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Abstract pends on all the input and output pixels. In fact, the di-

We present a unified algorithmic framework for some classegt halftoning algorithms considered in this paper are all
of digital halftoning algorithms including Direct Binary 9lobal processes. The present paper is mainly concerned
Search (DBS) and dither mask generation algorithms sucWith halftoning algorithms for grayscale images where the
as Void and C|uster, BIPPSMA, and clustered dot W|thOUtpUt pixel is either black or white. We will represent a
blue noise interpolation. Although these algorithms aredrayscale image as a matrix of real numbers between 0 and
different and used in different ways, e.g. Direct Binary 1, with O denoting white and 1 denoting black. The color
Search is a global halftoning process, whereas dither maskgse can be dealt with by converting the color image into
are used in point halftoning processes, we show that the§eparate color channels (such as CMYK) and applying the
are all variations of a core algorithm. This makes it eas-grayscale algorithm to each channel. There are also meth-
ier to compare the performance of these algorithms. Furods for adapting bi-level output algorithms to the case of
thermore, by viewing these algorithms in the same framemultiple output levels. In the sequel, a (halftopeftern
work, algorithmic extensions and implementation tricksWill be defined as a collection of black and white pixels on
and techniques among these algorithms can be more easiiyrectangular grid, i.e. a matrix of 0's and 1's.

shared and their benefits exploited.

The core algorithm is essentially an optimization al- In point processes, the prevalent method is to use a
gorithm using pixel swapping where the cost function de-dither mask to halftone an image and the goal is to de-
scribes the perceptual difference between the halftone insign a dither mask which produces nice looking halftone
age and the color image when viewed at a distance. Wpatterns. The design of a dither mask is equivalent to de-
compare various algorithms in the literature as they are casigning N (usually 256) halftone patterns, one for each of
in this framework. In particular, this framework allows us the N possible gray values while satisfying the stacking

to derive a more efficient implementation of DBS. constraint, i.e. the pixel locations of the black pixels in a
pattern for a particular gray level must be a subset of those
1. Introduction locationsin a pattern for a darker gfayrRecently, there has

been great interest in constructing blue noise or stochastic
Most printers today can print in only a limited number of dither masks where the patterns have a dispersed random
colors. Digital halftoning is a technique for converting a |00k. An excellent review of algorithms for constructing
full color image into a halftone image which uses a lim- Such dither masks can be found in [1]. If we view the con-
ited number of colors. The halftone image is such that itStruction of the dither mask as halftoningdifferent uni-
appears to consist of many colors and resembles the fufP'm gray images, then dither mask construction is itself
color image when viewed at a distance. For example, & halftoning problem. This allows us to consider both the
picture of black and white dots can appear to display gra)ﬂe&gn of a dither mask and direct digital halftoning under
levels when viewed from some distance. In the rest of thighe same framework.
paper we will refer to the full color image as thmutim-
age and the halftone image as thegputimage.

There are in general three classes of halftoning algo-

rithms: point processegvhere each output pixel depends
only on the value of the current input pixekighborhood

processesuch as error diffusion where each output pixel 1Although this constraint can be relaxed in lookup table type algo-
rithms, care must be taken to produce correlated adjacent patterns to pre-

depends on the input and output pixels in a qual ne'ghVent sudden texture jumps. Correlated patterns are a natural consequence
borhood andjlobal processeshere each output pixel de- of the stacking constraint.




2. Image halftoning via restricted pixel 2.1.2. Dither mask construction
swapping In this case, a collection oV uniform gray images
I are halftoned sequentiaflyone for each grayleveél <
2.1. Core algorithm g < 1. The order in which these images are halftoned de-
i ) termines the setS; andS,. A possible order is to halftone
We present the core halftoning algorithm used to halftongne midtone gray first, and then successively halftone lighter
an image directly or to construct a dither mask. The algoypng lighter grays. When that is finished, starting from the
rithm produces a halftone output image from a grayscalénigtone gray, darker and darker grays are halftoned. Other
inputimage by swapping pixels of an initial outputimage. orgering schemes such as binary tree partitioning are also
The set of pixels which can be swapped are restricted t‘bossible [1]. To satisfy the stacking constrai, S; and
satisfy some constraints. It can be viewed as an optimizaS2 for halftoning graylevel are determined as follows.
tion algorithm where the goal is to minimize the perceptual| ot g, and g, be the graylevels closest towhich have
difference between the halftone image and the grayscr:1l§|ready been halftoned such that < g < g,. ThensS,
image and pixels in the halftone image are swapped Qe the black pixel locations of the pattern for The sets
reduce this difference. Pseudo-code of this algorithm isg, and s, are both defined as the pixel locations which
shown in Fig. 1. Given an imagk the algorithm attempts  gre plack in the pattern fay, but white in the pattern for
to generate a halftone pattefhsuch that thesrror or cost g.. Depending on the search heuristic and the algorithm,

E(P,I) is minimized. The swapping of pixels is accom- 3qgitional restrictions 08; andS. are imposed (Sect. 3).
plished by toggling a set of black pixels and a set of white

pixels. The constraints are expressed by the&geb; and ] ) )

S, and will be specified later depending on the application2-2- Detailed explanation of core algorithm

In general, these sets depend on whether the algorithm ilﬁitial pattern generation (Step 1 in Fig. 1)

used to _dlrectly halftone_an Image or to creatg a dither To generate an initial pattern, first it is determined how
mask, with further restrictions aofl, andS-> depending on many black pixels (say2) should be in the pattern in ad-

the search heuristic used. As written in Fig. 1 the bladeition to the pixels inSy. Generally this is determined to

m)c()ighairr(\asfgfr:ep:f;;?ict)%sbir?;vﬁgsg fvgrgcvlllr:;% s\ilﬁls’p?)l('be such that the average gray level of the initial pattern is
' “close to the average gray level of the imdgpossibly tak-
els can be reversed, i.e. by interchanging the word “black’ verage graylev IMagpossibly

e A ing into account the tone reproduction curve and dot gain
with “white” and the word “high” with “low”. considerations [2]. Two ways to put black pixels inSy,
are either by randomly selecting locations inS; or by
running Fig. 1m times withn = 1, each time adding one
black pixel. When a pattern is initialized this second way it

1. Generate initial patter® such that pixels irb, are
black.

lowest second filter error. By not requiring them to have
the highest (lowest) filter error, other heuristics for picking
Decide whether to swap or not. If so, toggle these then pixel's in 51 and S, are possible which potentially
pixels in P’ to obtain a newP. Otherwise, keep the ake less time and generate better patterns.
old P. Calculating filter error

The choice of the cost functidfi( P, I) is used to model
the perceptual difference between the grayscale infage
and the halftone patter® and should take into account
the human visual system (HVS). To make the problem
tractable, usually it is assumed that the HVS acts as a lin-
2.1.1. Image Halftoning ear shift-invariant low-pass filter. Some examples of such
HVS based filters can be found in [3, 4]. Other non-HVS
based filters such as Gaussian filter [5] or Butterworth fil-
ter [6] have also been used. In addition to HVS, the dot

Selecth white pixels inS, with low first filter error.

2. Calculate first filter errof., (P — I). can be adequate enough to be used as a final pattern with-
out running any iterations of Fig. 1 which will be referred
3. Selectr black pixels inS; with high first filter error.  to as agreedyapproach.
4. Toggle these pixels resulting in patterd’. Selecting pixels in5; and 55 to swap _ _
One possible way is to pick thepixels with the high-
5. Calculate second filter errdrn (P’ — I). est filter error and swap them with thepixels with the
6.
7.

8. Loop back to step 2 until stopping criteria are met.

Figure 1 Pseudo-code of core halftoning algorithm.

In this case, the imagg is the grayscale image to be
halftoned andS; is the empty set. The restricted séts
and S, can be all the pixels in the image. However, to

speed up implementation, the sétsand.5; are set to be 2Threshold swapping methods to optimize several patterns at once
significantly smaller (Sect. 3.3). have not been very successful [1].




gain characteristics and printer spot profile of the printer3.2. Void and Cluster
model can also be incorporated into the filter, elg. =
Lpys © Lspot-

The filtersL; and L, are used in Fig. 1 to minimize

The Void and Cluster algorithm [5] uses a Gaussian filter
for L, and L, and uses the second way for initializing the

the cost functior®. In general they can be chosen as thepattern (Sect. 2.2). After the first pattern is generated with

filters described above, and a priori they don’t have to bé:ig' 1, the restof t_he p_attern_s are ge_nerated_with the g_reedy
the same as the filters used in definfigWhenE (P, I) is approach. The p|x§| ||$% W'th.the highest f||t9r error 1S
chosen a§ L., (P — I)||-, there is a relationship between swapped_ with the pixel irp, with the Iowest_ﬂlter error.
the filtersLy,, and; andLs (Sect. 3.3) which allows For the first patternS; and S, are all the pixels. This

to be decreased at each iteration. The filter efx@® — 1) E:hhome ?;Sl (if':m I;ahadt to asupoptlmal(jlocal mtl)mm#m qf
is the convolution between the impulse responsds afid € cost function that can be Improved upon by choosing

P — I. For dither mask construction the convolution is cir- 51 to be a single pixel and; a local neighborhood as is

cular to account for the fact that the dither mask is tileddone in DBS [7].

periodically in the halftoning process. Since the FFT is

directly suitable for performing circular convolution, algo- 3.3. Direct Binary Search (DBS)

rithms such as BIPPSMA utilize FFT for this purpose. On P ; _

the other hand, since the difference of the halftone patter I DBS, the cost to be minimized i Lass (P — I)]l2-
between iterations is at mdxt pixels, very efficient meth-
ods for computing the filter errors from the filter errors of
the previous iteration are possible, provided the support o
the filter impulse response is small. Furthermore, whe
L, = Lo, the difference betweeR and P’ is n pixels and
thus the second filter errdr, (P’ —I) can be obtained from
the first filter error by adding (or subtracting) the impulse AE = 2(c,,(0) — acyz(po) + acpe(p1) — cpp(Po — 1))
response centered at these pixels. Similarly the first filter - _ ) _ )
response in the next iteration can be obtained from the sed¥herea = 1if pixel po is black and pixep, is white and
ond filter error in this way. Also note that for dither mask @ = —1 if pixel po is white and pixep, is black.c,, is the
construction/ is a uniform gray image, and the search for @utocorrelation function of.4,; andc,: is the correlation
the pixels with the highest (or lowest) filter errb¢P — 1)~ betweenLay, andLays (P —I). If aswap is acceptédc,:
is equivalent to the search for pixels with the highest (oriS Updated by:

lowest)L(P), i.e. L(P) can be used as the filter error.

Stopping criteria

The stopping criteria for exiting the loop in Fig. 1 can Given a fixed pixel locatiom,, a neighborhoodV" of py
be when the maximum number of iterations are reacheés searched for a suitable pixel to swap with. Since the
or when the change in error is small between successivérst two terms inAE are independent qgf;, this search
iterations. A double loop can also be used where in the€an be accomplished by minimizing(p) = acye(p) —
inner loop the number is decreased at each iteration until ¢pp(Po — p), i.€. p1 = argmingen w(p). A swap is ac-
it reached and in the outer loop the numbeiis resettoa  cepted ifAE < 0, or equivalently ifw(p1) < w(po).
specified value as is the case in BIPPSMA. Sincec,,;, is symmetric, the update ef: can be written as
cpe(p) — a(w(p) + cpp(p — p1)). It's easy to see that by
considering:,; as the first filter errow(-) as the second
filter error andc,, as the impulse response bf = Lo,

Many algorithms for creating dither masks or for direct this can be cast in the framework of Fig. 1. Similar to Void

halftoning fall under the class of algorithms in Fig. 1. and Cluster, the pixel with the highest first filter error is
swapped with the pixel with the lowest second filter error.

In this casel.; = L in Fig. 1 is the autocorrelation func-
tion of the filter L 4,5 used in defining.
In this approach [1]z = 1, and the decision to swap pixels ~ This approach has several speed and performance ad-
(Step 7 in Fig. 1) is only accepted if there is a reduction invantages over DBS as described in [8]. First, to evaluate
CQSt or if the increase "_1 costis bQIOW arandom thres’_hom’ 3DBS allows toggling of pixels, but it is not preferred in creating
with the average magnitude of this threshold decreasing asiher masks as the number of black pixels is known in advance. We con-
time goes on. The idea is to initially accept some swap@entgate mf;}ln!y Olncljovéel Ewapp{ng dUE_ttQ llmlte? Spﬁce,tl;‘utt rilxellt_oggll_ngl

. - - i~_Can be easlly included. For instance, Itis easy to snhow that toggling pixe
which increase the cost in order to move out of local min o reducesE more than swappingo with py if w(p1) > —%cpp(0).
ima, with the number of such swaps decreasing as timé 2

4In [8] heuristics were given to decide whether to swap or not, e.g.
goes on (and the system “cools”). only one swap is allowed per block of pixels considered.

$he pixels are traversed in some order and for each pixel,
a neighborhood of pixels is examined to determine which
ixel can be swapped with the current pixel which reduces
the most. This corresponds to settiry equal to a sin-
TYle pixel ands; to be a neighborhood of,. The change
in £ due to swapping a pixel, with a pixelp; is [8]:

cpe(P) + cpa(p) — acpp(p — po) + acpp(p — 1)

3. Comparison with other algorithms

3.1. Simulated annealing




the effect of a swap takes less table lookups and additionachieved by minimizing the co&t = ||V;|| = ||L(P—1)]|.

than in DBS. Second, the computation®©fp) used in  The particles move towards this equilibrium and for small
finding the pixelp; to swap can be reused in the updatetimesteps the particles move a small distance, correspond-
of ¢pe. Third, in [8], the search neighborhodd is fairly ing to swapping a black pixel with a white pixel in a small
small (5 pixels) to speed up computation. The approacmeighborhood. Thus the motion of the particles can be
presented here allows this neighborhood to be enlarged tmimicked in Fig. 1 by making; to be all the black pix-

be the support of the filter anytime a swap is accepted withels andS; to be the local neighborhoods of the black pix-
out much increase in computation. In other words, once &ls with the additional constraint that each black pixel can
swap betweem, andp, is accepted, the choice pf can  only swap with a white pixel in its neighborhood.

be refined which can result in a larger decreasg of

4. Conclusions

3.4. BIPPSMA . )
We have presented a framework for digital halftoning un-

In this algorithm [6], the FFT (and pointwise multiplica- der which several classes of blue noise related halftoning
tion) is used to perform the circular convolution. The mainalgorithms fall. One benefit of this framework is that im-
difference between BIPPSMA and other algorithms is thafplementation details such as filter choice, filter errors up-
the second filter error is the same as the first filter errodate method, search heuristic, pattern initialization, and
L,(P — I) as opposed td.»(P’" — I) in the other algo-  stopping criteria can be more easily shared among these
rithms, i.e. the calculation of’ (Step 4 in Fig. 1) is algorithms. In particular, by using this framework, we pre-
not needed. At each inner iteration the number of pixelssented an implementation of DBS which has some perfor-
swappedh is reduced by half untik = 1. mance benefits over previous implementations.
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3.6. Particle repulsion

SFor example, in the case of electrostatic foicéz, y) = ~L2T<0

Va2ty?'



