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The productivity of modern society has become inextricably linked to its ability to produce energy-efficient

computing technology. Increasingly sophisticated mobile computing systems, powered for hours solely by batter-

ies, continue to rapidly proliferate throughout society, while battery technology improves at a comparably slow

pace. In large data centers, handling for example online orders for a .com company or sophisticated web searches,

row upon row of tightly packed racks of computers may be warehoused in a city block. Microprocessor energy

wastage in such a facility directly translates into higher electricity bills, and even getting sufficient electric sup-

ply from utilities to power such a center is no longer a given. Given this situation, energy efficiency has rapidly

ascended to the forefront of modern microprocessor design.

Adaptive processing is one approach to improving microprocessor energy efficiency. In this technique, major

microprocessor resources are dynamically tuned during execution to better match varying application needs [1, 2].

This is in contrast to the fixed resources supplied at design time in a conventional microprocessor, and to common

techniques that turn off idle sections of a processor. By presenting the application with the right amount of

hardware at the right time, a significant reduction in energy can potentially be achieved. The challenges in adaptive

processing are in achieving this greater efficiency with reasonable hardware and software overhead, and doing so

without undue performance loss. Unlike the field of reconfigurable computing, adaptive processing attempts not

to stray far from the dynamic superscalar design approach that has been successfully used in many generations of
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Figure 1. Interval parallelism for SPEC95 benchmark ijpeg for an interval of 2000 instructions (left) and 100

instructions (right).

general-purpose processors. Rather, the goal is to maintain this general approach while limiting the extra overhead

(area, performance, and energy) of adaptive processing to a few percent. It is this challenge, coupled with the

increased emphasis on power-aware microprocessor research in recent years, that has spurred much interest in

adaptive processing in the past five years. This article discusses the tradeoffs in adaptive processing and in the

process, presents a sampling of the major research findings, with a look towards the growing need to apply such

techniques in future technologies.

1 Varying application behavior

Adaptive processing exploits the fact that application needs for particular hardware resources (such as caches,

issue queues, and registers) within a dynamic superscalar processor may vary significantly from application-to-

application, and even within the different phases of a given application. There have been several studies that have

demonstrated this dynamic application behavior. Figure 1 shows the behavior of the SPEC95 application ijpeg

from one of the earliest studies [13]. The graphs show the interval parallelism or the parallelism (total committed

instructions over total cycles) achieved every set number of instructions. The graph on the left is for an interval of

2000 instructions while 100 instructions is used on the right. The modeled machine has almost infinite resources

and perfect caches in order to isolate parallelism limits to those inherent in the application.

In this application, there are multiple levels of phases apparent from these graphs. From the left side of Figure 1,

there are major phase shifts that are occurring at the granularity of millions of instructions. The right side of

this figure shows that within these major phases are finer-grain ones that last on the order of 10’s of thousands

of instructions. Within these phases, parallelism varies widely, and this variation is shown in [13] to have a
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Figure 2. The elements of an adaptive processing system.

significant impact on how much the size of various hardware structures, such as caches and issue queues, impacts

performance. Within some phases, large structures are beneficial, while in others, smaller structures may achieve

almost the same performance.

To exploit application variability at the finer-grain level, a minimum of 10,000 cycles in duration, the mecha-

nisms for monitoring and adapting the hardware must do so in a relatively rapid fashion, say 10-100 cycles for

each of these minimum-length periods, to keep the time cost of adaptation reasonable (0.1-1%). This means that

although coarser-grain adaptations may be performed in the operating system, monitoring and adaptation at a finer

grain needs to be done at the hardware, the compiler, and/or the runtime system level. Most adaptive techniques

have focused on exploiting fine-grain variations and these techniques are the subject of the rest of this article.

2 Elements of adaptive processing

Figure 2 shows the elements of a simple adaptive processing system, which consists of the adaptive hardware

(one structure in this example) and a feedback and control system [1]. The overheads of the adaptive hardware

must be nominal, and the feedback and control mechanisms kept simple, in order keep the costs of adaptive

processing from rivaling its energy advantages.
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Figure 3. The organization of an adaptive issue queue [5].

2.1 Adaptive hardware structures

The adaptive hardware is organized such that its complexity (usually size) can be rapidly changed to fit cur-

rent application needs. Regular, easily partitioned RAM and CAM-based structures, such as caches and issue

queues, are widely used in modern processor design and their modular structure make them prime candidates for

adaptation.

Two adaptive hardware structures are shown in Figures 3 and 4. Figure 3 shows a 32-entry adaptive issue

queue which is partitioned into four equal size increments [5]. While the bottom increment (8 entries) is always

enabled, the CAM and RAM arrays of upper increments are enabled on demand according to application needs.

Transmission gates isolate the bitlines of the CAM and RAM increments, while simple gates achieve this function

for the taglines. The Ready and Selection logic sections are partitioned as well, the latter by simply gating the select

tree at the appropriate level depending on the number of enabled increments. Due to coarse level of adaptation,

the quadratic relationship between wire length and delay, and the fact that the transmission gates serve to break the

long bitlines into separate shorter wire sections, Buyuktosunoglu found that the use of such an adaptive structure

would not impact clock frequency when used in a high-end processor. In addition, the gate count and energy

overheads of this structure were found to be less than 3% [5].

An adaptive instruction cache, called the Dynamically Resizable I-Cache (DRI-Cache), is shown in Figure 4 [12].
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Figure 4. The Dynamically Resizable I-Cache (DRI-Cache) [12].

The cache is partitioned by sets such that associativity remains constant. A extra transistor is placed between the

normal ground of the cells of a given set and the actual ground. The gate signal on this transistor enables the

set; otherwise, it is disabled which virtually eliminates leakage in addition to dynamic power. Reducing both of

these components is becoming paramount in advanced process technologies. Even with this relatively fine-grained

VDD-gating approach, the area and speed overheads of the DRI-Cache are shown to be less than 8%, while when

a set is disabled, its leakage current is reduced by 97%. One downside is that instructions are lost (and thus may

need to be re-fetched) when a subarray is disabled. A recent modification proposed by the same group retains data

within disabled cells while achieving much the same leakage gains [10]. This permits these disabled partitions to

act as a backup to the enabled ones. In the event of a miss to the enabled partitions, the disabled ones are turned

on and searched. This backup approach is used in Balasubramonian’s adaptive memory hierarchy although only

for dynamic power [3]. These two examples show that with careful engineering, adaptive hardware structures can

be devised without unduly compromising area, speed, or energy.

2.2 Feedback and control system

The role of the feedback and control system (Figure 2) is to monitor the adaptive hardware and reconfigure it

when appropriate. Because adaptive processing reduces the size of hardware structures, some increase in execution

cycles is almost inevitable. The goal of the feedback and control system is to maximize energy savings while

keeping performance loss below a specified level.
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There are three major functions involved: monitoring the adaptive hardware, triggering a decision to be made,

and making the decision. Both static and dynamic approaches can be used for each. Static approaches involving

the compiler have a broader view of the entire program and permit simpler hardware, but they are limited by

the static information available at compile time and require recompilation or binary rewriting of the application.

On the other hand, dynamic approaches involving a combination of hardware and the runtime system have the

advantages of having dynamic runtime information and the ability to run legacy applications but have a more

limited program view and incur overhead. Each of these three feedback and control functions is discussed in turn

with examples of static and dynamic approaches that have been used for each.

2.2.1 Monitoring

The monitoring system gathers statistics that infer the effectiveness of the adaptive hardware structures under

control in order to guide reconfiguration decisions, or to aid in the identification of program phase changes. These

statistics may be gathered each cycle or sampling may be used to reduce the monitoring overhead. For instance,

in the adaptive issue queue proposed by Ponamarev [11], the number of valid queue entries is recorded at the

end of a sample period and is averaged over a longer interval period. This average value is used to determine

when to downsize the queue. At the same time, an overflow counter counts the number of cycles that dispatch is

blocked due to a full queue and is used to guide upsizing decisions. These two statistics are simple to implement

in hardware yet effective in guiding reconfiguration decisions. Folegnani and Gonzalez use program parallelism

statistics, rather than issue queue utilization, to guide reconfiguration decisions [8]. Specifically, if instructions

are rarely issuing from the back of the queue (that portion that holds the youngest instructions), then the queue is

assumed to be larger than necessary and is downsized.

Cache miss rate is commonly used to guide cache configuration decisions. In the DRI-Cache for example,

the average miss rate is measured over an interval of operation to determine whether the cache size needs to be

changed. As miss rate information may already be available in microprocessor performance counters, this statistic

is essentially available for free.

An alternative to hardware monitoring is compiler-based profiling. In this approach, the application is either

instrumented and then run on the target machine to collect statistics, or is run on a detailed simulator with statistics

gathered. Huang uses the latter to collect statistics on the execution length of subroutines for phase detection [9]. In
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both cases, the application behavior observed during the profiling run must be representative of that encountered in

production. Since this cannot be assumed for many general-purpose applications, and cheap hardware counters are

readily available in modern microprocessors or can be added with modest overhead, hardware-based monitoring

is more frequently used in adaptive processing.

2.2.2 Triggering

There are several approaches used to trigger that a reconfiguration decision should be made. The first approach

is to trigger based on particular characteristics of the monitored statistics. For instance, Ponamarev’s adaptive

issue queue scheme upsizes the queue when the average number of valid queue entries over the interval period

is such that this average number of instructions could have been held in a smaller configuration. This is easily

determined from the sampled average occupancy statistics, the current size of the queue, and the possible queue

configurations. Alternatively, the queue is immediately upsized when the overflow counter exceeds a threshold to

prevent non-negligible performance loss. An alternative approach is to use detection of phase changes to trigger

reconfiguration decisions. In the adaptive memory hierarchy proposed by Balasubramonian [3], cache miss rates

and branch counts of the last two intervals are compared. If a significant change in either is detected, a phase

change is assumed to have occurred. Dhodapkar and Smith [6] improve on this approach by triggering based on

differences in working set signatures. A working set signature is a compact approximation of a working set, which

represents the set of distinct memory elements touched over some period. A significant difference in working set

signatures constitutes a phase change.

Positional adaptation as described by Huang [9] uses program structure to identify major program phases.

Specifically, either compile-time or run-time profiling is used to determine long-running subroutines for which

the appropriate configuration should be selected. In the static approach, a profiling run measures the total execu-

tion time and the average execution time per invocation of each subroutine. Phases are identified as subroutines

with values for these quantities that exceed pre-set thresholds. The entry and exit points of these routines are

instrumented to trigger that a reconfiguration decision be made.
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Figure 5. A four-way superscalar design in which the shaded elements are adaptive [7].

2.2.3 Making a decision

Once a trigger event has occurred, a decision must be made regarding the adaptive configuration that should be

used over the next period of operation. If the number of configuration options is small, then a simple trial-and-

error approach can be used: each configuration can be tried over consecutive intervals and the best-performing

one selected. This exploration approach is used in Balasubramonian’s adaptive memory hierarchy [3]. A second

approach is to use the monitored statistics to make a decision. When upsizing the adaptive issue queue, Ponamarev

chooses a new configuration based on the difference between the current number of queue entries and the sampled

average of the number of valid entries over the interval period. If this difference is large, then the queue may be

downsized more aggressively [11]. The underlying assumption of these approaches is that the current behavior is

indicative of that to come. If the rate of behavioral change rivals the evaluation period, then significant error can

occur.

Decision prediction attempts to circumvent this problem by using past configuration information to predict

the best-performing option in the future. Dhodapkar and Smith save their working set signatures along with

configuration information in a RAM. When the current signature closely matches one stored in the RAM, the

configuration is looked up and used immediately [6].

3 An example adaptive processing system

Figure 5 shows an example adaptive processing system in which the issue queues, load/store queue, Reorder

Buffer, register files, and caches of a four-way dynamic superscalar processor are all adaptive [7]. With multi-
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ple adaptive structures, the explosion in the number of possible combinations of configurations creates two main

challenges. First, exploration cannot be used as its overhead for so many options would be prohibitive. Second,

configuring multiple structures creates a challenging cause-and-effect assignment problem. Precisely, it is difficult

to know whether a change in application performance is due to a change in program behavior, reconfiguring a

different hardware structure, or reconfiguring this particular one. For these reasons, instructions per cycle per-

formance is avoided as a monitoring statistic and local statistics that accurately infer changes in the particular

structure’s behavior are used.

For the caches, the backup approach of Balasubramonian is used, but the control approach is different. Statistics

are gathered that permit the performance and energy of all possible cache configurations to be determined. Figure 6

shows the L1 data cache and the fundamental operations performed when the data is not present in the cache. The

most-recently-used (MRU) state of the cache ways (four in this example) is maintained and an MRU counter is

associated with each of the four states. The primary part (shown in white) is accessed, and upon a miss, the

backup part (shaded) is accessed which also results in a miss. The replaced block in the primary section is written

to the backup section. The backup block is written back if dirty and discarded otherwise. The miss counter is also

incremented.

A hit within either the primary or backup part results in an update of the MRU state and counters as shown

in Figure 7. In the example, block A is the most recently used block (MRU[0]), B is the second most recently

used block (MRU[1]), and so on. When a block is accessed, the counter associated with that block’s MRU state is

incremented, and the MRU state is updated accordingly. For example, the access of block B increments the counter

for the second most recently used block (MRU[1]). Block B is now the most recently used block and A the second.

An access to C increments MRU[2] and changes the MRU state. The next access to C increments MRU[0] (since

it was just accessed and so is the most recently used block) while the access to D increments MRU[3]. At the

end of an interval, the MRU counters and the miss counter are read by a runtime routine and used to calculate the

number of primary and backup hits and overall misses that would have occurred for each configuration during that

interval. Based on the time and energy costs of hits and misses for each configuration, the best configuration is

chosen for the next interval.

The MRU counters also permit the calculation of the actual performance loss incurred by the reconfigurable

cache compared to some fixed baseline. If that baseline is a subset of the reconfigurable cache, then the MRU
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Figure 6. L1 data cache operations on a miss to both the primary and backup (secondary) sections.

counters can be used to determine what its performance would have been if it was used. This value can be com-

pared against that of the reconfigurable cache to keep a running total of the performance loss up to this point in

time. This information can be compared against the target performance loss to determine if the reconfigurable

cache is doing better or worse than the target. If the loss is less than the target, then the controller can be more

aggressive in trading performance for energy. If the performance loss is excessive, the controller is more conserva-

tive in an attempt to reduce the overall loss. This “accounting” operation permits a tight bound on the performance

loss while maximizing energy savings.

For the queues, register files, and Reorder Buffer, the physical structure is similar to that of Buyuktosunoglu and

a variation of the Ponomarev feedback and control approach is used. However, an interesting aspect of adaptive

register files is that there is no a priori way to determine without compiler help that a register value will not be
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configuration denoted as Px By has x primary and y backup partitions.

used in the future. Even with compiler support, there would be only a small fraction of registers that would be able

to be disabled in many appplication if such a requirement was imposed. Thus, when downsizing the register file,

the contents of all active physical registers must be preserved. The solution is to move the values of registers in the

partition to be disabled into an active partition. Fortunately, this can be largely achieved with the existing renaming

mechanism found in modern machines. First, any physical register from the to-be-disabled partition is prevented

from being allocated to newly renamed instructions. Then a small runtime routine that performs the instruction

move rx, rx for each logical register rx is executed. This causes any logical register values stored in physical

registers in the to-be-disabled partition to be read and transferred to a newly allocated physical register from the

enabled part of the register file. The hardware performs the transfer as part of normal instruction processing (care

must be taken that the implementation does not equate the move rx, rx instruction with a no-op) and the rename

table is updated with the new mapping as part of the normal rename mechanism, permitting the partition to then

be disabled.

Figure 8 summarizes the energy saved within the adaptive structures as well as the overall performance degra-

dation for a combination of three Olden, seven SPEC integer, and four SPEC floating point benchmarks. These are
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benchmarks.

plotted as a function of the target performance degradation that the adaptive processing system can allow for. The

1.5% and 6.2% values correspond to the power-of-two fractions 1/64 and 1/16, respectively, which simplifies the

calculations. As expected, a higher target performance degradation permits more energy to be saved. In addition,

due to the ability of modern caches to hide latency with other work, the actual performance degradation is much

less than the target. The higher energy savings achieved in the caches is primarily because these structures dissi-

pate greater energy overall. For the 1.5% performance degradation target, a 28% energy savings in the adaptive

structures is achieved with a 0.6% actual overall performance degradation. For the 6.2% target, the savings is 34%

with a 2.1% performance loss.

The energy savings needs to be calculated for the processor as a whole in order to assess the cost/savings of

adaptive processing. From [4], the issue queues, Reorder Buffer, caches, and register files of a modern superscalar

processor can easily consume over 50% of the total chip power. Using 50% as a conservative scaling factor for the

energy results, the adaptive processing system can achieve roughly a 14% overall chip energy savings for a 0.6%

performance loss, or 17% for the larger 2.1% loss. These results compare favorably with the 3:1 power savings to
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performance degradation ratio typically achieved with voltage scaling.

4 Looking ahead

Many of the adaptive techniques explored thus far have focused exclusively on reducing dynamic power. (The

DRI-Cache work is a notable exception.) In future process technologies, leakage power is expected to rival dy-

namic power in magnitude. Adaptive techniques are poised to address both leakage and dynamic power. In the

system of Figure 5, a technique like VDD-gating can be directly applied to the issue queues, Reorder Buffer,

and register files (since disabled partitions are ensured to be empty before being turned off) as well as in the L1

I-Cache. An approach like [10] can be used in the L1 D-cache and L2 cache in order to preserve their state.

An important consideration is that the extra transistors added for adaptive processing (each of which will con-

tribute to overall leakage) is small relative to the energy saved. In addition, the decision logic is invoked in-

frequently and therefore can itself be placed into a low leakage state until a trigger event occurs. All of these

characteristics make adaptive processing a promising technology for saving both dynamic and leakage energy in

future process technologies.
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