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Abstract

Taking a traditional operating system and making it scale well
on shared memory multiprocessors is hard. Performance de-
bugging a multiprocessor operating system is hard. Maintain-
ing a scalable operating system is hard. We contend that de-
signing a system from the ground up specifically for scalabil-
ity can simplify these tasks considerably and allows for rea-
sonably straightforward implementations that are scalable and
maintainable.

We have designed the K42 operating system from the start
specifically for shared-memory multiprocessor scalability.
Key to dealing with the complexities associated with scala-
bility are (i) an object-oriented structure that maximizes lo-
cality, (ii) a Clustered Object infrastructure that supports dis-
tributed implementations in a straightforward way, and (iii) a
hot-swapping infrastructure that allows one implementation to
be exchanged for another at run-time as demands on objects
change. In this paper, we describe K42’s design, analyze its
scalability and performance using real workloads running on
24 processor commercial hardware, and show some of K42’s
design tradeoffs as they relate to scalability.

1 Introduction

Taking a traditional operating system and making it scale
well to large numbers of processors for diverse sets of
workloads is extremely hard. Designing for scalability
often hurts uniprocessor performance, and fast unipro-
cessor solutions typically don’t scale. Even after rea-
sonable scalability is achieved, these systems tend to
be fragile. An increase in the number of processors
or changes in hardware characteristics can require sub-
stantial new effort. Even minor software upgrades can
turn into large efforts: simple innocuous mistakes can
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cause performance and scalability to degrade severely,
and performance debugging these systems is entirely
non-trivial.

We contend that structuring the operating system from
the ground up to fundamentally minimize sharing makes
it possible to achieve good scalability in a relatively
straightforward, albeit non-trivial, way. It is too difficult
to retrofit an existing system to arbitrarily scale, rather
scalability must be taken in to account from the begin-
ning.

We have designed the K42 operating system for scala-
bility and implemented it using novel structures to mini-
mize any form of sharing. While K42 inherited some of
the infrastructure and ideas required for scalability from
Tornado, a previous experimental operating system [11],
these structures have been refined and tested in the con-
text of a complete system running on commercial hard-
ware, where it was possible to measure the end effects
of specific design choices on real workloads. The de-
sign and implementation of K42 is complete in the sense
that it is self-hosting. K42 supports the 64-bit PowerPC
Linux API/ABI sufficiently to allow a large number of
Linux binaries to be run unmodified on K42.

Experiments measuring scalability indicate that the ap-
proach used in K42 is very promising. Figures 1–3 de-
pict the scalability of K42 with three different bench-
marks running on a 24-way shared memory multipro-
cessor. As a reference point, we also included in the
graphs results of running the exact same benchmark bi-
naries on Linux version 2.4.19. (The details of the ex-
periments and the methodology used is described in Ap-
pendix A.) For both the SPEC Development Environ-
ment Test (SDET), and Parallel Make benchmarks, K42
scales well up to 24 processors. For the PostMark bench-
mark, the speedup on K42 is good, and better than on
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Figure 1: Throughput of SDET benchmark normalized to
K42 uniprocessor result.
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Figure 2: Speedup of p independent instances of Postmark
normalized to K42 uniprocessor result.

Linux, but not yet perfect.1

In general, we observed that Linux scales reasonably
well up to a certain number of processors, but its per-
formance then begins to degrade for all but the Parallel
Make benchmark. Linux scalability will likely continue
to improve given the large number of contributions made
each year. Nevertheless, K42, although implemented
by a relatively small team, exhibits significantly better
scalability characteristics under non-trivial workloads.
We believe that new structures and techniques, such as
those of K42, will become increasingly important as the
the number of processors increase further and as newer
hardware with increasing processor-memory speed dis-
parity become more common.

We found three techniques to be especially important in
achieving scalability:

1The bottleneck in this experiment is the file system memory al-
locator which does not yet have working support for large SMP or
NUMA systems.
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Figure 3: Speedup of p independent instances of Parallel
Make normalized to K42 uniprocessor result.

1. Use of object-oriented structure and implementa-
tion. This allows K42 to avoid shared code paths,
shared meta structures, such as global lookup ta-
bles, and global locks. Although having an object-
oriented structure is often regarded as having over-
head associated with it, in a multiprocessor envi-
ronment, the object-oriented structure actually con-
tributes to better performance. In K42, each virtual
resource (e.g. VM region, network connection, file,
process) and each physical resource (e.g. memory
bank, network card, processor, disk) is managed by
a different object instance. Each object instance en-
capsulates all the data necessary to manage the re-
source as well as all locks necessary to access the
data. Hence, as long as application requests are to
different resources, they are handled by the system
entirely in parallel, with no shared data structures
being traversed and no shared locks being accessed.

2. Use of distribution and replication in implemen-
tations of shared objects that are contended. When
a resource instance is contended due to inherent
sharing in the workload, performance can be sig-
nificantly improved by using more complex, dis-
tributed implementations akin to those used in dis-
tributed systems, but designed for the character-
istics of a shared memory multiprocessor. K42’s
Clustered Object infrastructure helps manage
the complexity of distributed object implementa-
tions.2 This infrastructure helps hide the distribu-
tion from the clients of the object, and it allows
access to the object without requiring any remote
or shared data access with a common case cost no
higher than that of a virtual function call.

3. Use of specialization. Different resource instances
may be represented by different object implemen-

2K42’s Clustered Objects are similar Distributed Shared Ob-
jects [14] and Fragmented Objects[19, 4].



tations. At runtime, the object implementation is
used that best matches the demands on the resource
instance it represents. For example, a different file
object implementation is used for small files than
for large files. Additionally, different file imple-
mentations are used if a file is only open by one
client versus being open concurrently by multiple
clients. Doing so allows for more aggressive op-
timizations appropriate to the runtime character-
istics of the resource instance in question. Spe-
cialization is also dynamic, whereby implementa-
tions are switched dynamically at run time using
K42’s hot-swapping infrastructure, when usage
patterns change. Hence, when the file access pat-
tern changes from being accessed by just a single
thread to being accessed by many threads, then the
implementation of the open file instance is dynami-
cally switched from one optimized for single thread
access to one optimized for shared access.

Just as important as these techniques is the major invest-
ment we made in core infrastructure that aid in maxi-
mizing locality. Examples of this are the Clustered Ob-
ject infrastructure and the Hot-Swapping infrastructure
mentioned above, but also a locality-preserving IPC fa-
cility, a locality-aware malloc subsystem, an object de-
struction strategy and facility that eliminates the need
for existence locks, and a tracing facility that supports
deterministic tracing.

In the remainder of the paper, we describe and analyze
the techniques used to achieve scalability in K42. Sec-
tion 2 first motivates many of the design choices by
showing how false sharing alone can degrade perfor-
mance by several orders of magnitude. Section 3 gives
an overview of K42. Section 4 describes interesting
examples of distributed object implementations used in
K42 and their effect on performance. We close the paper
with a review of related work and concluding remarks.

2 Motivation

To illustrate the magnitude of the performance impact of
contention and sharing, consider the following experi-
ment: each processor continuously, in a tight loop, issues
a request to a server. The IPC between client and server
and the request at the server is processed entirely on the
same processor from which the request was issued, and
no shared data needs to be accessed for the IPC. On the
target hardware, the round trip IPC costs 1193 cycles. In
involves an address space switch, transfer of several ar-
guments, and authentication on both the send and reply

path.3 The increment of a variable in the uncontended
case adds a single cycle to this number. Figure 4 shows
the performance of 4 variants of this experiment, mea-
suring the number of cycles needed for each round-trip
request-response transaction:

1. Increment counter protected by lock: each request
is to increment a shared counter, where a lock is
acquired before the increment. This variant is rep-
resented by the top-most curve: at 24 processors,
each transaction is slowed down by about a factor
of about 19.

2. Increment counter using an atomic increment op-
eration. This variant shows a steady degrada-
tion where at 24 processors, each request-response
transaction is slowed down by a factor of about 12.

3. Increment per-processor counter in array. This vari-
ant has no logical sharing, but exhibits false sharing
since multiple counters cohabit a single cache line.
In the worst case, each request-response transaction
is slowed down by a factor of about 6.

4. Increment padded per-processor counter in array.
This variant is represented by the bottom-most
curve that is entirely flat, indicating good speedup:
up to 24 request-response transactions can be pro-
cessed in parallel without interfering with each
other.

These experiments show that any form of sharing in a
critical path can be extremely costly — a simple mistake
can cause one to quickly fall off of a performance cliff.
Even though the potentially shared operation is, in the
sequential case, less than one tenth of one percent of the
overhead of the experiment, it quickly dominates perfor-
mance if it is in a critical path on a multiprocessor sys-
tem. This kind of dramatic result strongly suggests that
we must simplify the task of the developer as much as
possible, providing her with abstractions and infrastruc-
ture that simplifies the development of operating system
code that minimizes sharing.

3 K42’s scalability design

3.1 K42 Background

K42 employs a microkernel-based design. The micro-
kernel provides memory management, process manage-
ment, IPC, base scheduling, networking and device sup-
port. System servers include an NFS file server, name

3The cost for an IPC to the kernel, where no context switch is re-
quired, is 721 cycles.
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Figure 4: K42 microbenchmark measuring time for parallel
client-server IPC request to update counter. Locks, shared data
access and falsely shared cache lines all independently increase
round-trip times significantly.

server, socket server, pty server and pipe server. Some
of the functionality traditionally implemented in the ker-
nel or servers is moved to libraries in the application’s
own address space in a fashion similar to that of Exok-
ernel [9]. For example, thread scheduling is done by a
user-level scheduler linked into each process.

All layers of K42, the kernel, system servers, and user-
level libraries, make extensive use of object-oriented
structures. All IPC is between objects in the client and
server address spaces. We use a stub compiler with dec-
orations on the C++ class declarations to automatically
generate IPC calls from a client to a server, and have op-
timized these IPC paths to have good performance. The
kernel provides the basic IPC transport and attaches suf-
ficient information for the server to provide authentica-
tion on those calls.

Support of the Linux API is achieved with an emulation
layer within each process that implements Linux system
calls by method invocations on K42 objects. The emu-
lation layer is reached by a K42-targeted version of the
GNU C Library which is dynamically linked to the ap-
plication (identical to PowerPC64 Linux version, except
for system-call invocations). This approach has allowed
us to run identical binaries on K42 and Linux for our
experiments (except for the minor differences in C Li-
braries).

In this paper, we focus only on those aspects of K42 that
relate to scalability. K42 is designed to run on systems
with thousands of processors and support applications
that may span the entire system, but also to run sequen-
tial and small-scale parallel applications as efficiently as
on a small-scale multiprocessor.

3.2 Avoiding global locks and meta structures

K42 is designed to avoid any use of global locks or
global meta structures, such as the call switch table, de-
vice switch table, global page caches, process table or
file table used in some traditional operating systems. In-
stead K42 (i) uses an object-oriented structure which al-
lows a decomposition that avoids sharing in the common
case, and (ii) generally uses algorithms and implemen-
tations that do not rely on global knowledge or data. In
particular, each physical and virtual resource is repre-
sented by an object, and for each resource instance there
exists a separate object instance representing it. Each in-
stance entirely encapsulates the data needed to manage
the resource and the lock required to protect the data.
Some examples of objects from the K42 kernel are:

� Process Objects: for each running process there is
an instance of a Process Object in the kernel.

� Region Objects: for each binding of an address
space region to a file region, a Region Object in-
stance is created and attached to the Process Object.

� File Cache Manager (FCM) Objects: for each open
file there is a separate FCM instance that manages
the resident pages of the file.

� File Representative Objects: for each open file
there is a File Representative Object instance capa-
ble of communicating with the file server on which
the file exists.

In such an OO structured system, object handles directly
represent relationships, as depicted in Figure 5. Indepen-
dent OS requests tend to target different object instances,
accessed by traversing independent interconnections be-
tween object instances. As a result, independent requests
do not access shared data in the common case. Fig-
ure 6 abstractly compares the structure of an OO decom-
posed system to a more traditional system with its fast
code paths and common switch tables and common data
structures. On a uniprocessor, the traditional structure
might even perform slightly better, but on a multipro-
cessor, the OO structure results in vastly better perfor-
mance.

One consequence of maximizing locality is that it be-
comes more costly to have algorithms and policies de-
cisions based on global information. As a result, lo-
calized decisions are made that are perhaps less opti-
mized. An example (prevalent in many systems) is the
dispatch queue: with a separate per-processor dispatch
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queue, it is no longer guaranteed that the n highest-
priority threads system wide are executing at any given
time. As another example, in K42, the global physical
page manager does not manage all pages in the sys-
tem. Instead, it allocates and reclaims pages to and
from process-specific page managers who in turn allo-
cate/reclaim pages to/from file-specific page managers.
This localizes fine-grained decision making but prevents
the implementation of many global policies, such as
LRU. Finally, K42 uses per-processor page tables, al-
lowing for a number of locality-enhancing optimiza-
tions. However, this comes at the cost of added com-
plexity and overhead when migrating a process from one
processor to another.

3.3 Clustered Objects

Although the OO structure of K42 can help reduce shar-
ing by mapping independent resources to independent
objects, some components, such as, say, the File Cache
Manager (FCM) for a shared file, the Process object for
a parallel program, or the system Page Manager, may
be widely shared and hence require additional locality-
enhancing measures. For these objects, K42 uses imple-
mentations that either partition and distribute the object
across the processors/memory modules or that replicate
read-mostly object data.

K42 uses a distributed component model called Clus-
tered Objects to manage and hide the complexity of
these distributed implementations. Clustered Objects are
conceptually similar to design patterns such as Facade
[10], and the partitioned object models used in Globe
[14] and SOS [24]. However, Clustered Objects in K42
are specifically designed for shared-memory multipro-
cessors as opposed to loosely coupled distributed sys-
tems, and focus primarily on maximizing locality. From
a client perspective, a Clustered Object appears as any
other object: an OID is obtained on creation, and the
OID is de-referenced to access the object. Hence, the
client does not see the distribution within the implemen-
tation.

Internally, Clustered Objects are implemented as (possi-
bly) multiple component objects each of which handles
calls from a specified subset of processors, and a “root”
object. Each component object represents the collective
whole for some set of processors, and is called a repre-
sentative. With the Clustered Object infrastructure, calls
to the Clustered Object are automatically directed to the
representative assigned to the processor from which the
call is being made. The representatives must coordinate
amongst themselves to ensure the Clustered Object ex-
ternally appears consistent. Besides the representatives,
each Clustered Object also has a root object, which is
used to manage the global, shared data of the Clustered
Object, and help coordinate activities between represen-
tatives.

The number of representatives used to implement the
Clustered Object is a parameter of the Clustered Ob-
ject. Clustered Objects in the current version of K42
either have a representative for each processor or are
non-distributed with requests from all processors going
to the root object acting as the single representative.4

For Clustered Objects with multiple representatives, the
representatives are typically created on demand when
first accessed so as not to incur extra overhead when not
needed.

Section 4 gives specific examples of distributed imple-
mentations using clustered objects. Details on the de-
sign and implementation of the Clustered Object infras-
tructure can be found in [11].

4The requests to the Clustered Object are still executed on the pro-
cessor on which the request was issued, but data being accessed is
typically shared.



3.4 Specialization and Hot-Swapping

Because K42 has each resource instance implemented
by an independent object instance, resource manage-
ment policies and implementations can be controlled on
a per-resource basis. Thus, most K42 objects have mul-
tiple implementations, and the client or system chooses
the best implementation at run time. This allows, for ex-
ample, every open file to have a different pre-fetching
policy, every memory region to have a different page
size, and every process to have a different exception han-
dling policy.

One of the lessons learned from Tornado and early stages
of K42 was that specialization at instantiation time was
too static, and that it was necessary to be able to dynam-
ically change implementations at run time. For example,
when a file is first opened by a thread, it may be the only
thread accessing the file and hence it would make sense
to choose an implementation optimized for single-thread
access. However, if and when additional threads also
open the same file, then the originally chosen implemen-
tation may perform poorly under the circumstances and
a parallel implementation may be more suitable. For this
reason, we have designed and implemented a dynamic
object switching facility that allows object instances to
be “hot-swapped” at run time, even while the object is
being used [1, 2, 15, 25].

Thus, for sequential and small-scale parallel applica-
tions, implementations of resources can be used that
have low overhead but do not scale, but as an applica-
tion creates more threads, the system can hot-swap in
implementations that can handle the new demands. Hot-
swapping is facilitated in K42 by having each object be
a Clustered Object, whether it has a distributed imple-
mentation or not. This adds one level of indirection with
the attendant extra overhead for all calls, but gives us the
flexibility to customize on the fly. (It also allows the in-
terpositioning of objects, say for monitoring purposes.)

3.5 Core infrastructure supporting locality

In the development of K42, considerable effort went into
designing and implementing core infrastructure to sup-
port locality. Key among these are the above-mentioned
Clustered Object infrastructure, described in [11] and
the Hot-swapping infrastructure, described in [25, 1]. In
addition, we also found the following infrastructure to
be critical:

� Locality-aware memory allocator: Using a de-
sign similar to that of [11], our allocator manages

pools of per processor memory but also minimizes
false sharing by properly padding allocated mem-
ory. It also provides NUMA support, although this
does not come into play in the experiments pre-
sented here. The memory allocator itself is, of
course, implemented so that it maximizes locality
in its memory accesses and avoids global locks.

� Locality-preserving interprocess communica-
tion: The IPC mechanism of K42 is designed as
a protected procedure call (PPC) between address
spaces, with a design similar to the IPC mechanism
of L4 [18]. The PPC facility is carefully crafted to
ensure that a request from one address space to an-
other (whether to the kernel or system server) is ser-
viced on the same physical processor using efficient
hand-off scheduling, maximizing memory locality,
avoiding expensive cross processor interrupts, and
providing as much concurrency as there are proces-
sors. Details on the implementation of our PPC fa-
cility can be found in [11, 17].

� An object destruction strategy that defers object
destruction until all currently running threads have
finished5. By deferring object destruction this way,
any object can be safely accessed, even as the ob-
ject i s being deleted. As a result, existence locks
are no longer required, eliminating the need for
most lock hierarchies. This in turn results in locks
typically being held in sequence, significantly re-
ducing lock hold times, and eliminating the need
for complex deadlock avoidance algorithms. The
implementation of our object destruction facility is
described in [11].

� A per-processor tracing facility. Global trace
buffers prevent deterministic gathering of trace in-
formation, in part because of locking requirements.
By using per-processor trace buffers, non-blocking
synchronization allows all local threads to share the
buffer, allowing for deterministic gathering of trace
data in a separate merge phase a posteriori. (Our
tracing technology has been influential in the de-
sign of similar facilities for Linux.)

4 Distributed Data Structures

In this section we present three sample objects in K42
and describe how they can be distributed using the clus-
tered object infrastructure. In two of the cases, we dis-
cuss how hot-swapping is used. We show how the dis-
tributed implementations result in major performance

5K42 is preemptable and has been designed for the general use of
RCU techniques by ensuring that all system requests are handled on
short-lived system threads.



gains. We also show how our design has allowed us
to iteratively and incrementally introduce distribution in
these objects, which illustrates a software engineering
benefit clustered objects provide us.

4.1 Process Object

The Process Object represents a running process and all
per-process operations are directed through it. For ex-
ample, every page fault incurred by a process is directed
to its Process Object for handling.

The Process Object maintains address space mappings
as a list of Region Objects. When a page fault occurs,
it searches its list in order to direct the fault to the ap-
propriate Region Object. The left hand side of figure 7
illustrates the default non-distributed implementation. A
single linked list with an associated lock is used to main-
tain the Region List. To ensure correctness in the face
of concurrent access, an associated lock is acquired on
traversals and modifications of the list.

In the non-distributed implementation, the list and its as-
sociated lock can become a bottleneck in the face of con-
current faults (see figure 8). As the number of concurrent
threads is increased, the likelihood of the lock becoming
contended grows, which can result in dramatic perfor-
mance dropoffs. Even if the lock is not contended, then
the read-write sharing of the cache line holding the lock
and potential remote memory accesses for the region list
elements add significant overhead.

We address this problem with a distributed Process
object that caches the region list elements in a per-
processor representative. (see right hand side of fig-
ure 7.) A master list, identical to the list maintained
in the non-distributed version, is maintained in the root.
When a fault occurs, the cache of the region list in the
local representative is first consulted, acquiring only the
local lock for uniprocessor correctness. If the region is
not found there, the master list in the root is consulted
and the result cached in the local list, acquiring and re-
leasing the locks appropriately to ensure the required
atomicity. This approach ensures that in general, the
most common operation (looking up a region) will only
access memory local to the processor and not require any
inter-processor synchronization/communication.

It should be noted, however, that the distributed object
has greater costs associated with region attachment and
removal than the non-distributed implementation. When
a new region is mapped, the new Region Object is first
added to the master list in the root and then cached in

the local list of the processor mapping the region. To
un-map a region, its Region Object must atomically be
found and removed first from the root and then all rep-
resentatives that are caching the mapping. A lookup for
a region not present in the local cache requires multiple
searches and additional work to establish the mapping in
the local list. In the case of a multi-threaded process, the
overhead of the distributed implementation for region at-
tachment and removal is more than made up for by the
more efficient and frequent lookup operations.

In the case of a single-threaded application, all faults oc-
cur on a single processor and the distributed version pro-
vides no benefit, resulting in additional overheads both
in terms of space and time. Hence, in order to maxi-
mize performance, the non-distributed Process Object is
used by default. The distributed implementation is au-
tomatically switched to when a process becomes multi-
threaded using K42’s hot-swapping facility.

Although one can imagine much more complex schemes
for implementing distributed versions of the Process Ob-
ject, the simple scheme chosen has three main advan-
tages:

1. its performance characteristics are clear and easy to
understand,

2. it preserves the majority of function of the non-
distributed version making the implementation also
easy to understand and maintain,

3. the distributed logic integrates easily into the non-
distributed behaviour, relying on a simple model of
caching which is implemented in a straightforward
manner on top of the pre-existing data structures
and facilities: a simple list which uses a single lock
(identical to the list used in the non-distributed ver-
sion) and the standard clustered object infrastruc-
ture for locating data members of the root object
and the ability to iterate over the representatives.

4.2 Global Page Manager Object

K42 uses a number of distributed objects within the
memory subsystem. One object of particular note is the
Global Page Manager Object, the object at the root a hi-
erarchical configuration of co-operating Page Manage-
ment Objects (PM’s). It is responsible for page man-
agement across all address spaces in the system6. File
Cache Management Objects (FCM’s) maintain the in-
core pages of a file7 and are attached to a Page Man-

6K42, employs a working set page management strategy.
7All memory regions of an address space in K42 are mapped by

Region Objects to a specific file via an FCM. This includes explicitly
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ager Object, from which they allocate and deallocate
physical pages. FCM’s for files not currently open by a
process are attached to the Global Page Manager. The
Global Page Manager implements reclamation by re-
questing pages back from the FCM’s attached to it and
from the Page Managers below it. Each Page Manager
below the Global Page Manager is attached to a Process
Object and implements page management for the open
files associated with the process.

The left hand side of figure 9 illustrates the simple non-
distributed implementation of the Global Page Manager
that was first used in K42. It contains a free list of phys-
ical pages and two hash tables to record the attached
FCM’s and PM’s. All three data structures were pro-
tected by a shared lock. On allocation and deallocation
requests, the lock was acquired and the free list manip-
ulated. Similarly when a PM or FCM was attached or
removed, the lock was acquired and the appropriate hash
table updated. Page usage statistics were maintained for
each attached PM and FCM in the hash tables along
with its object handle. Reclamation was implemented as
locked iterations over the FCM’s and PM’s in the hash
tables. Each FCM and PM was instructed to give back
some number of pages based on its usage statistics dur-
ing the reclamation iterations.

As the system matured, we progressively distributed
the Global Page Manager Object in order to alleviate
contention observed on the single lock and shared data

named files such as the program executable, as well as the anonymous
files associated computational regions associated with a process such
as its heap.

structures. The current implementation is illustrated on
the right hand side of figure 9. The first change was to
introduce multiple representatives and maintain the free
lists on a per-processor basis. The next change was to
partition the FCM Hash Table on a per-processor basis
by placing a separate FCM Hash Table into each repre-
sentative and efficiently mapping an arbitrary FCM to a
representative. The Clustered Object infrastructure pro-
vides a simple mapping of an object handle to the pro-
cessor number on which the object was allocated. In
the case of the distributed Global Page Manager, the
allocating processor for an FCM is treated as its home
processor which we map directly to a representative via
an array of representatives maintained in the root. The
FCM is stored in the hash table of representative of the
home processor. The final change was to use the same
approach to distribute the PM hash table.

In the distributed version, page allocations and deallo-
cations are done on a per-processor basis by consulting
only the per-representative free list. The current im-
plementation does not attempt to balance the free lists
across representatives. FCM and PM attachment and
detachment are achieved by first calculating the home
processor for the FCM or PM making the request and
then placing it in the hash table of the representative as-
sociated with that processor. Given that there is only one
instance of the Global Page Manager in the system and
that there is a representative for every processor, an array
of representative pointers was put into the root of the dis-
tributed Global Page Manager to facilitate more efficient
mapping of processor to representative. The basic clus-
tered object infrastructure provides facilities for locating
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Figure 8: Graph of Distributed vs Non-Distributed Process
Object: This graph illustrates an experiment showing the
speedup of running a single process which spawns 1 thread per
processor, each of which repeatedly maps an independent file
into an independent region, accesses each page of the file se-
quentially, and then un-maps the region, measuring the average
time for a thread to complete. The distributed implementation
does not achieve perfect scalability because of idiosyncrasies
in the TLBIE operation in the PowerPC hardware. The lock on
the region list of the non-distributed implementation becomes
a bottleneck rapidly, resulting in substantial slow down with
more than 5 processors.

a representative, given a processor number, but it is de-
signed for general use and is thus more costly. Recla-
mation is done completely local to a representative, with
each representative iterating over the PM’s and FCM’s
recorded in its hash tables.

The current distributed version of the Global Page Man-
ager, in addition to alleviating the contention on the
shared lock, in general eliminated the need for inter-
processor communication. The array of representatives
is the only shared state for the current Global Page Man-
ager. It requires no locks and is read only after initial-
ization and hence has good SMP cache performance.

Figure 10 shows the impact the distributed Global Page
Manager has on SDET performance.

5 10 15 20
Processors

0

10000

20000

30000

T
hr

ou
gp

ut

K42 with Shared PMRoot
K42 with Distributed PMRoot

Figure 10: Graph of Distributed vs Non-Distributed Global
Page Manager: This graph illustrates an experiment showing
the speedup obtained running the SDET (workload described
in the appendix, with results normalized to distributed unipro-
cessor result). with either the current distributed version of the
Global Page Manager verse the original non-distributed ver-
sion. The advantages of the distributed version become appar-
ent even on a small number of processors.

Our research into distributed page management is not
complete, but given our iterative approach, we are now
in a better position to design new distributed imple-
mentations of the Global Page Manager which can be
tested under real workloads. Perhaps this is one of the
best-case examples of iterative clustered object develop-
ment: a fully distributed implementation was developed
by successively distributing a centralized implementa-
tion requiring minimal programming effort and with the
centralized algorithms naturally being applied to the dis-
tributed version.



4.3 File Cache Managers

All regions of an address space are attached to an in-
stance of a File Cache Manager (FCM) which caches
the pages for that region. An FCM may be backed by a
named file, or swap space in the case of anonymous re-
gions, such as the heap of a process. An FCM is respon-
sible for all aspects of in-core page management for the
file it caches. On a page fualt, a Region Object asks its
FCM to translate a file offset to a physical page frame.
The translation may involve the allocation of new phys-
ical pages and the initiation of requests to a file system
for the data. When a Page Manager asks it to give back
pages, an FCM must implement local page reclamation
over the pages it caches. The FCM is a complex object,
implementing a number of intricate synchronization pro-
tocols including:

1. race-free page mapping and un-mapping,
2. asynchronous I/O between the faulting process and

the file system,
3. timely and efficient page reclamation, and
4. maintenance of fork logic in the case of anonymous

files.

The standard non-distributed FCM uses a single lock
to ease the complexity of its internal implementation.
When a file is accessed by a single process, the lock and
centralized data structures do not pose a problem. When
many processes or threads of a single process access the
file concurrently, however, then the shared lock and data
structures induce inter-processor communication result-
ing in degraded page fault performance.

Unlike the Process Object and Global Page Manager,
there is no straightforward way to distribute the FCM’s
data members without adding considerable complexity
and breaking its internal protocols. Rather than re-
designing every one of its internal operations, a new
distributed version was developed by replacing the core
lookup hash table with a reusable encapsulated dis-
tributed hash table. This allowed the majority of the
protocols to be preserved while optimizing the critical
page lookup paths in an isolated fashion. Moreover, it
allowed us to reuse the distributed hash table in other
objects.

Figure 11 illustrates the basic structure of the reusable
distributed hash table (DHash). There are two basic
components to the DHash: a MasterDHashTable and
LocalDHashTables, which are designed to be embedded
into a Clustered Object’s root and representatives respec-
tively. After embedding the DHash into a Clustered Ob-
ject, calls can be made to either the LocalDHashTables

or the MasterDHashTable directly. DHash has a number
of interesting features:

1. LocalDHashTables and MasterDHashTable auto-
matically cooperate to provide the semantics of a
single shared hash table for common operations,
hiding its internal complexity,

2. all locking and synchronization are handled inter-
nally,

3. all tables automatically and independently size
themselves,

4. uses fine-grain locking where common accesses re-
quire an increment of a reference count and the
locking of a single target data element,

5. supports data elements which have both shared and
distributed constituents,

6. supports scatter and gather operations for dis-
tributed data elements

The support for distributed data was used to aggressively
optimize the distributed FCM. A developer can specify
that the data to be stored in the DHash is composed of
global data values as well as local data values. When
querying a LocalDHashTable, the local data values will
be returned along with a local copy of the global val-
ues. The MasterDHashTable stores the primary version
of global values associated with the key. Scatter and
gather operators allow the developer to efficiently ag-
gregate and update the distributed data members. In
the case of the distributed FCM, a DHash table is used
to store the page descriptors associated with each page
cached. By distributing the page descriptor’s state bits, it
was possible to implement concurrent faults to a single
logical page descriptor which requires no synchroniza-
tion or communication. For example: the dirty bit for a
page must be updated when a write fault initially occurs
on a page. By distributing the dirty bit each processor
need only examine and update its own version of the
bit, not requiring synchronization. During page scan-
ning however, the global value of the dirty bit requires a
gather operation.

If not under contention the distributed FCM has over-
head associated both in terms of time and space. The dis-
tributed FCM essentially has double the space require-
ments due to the maintenance of both the local and mas-
ter portions of the DHash table. By default we use the
non-distributed FCM when a file is opened, if the file
suffers contention we swap to the distributed implemen-
tation.
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Figure 12: Graph of Distributed FCM vs Non-Distributed
FCM performance: This graph illustrates the results of run-
ning one instance of grep per processor. Each grep searched
a common 111MB file for a non-matching search pattern. We
measured the average time for an instance of grep to complete.
Although not visible here, the non-distributed version has ap-
proximately a 1% advantage when running on 1 processor.

4.4 Experiences

We found that the notion of a “root” in a clustered ob-
ject is critical for a number of reasons. First, it gives us
a natural strategy to incrementally distribute an imple-
mentation, where the root is the original non-distributed
implementation and we distribute just the function that
is hot. Second, it enables a natural implementation for
what we have found to be a common case, i.e., the reps
just implement a cache of state while there is a central-
ized implementation to handle all the modifications. Fi-
nally, making the root a standard part of our infrastruc-

ture has allowed us to provide standard mechanisms for
maintaining information like the list of all representa-
tives and a place to stand for synchronization when de-
stroying objects. Our experience is that it is critical to
put all this complexity in the infrastructure rather than
burden programmers of individual objects with it.

When we first obtained our 24-processor system we
found that our scalability was terrible. We were able to
achieve a good level of scalability in about two weeks of
work. The five main reasons we were able to accomplish
this were:

1. While we had not experimented on a large system,
the design had been structured for good scalability
from the start.

2. The OO design meant that all the changes were
encapsulated within objects. There were no cases
where changes to a data structure resulted in
changes propagating to other parts of the system.

3. The deferred deletion (i.e. RCU), eliminates most
of the existence locks and hence locking hierar-
chies. We have found no cases where we had to
modify complex locking protocols that permeated
multiple objects.

4. The OO design and hot-swapping allowed us to de-
velop special purpose objects to deal with some of
the hard cases without polluting our common case
objects.

5. We had invested a major effort in tracing infrastruc-
ture that allowed us to easily pinpoint performance
problems and fix them.



It appears that the OO design has so far given us a
major software engineering advantage. We have found
that it is much easier to write multiple simple special-
purpose objects rather than the normal strategy of hav-
ing a single complex implementation of a system ser-
vice that handles all the special cases. However, we
do have a long-term concern. As more and more im-
plementations are developed, interface changes and bug
fixes might result in a maintenance nightmare. While
we use inheritance aggressively in the system, in many
cases (e.g., non-distributed versus distributed implemen-
tations) code cannot be shared easily. We are looking at
various technical solutions to this problem.

Another challenge is that it can be difficult to achieve a
global state if all the data for achieving that understand-
ing is scattered throughout many object instances. For
example, without a single page cache, there is no natural
way to implement a global clock algorithm. We have so
far found that alternative algorithms (e.g., working set)
are feasible.

5 Related work

Rosenblum et al in [8] analyzes the difficulties in deal-
ing with coherency overheads induced by communica-
tion and synchronization, and the importance of avoid-
ing false sharing and preserving cache locality in achiev-
ing high performance on SMMPs.

Many techniques have been developed to address syn-
chronization and locality problems in multiprocessor en-
vironments. The communication scalability of synchro-
nization has been improved by the introduction of dis-
tributed, queue-based spin-locks[22]. Hoard[3] and the
Sequent Allocator[21] employ a combination of global
heap and per-processor heaps to achieve scalable mem-
ory allocation and avoid cache thrashing; K42’s mem-
ory allocator follows the same principles. Papers such
as [6, 20, 23] describe approaches to multiprocessor per-
formance issues in the context of specific subsystems.
The work involved splitting specific locks and changing
specific data structures to avoid cache collision.

Hive[8] is an operating system designed to achieve scal-
ability and reliability. It is structured as an internal dis-
tributed system of independent kernels, and it relies on
write-protection hardware. Disco[5] proposed using vir-
tual machines to provide scalability and to hide some of
the characteristics of the underlying hardware from the
NUMA-unaware operating system. Cellular Disco[12]
extends Disco to support hardware fault containment.

Spring[13] and Choices[7] are object-oriented operating
systems targeting distributed environments. Spring also
pursued customization of services (the notion of sub-
contracts, but K42’s hot-swapping approach allows for
more flexibility.

SOS[24] and Globe[14] present concepts similar to clus-
tered objects, but focusing on distributed environments,
which have more complex failure modes and very dif-
ferent (less constrained) efficiency requirements than a
tightly coupled shared-memory multiprocessor environ-
ment.

6 Concluding Remarks

K42 was developed from scratch for shared memory
multiprocessors. Key aspects of the design are: (i) an
object-oriented structure that maximizes locality, (ii) a
Clustered-Object infrastructure that support distributed
implementations in a straightforward way, and (iii) a
hot-swapping infrastructure that allows one implemen-
tation to be exchanged for another at run-time as de-
mands on objects change. We demonstrated excellent
scalability for three system benchmarks, described the
basic system infrastructure, and presented three exam-
ples of clustered objects. For these clustered objects, we
discussed how we distributed their implementation, and
showed substantial impact on performance. It appears
that the basic ideas we have explored work reasonably
well.

We have been developing K42 as a research vehicle for
the last five years in a major industry lab by, on aver-
age a team of six researchers and a number of academic
collaborators. K42’s design has borrowed heavily from
the Tornado OS previously developed at the University
of Toronto. K42’s support of the 64-bit PowerPC Linux
APIs and ABI allows it to exploit Linux’s rich software
ecosystem (and work is underway on an x86-64 port).
The system is available under an LGPL license.

While the investment in K42 is large by the standards
of research projects, it is very small by the standards of
fully functional operating systems. As we have seen in
this paper, K42 is mature enough to run real applica-
tions and benchmarks. Substantial subsystems, like Ap-
pache, run without modification or re-compilation from
64-bit PowerPC Linux. Services like shared libraries,
pty support, NFS, job control, and much of the less excit-
ing but tough and important function normally not fully
supported in research environments is fully supported in
K42.



We have found K42’s OO-design to be ideal for pro-
totyping new technologies and ideas, and as such this
project has had significant impact on Linux. The ABI
and toolchain for 64-bit PowerPC Linux, deferred ob-
ject deletion technology (Read-Copy Update), the Linux
Tracing Toolkit and reverse-mapping logic for the Linux
2.5/2.6 VM are examples of areas where experience and
technology from K42 has made an impact on Linux. Our
experience is that K42 is a great proving ground for tech-
nology and once an idea has been demonstrated in K42,
it is often possible to transfer it to Linux.

With K42’s OO design and user-level library implemen-
tation of system services, basic efficiency and unipro-
cessor performance has been a worry. Our concerns are
somewhat alleviated by the current performance num-
bers. Our uniprocessor degradation is, for OS intensive
load, less than 10% over Linux. We have found that most
of the performance challenges have come from the user-
level library implementation of services and not from
the OO design. We are actively working on base perfor-
mance, and believe that for most applications and work-
loads we will be able to match and in some cases even
exceed Linux’s uniprocessor performance in the near fu-
ture. Our dependency on 64-bits means that we won’t be
applicable to many current low end systems.

A Methodology and Details of Experi-
ments Run

All the results in this paper were obtained by running
K42 or Linux 2.4.19 on PowerPC hardware. We used
an S85 Enterprise Server IBM RS/6000 PowerPC bus-
based cache-coherent multiprocessor with 24 600MHZ
RS64-IV processors and 16GB of main memory. The
three different benchmarks we ran to examine scalabil-
ity were SPEC SDET, Postmark 1.5, and a parallel make.
To stress the system rather than disk, each of the exper-
iments was run using RamFS. For each experiment we
ran the same script on both K42 and Linux as distributed
by SuSE (with the O(1) scheduler patch).

The SPEC Software Development Environment
Throughput (SDET) benchmark [26] consists of a script
that executes a series common Unix commands and
programs including ls, nroff, gcc, grep, etc. Each of
these are run in sequence. For our experiemnts, the
SDET benchmark was modified by removing some
system utilities such as “ps” and “df”. To examine
scalability we ran one script per processor. All the user
programs (bash, gcc, ls, etc.) are the exact same binary,
whether run on K42 or Linux. The same version of glibc

2.2.5 was used, but modified on K42 to intercept and
direct the system calls to the K42 implementations. The
throughput numbers are those reported by the SDET
benchmark and represent the number of scripts per hour
that are executed.

Postmark was designed to model a combination of elec-
tronic mail, netnews, and web-based commerce transac-
tions [16]. It creates a large number of small, randomly-
sized files and performs a specified number of transac-
tions on them. Each transaction consists of a randomly
chosen pairing of file creation or deletion with file read
or append. As with SDET, a separated instance of Post-
mark was created for each processor with corresponding
separate directories. We ran the benchmark with 20,000
files, 100,000 transaction and disabled Unix buffered
files. The rest of the options were the default. The to-
tal time reported is obtained by summing the time each
individual instance takes.

Parallel make is designed to model the common task of
building an application in parallel (in this case the ran-
domly chosen application is GNU Flex). Rather than
invoking ”make” with a ”-j” option telling it to issue
commands in parallel, we created one build directory per
processor and invoked one sequential ”make” in each
of these directories in parallel (all ”make”’s built from
a common source tree, to unique build directories). A
driver application synchronized the invocations of each
make process to ensure simultaneous start times, tracked
the run-time of each ”make” and reported the final result
as an average of all ”make” run-times. GNU Make 3.79
and GCC 3.2.2 were used.
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