumes that the most current metric value
is to be returned.

b) Use Case 2: Get time series of free physical mem-
ory metrics for z/OS Operating System: This is very simi-
lar to use case 1; in addition, the application also specifies
the timestamp it is looking for in the associator call.

c) Use Case 3: Get OS CPU consumption for a
given service class: The extension needed in order to
execute such a query is the specification of a breakdown
dimension for a z/OS service class.

Dealing with opaque keys: The BaseMetricValue

object instances are not actually persisted inside the CIM
Object Manager, but created only when a management ap-
plication asks for them. Therefore, a unique mapping be-
tween the InstanceId key property of the BaseMetric-

Value objects and the RMF identification of the metrics
values is needed, in both directions. To solve this prob-
lem, the InstanceId key property of BaseMetricValue
can be created by the CIM provider from the proprietary
RMF query string. This allows the CIM provider to deter-
mine the RMF query string from the InstanceId.

V. EXTENDING THE METRICS MODEL FOR METRIC

AGGREGATION AND SUMMARIZATION

Figure 6 depicts the CIM Metric Aggregation and Sum-
marization model, an extension to the CIM BaseMetrics
Model, introduced in section III. It is currently being dis-
cussed in the DMTF Metric Extensions Working Group
for inclusion in CIM version 2.9. Section V-A gives a
brief overview of the main classes and associations; sec-
tion V-B illustrates how the model works by means of
a detailed example. Finally, we describe in section V-
C our experiences with developing a CIM Measurement
Provider, a special kind of CIM provider that implements
a metric aggregation and summarization service, based on
the model. The functionality of the provider is related to
the Summarization Function [10] of the ISO–OSI Man-
agement Framework [11].

A. Aggregation and Summarization Model: Overview

The purpose of this model is to facilitate the com-
putation of arbitrary Composite Metrics, which are ag-
gregated from other metric types. These types are de-
rived from the BaseMetricDefinition class as fol-
lows: We distinguish between resource metrics (e.g.,
counters, gauges) that are directly retrieved from a
managed resource, composite metrics, and time series.
Thus, the model comprises three classes Resource-

MetricDefinition, CompositeMetricDefinition
and TimeSeriesDefinition – depicted in the left part
of Figure 6 – that hold the definitions for these metric
types.
ResourceMetricDefinition contains, in addition

to the properties inherited from BaseMetricDefini-

tion, properties that allow the specification of how coun-
ters and gauges are retrieved from managed resources. Its
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ManagedElement

Caption : string
Description : string
ElementName : string

BaseMetricDefinition

Id : string {key}
Name: string
DataType: uint16 {enum}
Calculable: uint16 {enum}
Units: string
BreakdownDimensions: string[ ]

BaseMetricValue

InstanceId : string {key}
MetricDefinitionId: string {required}
MeasuredElementName: string
TimeStamp: datetime
Duration: datetime
MetricValue: string
BreakdownDimension: string
BreakdownValue: string
Volatile: boolean

MetricForMEMetricDefForME

*

*

* *

*

1 MetricInstance

TimeSeriesDefinition

Window: uint16

CompositeMetricDefinition

InputParameters: string[]
OutputParameters: string[]

ResourceMetric

ResourceMetricDefinition

MeasurementAccess: string
MeasurementType: uint16
Timeout: uint16

PolicyTimePeriodCondition

TimePeriod: string
MonthOfYearMask: uint8[ ][Octetstring]
DayOfMonthMask: uint8[ ][Octetstring]
DayOfWeekMask: uint8[ ][Octetstring]
TimeOfDayMask: string
LocalOrUtcTime: uint16

Schedule

Interval : uint64

CompositeMetricTimeSeries

ElementValues: string[]

GetNewValue()

StatisticalCompositeMetric ArithmeticCompositeMetric

ArithmeticCompositeMetricDefinition

Operator: uint16 {enum}

StatisticalCompositeMetricDefinition

ComputationFunction: uint16 {enum}
ComputationContext : string

InputMetricValue

ArithmeticOperandDefinition

InputMetricDefinition

Sampling
Period

StatisticsForTSDef

ArithmeticOperand

StatisticsForTS

*

*

*

*

*

*

*

2
2

1

1

1

1

*

Fig. 6. Metric Aggregation and Summarization Model

additional properties MeasurementAccess, Measurement-
Type and Timeout contain data needed for interfacing with
local or remote managed resources that do not have a CIM
interface, such as SNMP-managed devices (cf. the exam-
ple in section V-B for more details).

The class CompositeMetricDefinition is further
refined to address two types of complex metrics that
need to be computed in a different way by the mea-
surement provider. The ArithmeticCompositeMe-

tricDefinition class represents an arithmetic opera-
tor (e.g., +,-,*,/), that aggregates two MetricDefini-

tions by following the association ArithmeticOpe-

randDefinition. The StatisticalCompositeMe-

tricDefinition class captures the definitions of sta-
tistical functions that apply to times series. Note that, in
contrast to the OSI Metric Objects and Attributes [12], we
do not define statistical functions as object classes, but as
enumerated integer values of the property Computation-
Function. As our model contains close to two dozen sta-
tistical function definitions, using a property for defining
them prevents cluttering of the model with an excessive
number of classes. Some statistical functions (e.g., min-
imum, maximum, mean, median etc.) can execute as-is
on a given time series, while others (e.g., round, percent-
age greater/less than threshold etc.) require an adminis-
trator to provide additional context (e.g., the precision of
the round function, the threshold against which values are
to be compared) to be carried out. This context must be
given by the administrator in the property Computation-
Context.

A TimeSeriesDefinition comprises the number of
metrics (Window) that will be stored for further com-

putation. The intervals during which metrics are col-
lected and placed into a time series (cf. the associ-
ation SamplingPeriod) are represented by the class
Schedule, which extends the class PolicyTimePe-

riodCondition of the CIM Policy Model [13] by a
property ’Interval’.

The three metric types, along with the function defini-
tions and schedules allow the definition of arbitrarily com-
plex metrics, such as the average utilization of network in-
terfaces or the maximum response time of a system within
the last hour, sampled every five minutes. Note that all the
classes discussed until now are used to represent the def-
initions — and not the actual measurement values. They
are instantiated whenever a new measurement algorithm
is deployed to the Measurement Provider. This can hap-
pen either manually by an administrator, or automatically,
e.g., when a new SLA containing these definitions is de-
ployed.

Once the Measurement Provider has access to the in-
stances of the definition classes, it uses these definitions to
retrieve and compute the actual values by instantiating the
subclasses of BaseMetricValue – depicted in the right
part of Figure 6 – and assigning values to their properties.

The computation of composite metric values requires
the automatic retrieval of metric values by the Measure-
ment Provider. During runtime, instances of Schedule
are used to trigger the retrieval of current metric values
and to perform metric computation and aggregation. The
input metrics and the (intermediate or final) results are
represented by the classes discussed below.

In regular time intervals, a Schedule instance
initiates the collection of a new metric value for
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ManagedElement

Caption : string
Description : string
ElementName : string

BaseMetricDefinition

Id : string {key}
Name: string
DataType: uint16 {enum}
Calculable: uint16 {enum}
Units: string
BreakdownDimensions: string[ ]

MetricDefForME

*

CompositeMetricDefinition

properties are propagated down to subclasses

ResourceMetricDefinition

Id : string {key}
Name: "TAs Processed"
DataType: "13 (uint64)"
Calculable: "2 (Summable)"
Units: "Transactions"
BreakdownDimensions: string[ ]
MeasurementAccess: "snmpget tmx:1.3.6.1.2.1.1.0 public"
MeasurementType: "snmpv2c "
Timeout: "60 seconds"

ArithmeticCompositeMetricDefinition

Id : string {key}
Name: "TA Ratio"
DataType: "15(real64)"
Calculable: "2(Summable)"
Units: "Ratio"
BreakdownDimensions: ""
Displayable: "NO (unsuitable f. Display)"
InputParameters: "TAs Submitted, TAs Processed"
OutputParameters: string[]

Operator: "4(Divide)"

ArithmeticOperandDefinition

ResourceMetricDefinition

Id : string {key}
Name: "TAs Submitted"
DataType: "13 (uint64)"
Calculable: "2 (Summable)"
Units: "Transactions"
BreakdownDimensions: string[ ]
MeasurementAccess: "snmpget tmx:1.3.6.1.2.1.2.0 public"
MeasurementType: "snmpv2c "
Timeout: "60 seconds"

ArithmeticOperand
Definition

PolicyTimePeriodCondition

TimePeriod: string
MonthOfYearMask: uint8[ ][Octetstring]
DayOfMonthMask: uint8[ ][Octetstring]
DayOfWeekMask: "0x000000057c"
TimeOfDayMask: "T080000/T210000"
LocalOrUtcTime: "1 (Local Time)"

Schedule

Interval : "5 Minutes "

SamplingPeriod

TimeSeriesDefinition

Window: "12"

StatisticalCompositeMetricDefinition

Id : string {key}
Name: "PctLTThreshold TA Ratio per Hour"
DataType: "15 (real64)"
Calculable: "2 (Summable)"
Units: "Percentage"
BreakdownDimensions: ""
Displayable: "YES (suitable f. Display)"
InputParameters: "TimeSeries"
OutputParameters: string[]

ComputationFunction: "12 (PctLessThanThreshold)"
ComputationContext : "0.6"

StatisticsForTSDef

InputMetricDefinition

Fig. 7. Instance Diagram of the Metric Aggregation and Summarization Definition Classes. The definitions are created by an Administrator or
taken from an SLA, and deployed to the Measurement Provider. The inheritance hierarchy is shown for illustrative purposes.

a TimeSeries object by invoking its GetNewVa-

lue() method. This causes the collection of the
ArithmeticCompositeMetric associated with the
TimeSeries, which is done by means of the CIM pro-
tocol operation getInstance, defined in [14]. Before
the ArithmeticCompositeMetric instance can be cal-
culated, its associated ResourceMetrics have to be re-
trieved. After the calculation is done, the result is given
back and stored within the ElementValues property of
a TimeSeries object, a string array whose size is de-
fined in the property TimeSeriesDefinition.Window.
TimeSeries instances may be used as input for any num-
ber of statistical composite metrics (cf. the association
StatisticsForTS). This reduces redundancy and en-
sures the integrity of measurement data by providing a
shared basis for statistical calculations.

The second possible activation mechanism is a CIM
request, issued by a CIM client to a CIMOM, and dis-
patched to the Measurement Provider. If a request for a
StatisticalCompositeMetric is received, the asso-
ciated TimeSeries instance has to be retrieved. Once
this is done, the average value is calculated based on the
values retrieved from the TimeSeries object.

B. Usage Example: Scheduled Measurements

We will now illustrate the usage of the model with a
workload management scenario. In order to distribute
workload, we are interested in finding out if a database
server is overloaded by examining its transaction ratio (de-

fined here, for the sake of simplicity, as the ratio of pro-
cessed and submitted transactions). This is done on an
hourly basis, with measurements taken every 5 minutes,
during business days from 8am to 9pm. We consider a
database server overloaded whenever its transaction ratio
is less than 0.6. If, over the course of an hour (12 mea-
surements), a server is overloaded for 30% of the time,
the workload management system needs to direct new in-
coming load to a different server. We further assume that
the database management system exposes its performance
data through an SNMPv2c (Community based SNMP ver-
sion 2) interface, out of which we are interested in the
number of submitted (TAsSubmitted) and processed trans-
actions (TAsProcessed).

Figure 7 depicts how this measurement request is ex-
pressed in the Metric Aggregation and Summarization
Model. The information can be either provided by an ad-
ministrator, or generated from a Service Level Agreement.
We begin with the two ResourceMetricDefinition

objects, depicted on the right side of figure 7 and gradu-
ally proceed to the left. Both objects, named ”TAs Sub-
mitted” and ”TAs Processed”, are accessed through SN-
MPv2c with the command specified in the property Mea-
surementAccess. A timeout value of 60 seconds is spec-
ified, as the counters are retrieved from a remote system
called ”tmx”.

The ArithmeticCompositeMetricDefinition

object specifies that the transaction ratio (”TA Ratio”)
is computed by applying the Operator ”Divide” to
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ManagedElement

Caption : string
Description : string
ElementName : string

BaseMetricValue

InstanceId : string {key}
MetricDefinitionId: string {required}
MeasuredElementName: string
TimeStamp: datetime
Duration: datetime
MetricValue: string
BreakdownDimension: string
BreakdownValue: string
Volatile: boolean

MetricForME

ResourceMetric

InstanceId : string {key}
MetricDefinitionId: string {required}
MeasuredElementName: "DB2 tmx"
TimeStamp: "03/28/03 - 10:55am"
Duration: datetime
MetricValue: "27500"
BreakdownDimension: string
BreakdownValue: string
Volatile: "true"

CompositeMetric

ArithmeticCompositeMetric

InstanceId : string {key}
MetricDefinitionId: string {required}
MeasuredElementName: "DB2 tmx "
TimeStamp: "03/28/03 - 10:55am"
Duration: datetime
MetricValue: "0.5"
BreakdownDimension: string
BreakdownValue: string
Volatile: "true"

ArithmeticOperand

ResourceMetric

InstanceId : string {key}
MetricDefinitionId: string {required}
MeasuredElementName: "DB2 tmx"
TimeStamp: "03/28/03 - 10:55am"
Duration: datetime
MetricValue: "55000"
BreakdownDimension: string
BreakdownValue: string
Volatile: "true"

ArithmeticOperand

TimeSeries

InstanceId : string {key}
MetricDefinitionId: "TA Rate per Hour TimeSeries"
MeasuredElementName: "DB2 @ Host tmx"
TimeStamp:"03/28/03 - 10:59am"
Duration: datetime
MetricValue: string
BreakdownDimension: string
BreakdownValue: string
Volatile: "false"

ElementValues:"0.4 0.5 0.8 0.3 0.9 ..... 0.7 0.5" StatisticalCompositeMetric

InstanceId : string {key}
MetricDefinitionId: "PctLTThreshold TA Rate per Hour"
MeasuredElementName: "DB2 @ Host tmx"
TimeStamp:"03/28/03 - 10:59am"
Duration: datetime
MetricValue: "0.4"
BreakdownDimension: string
BreakdownValue: string
Volatile:"false"

InputMetricValue

StatisticsForTS

Schedule

Interval : "5 Minutes "

The 5 Minute Schedule
determines the placement of an
ArithmeticCompositeMetric into a

TimeSeries

Fig. 8. Instance Diagram of the Metric Aggregation and Summarization Value Classes. They are instantiated by the Measurement Provider.

the objects associated by means of an Arithmetic-

OperandDefinition association. As the order of the
parameters is important for the divide operation, the
InputParameters array lists the operands in the proper
order.

Once the transaction ratio is specified, one needs
to define the validity period and the sampling in-
terval, as well as the number of values that need
to be kept for further processing. PolicyTime-

PeriodCondition.DayOfWeekMask is set to ”Mon-
day through Friday” and PolicyTimePeriodCondi-

tion.TimeOfDayMask is set to ”from 8am to 9pm”.
These values are encoded according to the mapping speci-
fied in the Policy Core Information Model [15]. The Inter-
val property of Schedule explicitly states that measure-
ments of ”TA Ratio” need to be taken every 5 minutes (cf.
the association InputMetricDefinition) and stored
in a TimeSeries object whose Window size is 12. By
implementing the class TimeSeries as a ring buffer, an
hour-long set of measurements, taken every 5 minutes, is
available for further processing.

Finally, one needs to determine the percentile of how
long a database server was subject to an overload condi-
tion by comparing the values stored in the TimeSeries

object against a threshold (0.6 in our case). This
is expressed in the class StatisticalCompositeMe-

tricDefinition as follows: The ComputationFunction
property is set to ”PercentageLessThanThreshold”, which
determines how many elements of a time series are below
a given threshold, expressed as a percentage; the thresh-

old itself is expressed by setting ComputationContext to
”0.6”. Note that all the definition objects described above
remain constant for every measurement type and are de-
fined once.

Figure 8 depicts the instances of the value ob-
jects, whose object classes are derived from the class
BaseMetricValue. The purpose of the Schedule class
is to trigger the insertion of a new measurement into
a TimeSeries object every 5 minutes. This leads to
the traversal of the InputMetricValue association to
obtain the ArithmeticCompositeMetric value that
needs to be inserted, which, in turn, triggers the re-
trieval of the ResourceMetric objects that are as-
sociated with ArithmeticCompositeMetric. The
two ResourceMetric objects hold the values of ”TAs
Processed” (27500) and ”TAs Submitted” (55000) at
the time the measurement is taken (recorded in the
TimeStamp property). According to the specification
in ArithmeticCompositeMetricDefinition, they
need to be divided, which yields an ArithmeticCom-

positeMetric.MetricValue of ”0.5”. This value is in-
serted in the TimeSeries.ElementValues array property
for further processing. In our case, the Percentage-
LessThanThreshold function is used to determine how
many elements of the TimeSeries.ElementValues are
below the threshold of 0.6, and express this value as
a percentage in the property MetricValue of the class
StatisticalCompositeMetric. In our case, the re-
sult is ”0.4”, which means that a database server has been
overloaded 40% of the time. Based on the locally stored
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threshold of 30%, a workload manager would have to is-
sue corrective actions, e.g., dispatching incoming requests
to other servers.

The example also shows how a time series can be used
to decouple the computation of a statistical composite
metric from the process of aggregating a potentially large
amount of arithmetic composite or resource metrics. The
advantage of using a time series as a data store is that one
does not need to keep all its associated metric objects as
separate instances, but can reuse object instances by over-
writing their values periodically. This is done by setting
the Volatile property in these classes to ”true” (cf. the dis-
cussion in section II-B). In our example, having a time se-
ries with a window size of 12 eliminates the need of keep-
ing a total of 36 resource and arithmetic composite metric
objects in memory, because the values of the 3 objects get
overwritten whenever a new measurement is taken.

C. Implementation of the Measurement Provider

The Measurement Provider was successfully imple-
mented with an open-source CIMOM implementation,
the SNIA (Storage Networking Industry Association)
CIMOMversion 0.7 [16] and the Java Development Kit
1.3.1. One of the major novelties of our approach is the
use of active CIM providers. While active management
agents have been known in the network management com-
munity for some time, CIM providers are, until now, state-
less resource providers. They are passive and surface in-
formation from managed resources without providing so-
phisticated processing capabilities. Usually, the retrieval
of information is initiated by the CIM client, a manage-
ment application. Stateless providers may cause a consid-
erable overhead, e.g., by requiring polling of new values
from management applications.

As described in section V-B, the CIM providers we im-
plemented (described in detail in [17]) actively compute
the values of high-level metrics by autonomously retriev-
ing low-level resource metric values from managed re-
sources and aggregating them, without being triggered by
a management application. The retrieval of new metrics is
automatically requested by the provider implementing the
Schedule class of the model. Making use of this dele-
gated management functionality reduces the overhead in-
troduced by polling significantly.

To minimize the implementation costs, instances of
simple classes like BaseMetricDefintion are created
and statically stored in the CIM Repository. The reposi-
tory is an internal database of a CIMOM implementation
that keeps class definitions and static instances of a spec-
ified set of these classes. For more complex classes, such
as Schedule and the subclasses of BaseMetricValue,

static creation and storage is not sufficient. For exam-
ple, metric value classes have to perform calculations
every time they are retrieved by a CIM client (aka the
management application). In addition, the Schedule

class has to independently trigger the calculation of
the metrics. The following classes are implemented
by individual providers: Schedule, ResourceMetric,
TimeSeries, ArithmeticCompositeMetric, and
StatisticalCompositeMetric. These providers not
only deliver the data that instantiates the aforementioned
classes, but also implement the logic needed for process-
ing activities like scheduling and metric aggregation.

VI. SLAS AND THE CIM METRICS MODEL

Along with organizational data describing the involved
parties, a Service Level Agreement (SLA) [18] comprises
the description of a service, the definitions of the met-
rics used to measure the quality of service (SLA parame-
ters), and the service levels that define the allowable value
ranges for each service parameter along with (monetary)
penalties for violating service levels. Today, a complete
SLA is unlikely to be represented in CIM, because this
would imply that both service provider and service cus-
tomer use CIM compliant management systems. How-
ever, at some point in the SLA monitoring process, SLA
parameters need to be mapped onto the performance data
that (CIM based) managed resources expose so that the
managed resources can interpret and consume the SLA
document that is sent to them. What is needed is an auto-
mated provisioning of the SLA monitoring environment,
according to the service parameter defintions in an SLA.

This is where the CIM BaseMetrics model (cf. sec-
tion III) and the Metric Aggregation and Summarization
Model (described in section V) can be applied: The SLA
parameter definitions and the way how they are aggre-
gated from resource metrics are often made explicit in
today’s SLAs and follow exactly the same pattern as the
workload management scenario in section V-B: First, in
the SLA deployment phase, SLA parameter definitions
are mapped onto BaseMetricDefinition and its sub-
classes. In a second step, the measurements are car-
ried out, whose objects are represented as subclasses of
BaseMetricValue. This approach, along with a proto-
type implementation, is described in detail in [17]. Simi-
lar work [19] has been carried out for mySAP CRM 3.0,
SAP’s customer relationship management software.

It should be noted that recent work in the Policy Work-
ing Group aims at extending CIM to express SLAs.
Once an SLA class is defined in the CIM Policy Model,
the aggregation and summarization model can be fully
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reused by introducing just two new associations SLA-

ParameterDefinition and SLAParameter that re-
late the SLA class to BaseMetricDefinition and
BaseMetricValue, respectively.

VII. CONCLUSIONS AND OUTLOOK

We have described the CIM BaseMetrics Model, which
has recently been released as part of CIM version 2.7. To
illustrate the applicability of the model to real-life envi-
ronments, we have described two typical usage scenar-
ios: the first scenario deals with instrumenting an existing
performance management data store of a mainframe clus-
ter, while the second, more complex scenario describes a
model for the aggregation and summarization of metrics,
based on workload management policies or SLAs.

During this work, it was recognized that the advantages
of the late binding concept, which the Metrics Model is
based upon, apply to a wide range of managed elements
(services, devices, systems, networks, SLAs, etc.). In
addition, our work has shown that fairly complex oper-
ations, such as breaking down performance data accord-
ing to user-defined criteria and the creation of time se-
ries can be carried out with a small set of information, de-
fined as properties in the two classes of the BaseMetrics
Model. Finally, we have demonstrated that it is possible
to implement reusable management services in CIM by
specifying their data model in the same way as one would
do when a resource needs to be instrumented. The archi-
tecture of a general-purpose CIM Object Manager, along
with the CIM Provider concept, is capable of supporting
the needs of autonomous management services without
further modification. We consider the results of the work
described in this paper as a first step towards the goal of
extending CIM from a resource instrumentation frame-
work to a management architecture for truly distributed
management.

Based on the experiences gained during this work, the
CIM Metric Extensions Working Group is currently ex-
tending the model to facilitate the integration of perfor-
mance metrics that have been defined in different manage-
ment environments, such as SNMP-based management,
or proprietary data stores. In addition, a hysteresis model
and a subscription-based notification mechanism based on
the CIM Event Model are currently being developed, so
that management applications get notified whenever a pre-
defined threshold is crossed. The emerging Service Level
Agreement model, which is currently being developed by
the CIM Policy Working Group, is another area where the
concepts underlying the Metrics Model could be applied.
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