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Abstract
We present a unified algorithmic framework for some classes
of digital halftoning algorithms including Direct Binary
Search (DBS) and dither mask generation algorithms such
as Void and Cluster, BIPPSMA, and clustered dot with
blue noise interpolation. Although these algorithms are
different and used in different ways, e.g. Direct Binary
Search is a global halftoning process, whereas dither masks
are used in point halftoning processes, we show that they
are all variations of a core algorithm. This makes it eas-
ier to compare the performance of these algorithms. Fur-
thermore, by viewing these algorithms in the same frame-
work, algorithmic extensions and implementation tricks
and techniques among these algorithms can be more easily
shared and their benefits exploited.

The core algorithm is essentially an optimization al-
gorithm using pixel swapping where the cost function de-
scribes the perceptual difference between the halftone im-
age and the color image when viewed at a distance. We
compare various algorithms in the literature as they are cast
in this framework. In particular, this framework allows us
to derive a more efficient implementation of DBS.

1. Introduction

Most printers today can print in only a limited number of
colors. Digital halftoning is a technique for converting a
full color image into a halftone image which uses a lim-
ited number of colors. The halftone image is such that it
appears to consist of many colors and resembles the full
color image when viewed at a distance. For example, a
picture of black and white dots can appear to display gray
levels when viewed from some distance. In the rest of this
paper we will refer to the full color image as theinput im-
age and the halftone image as theoutputimage.

There are in general three classes of halftoning algo-
rithms: point processeswhere each output pixel depends
only on the value of the current input pixel,neighborhood
processessuch as error diffusion where each output pixel
depends on the input and output pixels in a local neigh-
borhood andglobal processeswhere each output pixel de-

pends on all the input and output pixels. In fact, the di-
rect halftoning algorithms considered in this paper are all
global processes. The present paper is mainly concerned
with halftoning algorithms for grayscale images where the
output pixel is either black or white. We will represent a
grayscale image as a matrix of real numbers between 0 and
1, with 0 denoting white and 1 denoting black. The color
case can be dealt with by converting the color image into
separate color channels (such as CMYK) and applying the
grayscale algorithm to each channel. There are also meth-
ods for adapting bi-level output algorithms to the case of
multiple output levels. In the sequel, a (halftone)pattern
will be defined as a collection of black and white pixels on
a rectangular grid, i.e. a matrix of 0’s and 1’s.

In point processes, the prevalent method is to use a
dither mask to halftone an image and the goal is to de-
sign a dither mask which produces nice looking halftone
patterns. The design of a dither mask is equivalent to de-
signingN (usually 256) halftone patterns, one for each of
the N possible gray values while satisfying the stacking
constraint, i.e. the pixel locations of the black pixels in a
pattern for a particular gray level must be a subset of those
locations in a pattern for a darker gray1. Recently, there has
been great interest in constructing blue noise or stochastic
dither masks where the patterns have a dispersed random
look. An excellent review of algorithms for constructing
such dither masks can be found in [1]. If we view the con-
struction of the dither mask as halftoningN different uni-
form gray images, then dither mask construction is itself
a halftoning problem. This allows us to consider both the
design of a dither mask and direct digital halftoning under
the same framework.

1Although this constraint can be relaxed in lookup table type algo-
rithms, care must be taken to produce correlated adjacent patterns to pre-
vent sudden texture jumps. Correlated patterns are a natural consequence
of the stacking constraint.



2. Image halftoning via restricted pixel
swapping

2.1. Core algorithm

We present the core halftoning algorithm used to halftone
an image directly or to construct a dither mask. The algo-
rithm produces a halftone output image from a grayscale
input image by swapping pixels of an initial output image.
The set of pixels which can be swapped are restricted to
satisfy some constraints. It can be viewed as an optimiza-
tion algorithm where the goal is to minimize the perceptual
difference between the halftone image and the grayscale
image and pixels in the halftone image are swapped to
reduce this difference. Pseudo-code of this algorithm is
shown in Fig. 1. Given an imageI, the algorithm attempts
to generate a halftone patternP such that theerror or cost
E(P, I) is minimized. The swapping of pixels is accom-
plished by toggling a set of black pixels and a set of white
pixels. The constraints are expressed by the setS0, S1 and
S2 and will be specified later depending on the application.
In general, these sets depend on whether the algorithm is
used to directly halftone an image or to create a dither
mask, with further restrictions onS1 andS2 depending on
the search heuristic used. As written in Fig. 1 the black
pixels are first picked to be swapped with white pixels, al-
though in some iterations, the roles of black and white pix-
els can be reversed, i.e. by interchanging the word “black”
with “white” and the word “high” with “low”.

1. Generate initial patternP such that pixels inS0 are
black.

2. Calculate first filter errorL1(P − I).

3. Selectn black pixels inS1 with high first filter error.

4. Toggle thesen pixels resulting in patternP ′.

5. Calculate second filter errorL2(P ′ − I).

6. Selectn white pixels inS2 with low first filter error.

7. Decide whether to swap or not. If so, toggle thesen
pixels inP ′ to obtain a newP . Otherwise, keep the
old P .

8. Loop back to step 2 until stopping criteria are met.

Figure 1: Pseudo-code of core halftoning algorithm.

2.1.1. Image Halftoning
In this case, the imageI is the grayscale image to be

halftoned andS0 is the empty set. The restricted setsS1

and S2 can be all the pixels in the image. However, to
speed up implementation, the setsS1 andS2 are set to be
significantly smaller (Sect. 3.3).

2.1.2. Dither mask construction
In this case, a collection ofN uniform gray images

I are halftoned sequentially2, one for each graylevel0 ≤
g ≤ 1. The order in which these images are halftoned de-
termines the setsS1 andS2. A possible order is to halftone
the midtone gray first, and then successively halftone lighter
and lighter grays. When that is finished, starting from the
midtone gray, darker and darker grays are halftoned. Other
ordering schemes such as binary tree partitioning are also
possible [1]. To satisfy the stacking constraint,S0, S1 and
S2 for halftoning graylevelg are determined as follows.
Let ga andgb be the graylevels closest tog which have
already been halftoned such thatga < g < gb. ThenS0

are the black pixel locations of the pattern forga. The sets
S1 andS2 are both defined as the pixel locations which
are black in the pattern forgb but white in the pattern for
ga. Depending on the search heuristic and the algorithm,
additional restrictions onS1 andS2 are imposed (Sect. 3).

2.2. Detailed explanation of core algorithm

Initial pattern generation (Step 1 in Fig. 1)
To generate an initial pattern, first it is determined how

many black pixels (saym) should be in the pattern in ad-
dition to the pixels inS0. Generally this is determined to
be such that the average gray level of the initial pattern is
close to the average gray level of the imageI, possibly tak-
ing into account the tone reproduction curve and dot gain
considerations [2]. Two ways to putm black pixels inS1,
are either by randomly selectingm locations inS1 or by
running Fig. 1m times withn = 1, each time adding one
black pixel. When a pattern is initialized this second way it
can be adequate enough to be used as a final pattern with-
out running any iterations of Fig. 1 which will be referred
to as agreedyapproach.

Selecting pixels inS1 and S2 to swap
One possible way is to pick then pixels with the high-

est filter error and swap them with then pixels with the
lowest second filter error. By not requiring them to have
the highest (lowest) filter error, other heuristics for picking
the n pixels in S1 andS2 are possible which potentially
take less time and generate better patterns.

Calculating filter error
The choice of the cost functionE(P, I) is used to model

the perceptual difference between the grayscale imageI
and the halftone patternP and should take into account
the human visual system (HVS). To make the problem
tractable, usually it is assumed that the HVS acts as a lin-
ear shift-invariant low-pass filter. Some examples of such
HVS based filters can be found in [3, 4]. Other non-HVS
based filters such as Gaussian filter [5] or Butterworth fil-
ter [6] have also been used. In addition to HVS, the dot

2Threshold swapping methods to optimize several patterns at once
have not been very successful [1].



gain characteristics and printer spot profile of the printer
model can also be incorporated into the filter, e.g.L1 =
Lhvs ◦ Lspot.

The filtersL1 andL2 are used in Fig. 1 to minimize
the cost functionE. In general they can be chosen as the
filters described above, and a priori they don’t have to be
the same as the filters used in definingE. WhenE(P, I) is
chosen as‖Lhvs(P − I)‖2, there is a relationship between
the filtersLhvs andL1 andL2 (Sect. 3.3) which allowsE
to be decreased at each iteration. The filter errorL(P − I)
is the convolution between the impulse responses ofL and
P − I. For dither mask construction the convolution is cir-
cular to account for the fact that the dither mask is tiled
periodically in the halftoning process. Since the FFT is
directly suitable for performing circular convolution, algo-
rithms such as BIPPSMA utilize FFT for this purpose. On
the other hand, since the difference of the halftone patterns
between iterations is at most2n pixels, very efficient meth-
ods for computing the filter errors from the filter errors of
the previous iteration are possible, provided the support of
the filter impulse response is small. Furthermore, when
L1 = L2, the difference betweenP andP ′ is n pixels and
thus the second filter errorL2(P ′−I) can be obtained from
the first filter error by adding (or subtracting) the impulse
response centered at these pixels. Similarly the first filter
response in the next iteration can be obtained from the sec-
ond filter error in this way. Also note that for dither mask
construction,I is a uniform gray image, and the search for
the pixels with the highest (or lowest) filter errorL(P − I)
is equivalent to the search for pixels with the highest (or
lowest)L(P ), i.e. L(P ) can be used as the filter error.

Stopping criteria
The stopping criteria for exiting the loop in Fig. 1 can

be when the maximum number of iterations are reached
or when the change in error is small between successive
iterations. A double loop can also be used where in the
inner loop the numbern is decreased at each iteration until
it reaches1 and in the outer loop the numbern is reset to a
specified value as is the case in BIPPSMA.

3. Comparison with other algorithms

Many algorithms for creating dither masks or for direct
halftoning fall under the class of algorithms in Fig. 1.

3.1. Simulated annealing

In this approach [1],n = 1, and the decision to swap pixels
(Step 7 in Fig. 1) is only accepted if there is a reduction in
cost or if the increase in cost is below a random threshold,
with the average magnitude of this threshold decreasing as
time goes on. The idea is to initially accept some swaps
which increase the cost in order to move out of local min-
ima, with the number of such swaps decreasing as time
goes on (and the system “cools”).

3.2. Void and Cluster

The Void and Cluster algorithm [5] uses a Gaussian filter
for L1 andL2 and uses the second way for initializing the
pattern (Sect. 2.2). After the first pattern is generated with
Fig. 1, the rest of the patterns are generated with the greedy
approach. The pixel inS1 with the highest filter error is
swapped with the pixel inS2 with the lowest filter error.
For the first pattern,S1 and S2 are all the pixels. This
choice ofS1 can lead to a suboptimal local minimum of
the cost function that can be improved upon by choosing
S1 to be a single pixel andS2 a local neighborhood as is
done in DBS [7].

3.3. Direct Binary Search (DBS)

In DBS, the costE to be minimized is‖Ldbs(P − I)‖2.
The pixels are traversed in some order and for each pixel,
a neighborhood of pixels is examined to determine which
pixel can be swapped with the current pixel which reduces
E the most3. This corresponds to settingS1 equal to a sin-
gle pixel andS2 to be a neighborhood ofS1. The change
in E due to swapping a pixelp0 with a pixelp1 is [8]:

∆E = 2(cpp(0)− acpẽ(p0) + acpẽ(p1)− cpp(p0 − p1))

wherea = 1 if pixel p0 is black and pixelp1 is white and
a = −1 if pixel p0 is white and pixelp1 is black.cpp is the
autocorrelation function ofLdbs andcpẽ is the correlation
betweenLdbs andLdbs(P − I). If a swap is accepted4, cpẽ

is updated by:

cpẽ(p)← cpẽ(p)− acpp(p− p0) + acpp(p− p1)

Given a fixed pixel locationp0, a neighborhoodN of p0

is searched for a suitable pixelp1 to swap with. Since the
first two terms in∆E are independent ofp1, this search
can be accomplished by minimizingw(p) = acpẽ(p) −
cpp(p0 − p), i.e. p1 = argminp∈N w(p). A swap is ac-
cepted if∆E < 0, or equivalently ifw(p1) < w(p0).
Sincecpp is symmetric, the update ofcpẽ can be written as
cpẽ(p) ← a(w(p) + cpp(p − p1)). It’s easy to see that by
consideringcpẽ as the first filter error,aw(·) as the second
filter error andcpp as the impulse response ofL1 = L2,
this can be cast in the framework of Fig. 1. Similar to Void
and Cluster, the pixel with the highest first filter error is
swapped with the pixel with the lowest second filter error.
In this caseL1 = L2 in Fig. 1 is the autocorrelation func-
tion of the filterLdbs used in definingE.

This approach has several speed and performance ad-
vantages over DBS as described in [8]. First, to evaluate

3DBS allows toggling of pixels, but it is not preferred in creating
dither masks as the number of black pixels is known in advance. We con-
centrate mainly on pixel swapping due to limited space, but pixel toggling
can be easily included. For instance, it is easy to show that toggling pixel
p0 reducesE more than swappingp0 with p1 if w(p1) > − 1

2
cpp(0).

4In [8] heuristics were given to decide whether to swap or not, e.g.
only one swap is allowed per block of pixels considered.



the effect of a swap takes less table lookups and additions
than in DBS. Second, the computation ofw(p) used in
finding the pixelp1 to swap can be reused in the update
of cpẽ. Third, in [8], the search neighborhoodN is fairly
small (5 pixels) to speed up computation. The approach
presented here allows this neighborhood to be enlarged to
be the support of the filter anytime a swap is accepted with-
out much increase in computation. In other words, once a
swap betweenp0 andp1 is accepted, the choice ofp1 can
be refined which can result in a larger decrease ofE.

3.4. BIPPSMA

In this algorithm [6], the FFT (and pointwise multiplica-
tion) is used to perform the circular convolution. The main
difference between BIPPSMA and other algorithms is that
the second filter error is the same as the first filter error
L1(P − I) as opposed toL2(P ′ − I) in the other algo-
rithms, i.e. the calculation ofP ′ (Step 4 in Fig. 1) is
not needed. At each inner iteration the number of pixels
swappedn is reduced by half untiln = 1.

3.5. Supercell clustered dot dither masks with blue noise
interpolation

In [2], the visually pleasant patterns in a supercell clustered
dot dither mask (or a mask created by replicating single
clustered dot cells) are chosen. These patterns are fixed
and the remaining patterns are created as in Sect. 2.1.2.
This results in a dither mask that preserves the look of a
clustered dot dither while reducing the periodic artifacts in
common supercell techniques. Furthermore, dot gain char-
acteristics can be incorporated into the dither mask obviat-
ing the need for a separate tone reproduction curve.

3.6. Particle repulsion

A characteristic of stochastic dither patterns is that the black
pixels are as far away from each other as possible. This
suggests a physical model of particles with repulsive forces
between them. The particles settle to an equilibrium which
is the desired pattern. This can be cast into our frame-
work if we considerL(P ) as thepotentialof the particles
[9]. The filter impulse response is then the potential due
to a single particle5. L(I) corresponds to another poten-
tial which is subtracted from the particles potentialL(P )
to form thetotal potentialof the systemVt = L(P − I).
The equilibrium occurs when no forces act on the parti-
cles, i.e. the force field~E = −∇Vt = 0 at the particles. A
sufficient condition for this is whenVt is constant, which
supports Void and Cluster’s aim of minimizing the maxi-
mum variation ofVt. By adding a suitable constant, this
equilibrium can be assumed to beVt = 0, which can be

5For example, in the case of electrostatic force,V (x, y) =
q/4πε0√

x2+y2
.

achieved by minimizing the costE = ‖Vt‖ = ‖L(P−I)‖.
The particles move towards this equilibrium and for small
timesteps the particles move a small distance, correspond-
ing to swapping a black pixel with a white pixel in a small
neighborhood. Thus the motion of the particles can be
mimicked in Fig. 1 by makingS1 to be all the black pix-
els andS2 to be the local neighborhoods of the black pix-
els with the additional constraint that each black pixel can
only swap with a white pixel in its neighborhood.

4. Conclusions

We have presented a framework for digital halftoning un-
der which several classes of blue noise related halftoning
algorithms fall. One benefit of this framework is that im-
plementation details such as filter choice, filter errors up-
date method, search heuristic, pattern initialization, and
stopping criteria can be more easily shared among these
algorithms. In particular, by using this framework, we pre-
sented an implementation of DBS which has some perfor-
mance benefits over previous implementations.
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