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Abstract

We investigate the asymptotic behavior of reected random walks. Di�usion approximations will

be our major technical methodology. We demonstrate that under mild conditions, the reected random

walks can be approximated by perturbed Brownian motions; the limit process will be further studied

through applications in a queueing system.

1 Introduction

Di�usion approximations have been successfully applied in performance analysis and control of complex
system. Whitt [6] provides a good survey on the methodology and applications on the subject. Most
of studies are restricted on the cases of unit increment, classic queueing context, especially at the case
of the reecting. In Kushner [4], queues and reection with batch processes were examined, di�usion
approximations results, especially the reecting angels in some special cases were obtained.

In this paper, we intend to establish some rigorous foundation for this type of problem. The problem
we focus on will the the di�usion approximations of reected random walks with general distributions.
Like in the queueing case, the \reecting" happens when the process in \forced" to stay nonnegative.
However, in our case, the process will stay at the position of the previous step, instead of the boundary,
as in some studies. This phenomenon of \reecting in the interior" poses diÆculties in expressing the
reecting process as functional of the cumulative process of the pure random walk, as did in the classic
reecting results. To overcome this barrier, we introduce a sequence of processes that can be expressed
as the functional of cumulative process of the pure random walks or itself. We show that this sequence
will eventually overside with the reected random walk, The di�usion approximation, therefore, can be
obtained with the aid of this sequence of processes. The limiting process turns out to be a perturbed
reecting Brownian motion, this is in line with the fact that we apply extra \force" to push the process
back to the nonnegative domain in the case of reected random walk.

This approximation can be easily applied to the cases of queueing system with batch arrivals and
�nite bu�er, which in turn can be used to model a large class of applications, such as manufacturing
systems as considered in Kushner [4]. The applications of this results can be found in Lu [5].
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2 Di�usion approximation of reected random walks

We will study the following \reected" random walk,

Sn =
nX

i=1

Xi1fSi�1 +Xi � 0g; S0 = 0: (1)

where Xis are i.i.d random variables with density F (dx), and denote � as its mean and �2 the variance.
Apparently, Sn will stay nonnegative.

Sn evolves like a regular random walk while in nonnegative half line, however, whenever the increment
leads it into negative, it will abandon the step, i.e. stay unchanged. Apparently, Sn � 0 holds for all
n. The di�erence between this process and conventional reected random walk is that it is not reected
exactly at boundary, therefore, the so called \regulation" process is more than just the running maximum
of the negative part.

In the following, we will introduce another representation of the dynamics of Sn. In this represen-
tation, we will introduce a sequence of stochastic processes, and Sn will be the limit of this sequence.
This representation will enable us to introduce uid and di�usion scaling much easier, hence, leads to
the result of di�usion approximations.

The dynamic can be characterized equivalently by the following,

Z1

n =

nX
i=1

Xi; for; n = 1; 2; � � � ;

�1 = inffn : Z1

n < 0g

Z2

n = Z1

n + 1

(
sup

k�i�1
f�Z1

kg < sup
k�i

f�Z1

kg
)("
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f�Z1
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#
+

"
sup
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f�Z1

kg
#)

�2 = inffn : Z1

n < 0g
� � �

Z`
n = Z`�1

n + 1

(
sup

k�i�1
f�Z`�1

n g < sup
k�i

f�Z`�1
k g

)
("

Z`�1
i�1 � sup

k�i�1
f�Z`�1

k g
#
+

"
sup
k�i

f�Z`�1
k g � sup

k�i�1
f�Z`�1

k g
#)

� ` = inffn : Z`�1
n < 0g

� � �
Remark: The intuition behind this representation is that every time random walk is reected, the
regulation process contains two parts, one, represented by the running maximum of the negative part of
the random walk, put the process back to level zero; another one, the di�erence between last step and
level zero, put the process back to the position of the previous step.

We can conclude that
Z`
n = Sn; for ` large enough,

More speci�cally, let �n := inff` � 0; � ` � ng, then, Sn = Z�n
n . Therefore, we have,
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Z�n
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Another important piece of the puzzle is the asymptotic equivalency of the following two quantity,

sup
k�i

f�Z`�1
k g � sup

k�i�1
f�Z`�1

k g

and
Z`�1
i�1 � sup

k�i�1
f�Z`�1

k g

when `!1. More precisely,

sup
k�i

f�Z`�1
k g � sup

k�i�1
f�Z`�1

k g ! S0; a:s:

Z`�1
i�1 � sup

k�i�1
f�Z`�1

k g ! S0; a:s:

where S0 follow the distribution. The reason is that supk�if�Z`�1
k g � supk�i�1f�Z`�1

k g can be treat

as overshoot of the random walk for a level that goes to in�nite, and Z`�1
i�1 � supk�i�1f�Z`�1

k g can be
treated as undershoot. They will both approach S1, see details in [1].

2.1 Di�usion approximations

The di�usion approximation will be discussed in two parts. First, using tightness argument, we will
establish the weak convergence of the process under consideration. Then, equations developed in last
section will help us to identify the limiting process.

De�ne Ŝn(t) = (1=
p
n)Sbntc.The goal is to obtain the limit of Ŝn(t) as n ! 1. Adapting the

argument in [4], we can show that the random sequence Z�(t) is tight. Then, from the dynamic we
developed in the previous section, we can obtain the dynamic equation that the limit process will satisfy.
More speci�cally, as we illustated in the last section, the \force" of extra push will have the same
point wise limit as the running maximum of the negative part of the random walk. Then the following
result Theorem 5.5 from Billingsley [2] can guarantee that they will not be discerned through the weak
convengence of the probability measures.

Lemma 1 hn and h to be maps, and hn ! h; a:s:, Pn and P are probability measures, Pn ) P , then,
Pnh

�1
n ) Ph�1.

In summary, we have,

Theorem 2 The scaled process Ŝn(t) is tight, and its weak limit satis�es Z(t) the following equation,

Z(t) =W (t) + 2 inf
s�t

[Z(s)] (2)

Where W (t) is a Brownian motion.

In Davis [3], it is shown that (2) uniquely identi�es a di�usion process, and it follows the law of Bessel
process with dimension 2.
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