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ABSTRACT

In this paper we describe a general information fusion algo-
rithm that can be used to incorporate multimodal cues in
building user-defined semantic concept models. We compare
this technique with a Bayesian Network-based approach on
a semantic concept detection task. Results indicate that this
technique yields superior performance. We demonstrate this
approach further by building classifiers of arbitrary concepts
in a score space defined by a pre-deployed set of multimodal
concepts. Results show annotation for user-defined concepts
both in and outside the pre-deployed set is competitive with
our best video-only models on the TREC Video 2002 cor-
pus.
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H.3.3 [Information Storage And Retrieval]: Informa-
tion Search and Retrieval—retrieval models

General Terms
Algorithms
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1. INTRODUCTION

Large digital video libraries require tools for represent-
ing, searching and retrieving content. One possibility is
the query-by-example (QBE) approach, in which users pro-
vide (usually visual) examples of the content that they seek.
However, such schemes have some obvious limitations and
since most users wish to search in terms of semantic con-
cepts rather than by visual content [7], work in the video
retrieval area has begun to shift from QBE to query-by-
keyword (QBK) approaches which allow users to search by
specifying their query in terms of semantic concepts. Query
using keywords representing semantic concepts has moti-
vated recent research in semantic media indexing [3, 10].
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Recent attempts to introduce semantics in the structuring
and classification of videos include [4, 9]. In these works,
the emphasis has been on the extraction of semantics from
individual modalities and in some instances, using audio
and visual modalities. Our research work combines content
analysis with information retrieval in a unified setting for
semantic labeling of multimedia content using audio, visual
and textual modalities. In this paper we present a novel
information fusion algorithm that leverages a pre-deployed
collection of semantic concept detectors (unimodal and mul-
timodal) to further improve their performance or to detect
novel semantic concepts using this inventory of concept de-
tectors.

The performance of semantic modeling systems can be
measured along (at least) three distinct dimensions that we
term as: accuracy, acquisition and coverage. Along the
accuracy dimension, the performance of individual concept
detectors (and systems as a whole) are compared using stan-
dard pattern recognition metrics such as Precision-Recall,
Mean Average Precision!. We define coverage in terms of
the “number” of distinct concept models that a particular
system can reliably model. For specific domains it may
be possible to define coverage more formally in terms of
the space of concepts occuring in that domain. The ease-
of-acquisition dimension measures the system’s capacity to
learn new concepts with as little manual intervention as
needed. In this paper, we conduct experiments to evaluate
our system’s performance along the coverage and accuracy
dimensions.

The rest of the paper is organized as follows. In Sec-
tion 2 we outline the architecture of our trainable concept
annotation system. In Section 3 we present our novel dis-
criminative model fusion approach for combining cues from
multiple modalities to both improve existing concept detec-
tors and develop novel concept detectors. In Section 4 we
evaluate the performance of this approach on the TREC
Video Track 2001 and 2002 corpora. The paper ends with
conclusions and discussion.

2. SEMANTIC INDEXING OF MULTIME-
DIA USING AUDIO, TEXTUAL AND VI-
SUAL CUES

We assume the user defines a set (“lexicon”) of semantic

'Mean Average Precision is a system-wide number
used by NIST to compare retrieval systems. See
http://trec.nist.gov/pubs/trec10/t10_proceedings.html for
its definition.
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Figure 1: Automatic Annotation System Overview

concepts (objects, scenes and events) that covers their se-
mantic query space of interest. We further assume existence
of shot-level manually annotated examples for a small set
of “training” videos®. Figure 1 illustrates the general archi-
tecture, which presents several research challenges. These
include the need to develop algorithms which extract suf-
ficiently informative low-level feature representations from
manually annotated examples and to formulate a generic
framework for constructing semantic concept models using
the extracted features. This paper describes our approach
to the generic semantic modeling framework.

3. DISCRIMINATIVEMODEL FUSION (DMF)
FORINFORMATION FUSION FROM MUL -

TIPLE MODALITIES

Assume that a pre-defined set of “anchor” or “basis” de-
tectors have been defined, trained and deployed in the sys-
tem. See for instance, our related work in semantic concept
modeling [2]. Each of these anchor model detectors can
be used to score every shot in a new video. We note that
these scores can be used for retrieval of these concepts from
previously unseen video [2]. The scores can be likelihood ra-
tios, log-likelihoods, SVM classification scores, result of the
OKAPI formula etc, depending on the modeling approach
applied for the particular semantic concept.

Once system installation begins, the user defines a lexicon
and annotates examples; lexicon entries are arbitrary and
may or may not correspond to concepts in the basis model
set. The manually annotated examples for each concept are
supplied to the system and models constructed. Each new
single concept model is then constructed as follows. Each
shot in the training set is scored using the predeployed basis
models, giving a vector of model scores for the shot. Then,
a classifier is trained to map from these vectors in “model
score space” to presence or absence of the concept in a shot.
See Figure 2 for an illustration. For an earlier description
of this experiment, please refer to our paper [5]. This paper
reports improved results obtained more recently.

We study two cases empirically: (a) target semantic con-
cept is already a member of the basis set, (b) target semantic
concept is not in the basis set. In the first case, we measure
the system’s accuracy. The second case is an illustration
of the system’s coverage capabilities. These cases are ex-
amined in the next section. Many further questions arise.
What is an effective set of basis models and should more

2Tools for
speech,
ages are now available eg.

manual concept annotation in
non-speech audio and (or) video im-
IBM  VideoAnnex,
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Figure 2: Illustration of Score Space Classification
Approach

than one basis model be included per core concept? How
large must the basis model set be to give adequate cover-
age of a user’s semantic query space of interest? How does
per-concept classification performance vary as basis set size
increases?” What is an appropriate choice of model score
space classifier? How much user-supplied data is necessary?
These questions are deferred to future work.

In this work we use a support vector machine (SVM) [§]
to train a discriminative classifier in the model vector space.
We can view the anchor concept classifiers as non-linear
functions that take points in 8" and map them into a scalar.
That is, C(x) : R" — R where x is an n-dimensional fea-
ture vector and C'is a classifier that operates on this feature
vector. We hypothesize that points that are near in the
feature space produce similar scores when operated on by
these classifiers. Now, if you consider a cluster in the fea-
ture space, this maps into a 1-dimensional cluster of scores
for any given classifier. Extending this reasoning to multi-
ple classifiers, we can view the SVM for fusion as operating
in this new feature space (of classifier scores) and finding a
decision boundary. In a typical situation with image fea-
tures, the input feature space can be fairly large compared
to the number of classifiers and here we expect the resulting
dimensionality reduction to be useful.

4. EXPERIMENTSWITH DMF

We now report on two experiments. In the first exper-
iment, we evaluate the novel DMF information fusion ap-
proach for detection of a single multimodal concept. In the
second set of experiments we compare the DMF approach
with direct modeling of semantic concepts to evaluate it
along the accuracy and coverage dimensions.

4.1 Detection of a single multimodal concept

Corpus and Evaluation Metrics: For the first ex-
periment reported in this paper, we use a subset of the
NIST Video TREC 2001 corpus, which comprises produc-
tion videos derived from sources such as NASA and Open-
Video Consortium. Some of the clips contain footage of
NASA activities including the space program.

We measure concept detection performance using precision-
recall curves. Precision is defined as Number of relevant
documents (shots)/Total retrieved documents and Recall is
defined as Number of relevant documents/Total number of
relevant documents in the database. In addition, an overall
figure-of-merit of retrieval effectiveness is used to summarize
performance. We choose the NIST Average Precision (AP)
as our figure-of-merit.



Technique AP

Best audio (explosion) 0.56

Best visual (rocket object) 0.39
DMF (audio,text,visual) 0.63
NaiveBayes (best audio + best visual) | 0.59

Table 1: Average Precision results for rocket-launch
detection using DMF, NaiveBayes and the uni-
modal tecniques.

Precision

Figure 3: Fusion of Audio, Text and Visual models
using the DMF model for rocket launch detection.

The target multimodal concept we choose to model is a
“rocket-launch”, given its strong cues in both audio and vi-
sual modalities. We first compare the performance of the
DMF approach with the best audio and video detectors for
rocket-launches. We note here that the best audio model
for detecting rocket-launches is the “explosion” (rocket en-
gine) sound and the best video model is the “rocket-object”
model. For deteails on these audio and video models, please
refer to our paper [1]. For training the Support Vector Ma-
chine in the DMF framework, we took scores from 9 se-
mantic models (Audio: explosion, music, speech, speech-
music; Video: rocket, outdoors, sky, fire-smoke; Text: rocket
launch), concatenating them into a 9-dimensional feature
vector. Figure 3 shows the precision-recall curve for this ex-
periment. Figure 4 shows the screen shot of rocket-launch
concept detection using the DMF model. Note that the
DMF approach improves over the best uni-modal detection
by 12.5% relative. Also, 19 of the top 20 retrieved shots con-
tain rocket-launches, indicating high precision in retrieval.

We then compare the DMF approach with a Naive Bayes
model integrating the Audio and Video scores®. Results
in Table 1 shows the average precision for the two fusion
approaches in addition to the 2 uni-modal techniques. The
DMF approach outperforms the Naive Bayes model.

4.2 Evaluation of Concept Accuracy and Cov-
erage of the DMF framewor k

Corpus: In this experiment, we use the TREC Video
Track 2002 corpus, comprising 70 hours of MPEG video?.
We use 25 hours for training basic low-level feature mod-
els (“FeatureTrain”) and 5 hours for optimising parameters
of individual models (“FeatureValidate”) and for develop-
ing the DMF models. Final performance is evaluated on a
distinct 5 hour test set (“SearchTestSubset”). The reported

3We implemented a variety of Bayesian networks, some in-
cluding text scores and found the above Naive Bayes imple-
mentation to have the best performance.

4 Average video length is 10 minutes.
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Figure 4: The top 20 video shots of rocket
launch/take-off retrieved using multi-modal detec-
tion based on the DMF model

results are based on the performance of these detectors on
SearchTestSubset. We developed a variety of Text, Video
and Audio models to form our basis set of detectors. These
models are enumerated below.

Video Models: Concepts modeled include the six Video
TREC 2002 benchmark visual concepts (“indoors”, “out-
doors”, “face”, “people”, “cityscape”, “landscape”) plus 34
additional concepts including “sky”, “transportation” and
“beach”. For each concept, multiple classifiers are built and
their per-shot scores linearly interpolated [2].

Non-Speech Audio Models: Concepts modelled in-
clude Hidden Markov Models of “Speech” and “Instrumental
Sounds” [2].

Text Models: Automatic speech recognition gives “Fea-
tureTrain” transcripts, which are analyzed to extract all
words occurring in or close to positive exemplars of each
concept in the TREC 2002 visual set (above). Manual list
refinement gives a set of pertinent query terms for each con-
cept. Test set annotations are performed by first indexing
the speech transcript using an OKAPI-based [6] spoken doc-
ument retrieval system and then (for each concept) querying
using the corresponding pertinent term set.

Basis Model Sets: For the accuracy task, we use the
40 Video, 2 Non-speech Audio and 6 Speech Models just
described. For the coverage task we remove the six Video
TREC 2002 visual concepts (above) from this set.

Accuracy Task and Results: The first experiment con-
siders the case where a user concept-of-interest falls in the
pre-deployed basis set. Table 2 shows per-concept Average
Precision (AP) and overall Mean AP (MAP) results on the
six TREC 2002 visual concepts. It is interesting to note
that speech-only results for “outdoors”, “face”,”cityscape”
are comparable to best single video-only model performance.
More importantly, the DMF MAP with a multimodal ba-
sis set improves performance by 19% over our pre-deployed
video-only detectors; for comparison, the DMF approach
using a basis of only video score vectors improves MAP by
8%. The model-score space approach does not hurt (in fact,
helps) the accuracy of the underlying classifier.

Coverage Task and Results: The second experiment



Concept Best Speech | Video+ | Video
Video Detector | Speech | DMF
Detector DMF
Outdoors .59 .58 .58 .58
Indoors 12 .07 .25 18
Face A7 15 21 .18
People 18 .18 .26 .25
Cityscape 31 .34 .35 .30
Landscape .19 .14 18 18
MAP .26 .24 31 .28

Table 2: Concept Accuracy AP & Overall MAP on
SearchTestSubset

considers the case where a user concept-of-interest falls out-
side the pre-deployed basis set. We repeat the previous
experiment using the reduced basis discussed above. Ta-
ble 3 shows that DMF improves MAP performance by 23%
compared with the best video-only TREC 2002 detectors.
This indicates that the DMF approach has constructed use-
ful models for new concepts from a pre-deployed basis. This
is a very encouraging result. This enables a clear, robust
approach for incorporating new concept detectors on a de-
ployed system. Thus, the coverage of an annotation and
retrieval system can be easily enhanced to incorporate con-
cepts of users’ interest.

Concept Best Video Detector | Video+Speech DMF
Outdoors .59 0.64
Indoors 12 0.27
Face A7 0.15
People .18 0.28
Cityscape 31 0.35
Landscape .19 0.18
MAP .26 0.32

Table 3: Concept Coverage AP & Overall MAP on
SearchTestSubset

The DMF approach incorporates inter-model context in-
formation together (from the concatenation of model scores
in forming the model-score-space vector) with individual
model performance information. We hypothesize that the
gains observed by using the DMF approach results from the
discriminative classifier learning both these additional pieces
of information. The open questions include the effect of the
number of basis concepts and the choice of basis concepts
on both the accuracy and coverage performance of the DMF
framework. Whilst we have used SVMs as our DMF classi-
fier, other choices are feasible. In our experiments, the basis
classifiers were trained on the FeatureTrain dataset and opti-
mized on the much smaller FeatureValidate dataset, whereas
the DMF classifiers were trained on FeatureValidate. The
effect of the training set size on DMF classifer needs to be
quantified.

5. CONCLUSIONS

In this paper we describe a general approach for informa-
tion fusion from multiple modalities in a system for auto-
matically annotating arbitrary semantic concepts in video.
In addition, this approach works well compared with proven
techniques such as Naive Bayes. In a system with pre-
deployed set of optimized basis models, we demonstrated
that this novel approach provides a further gain over these
models. Notably, in the Video TREC 2002 corpus we obtain

a 19% improvement in MAP score. In addition, we demon-
strated that this approach can be used for building arbitrary
models from a set of basis concept models thereby provid-
ing a powerful general approach for video retrieval system
development. On a limited test with 6 unseen concepts, the
improvements in MAP was 23% over directly modeling these
concepts.

We hypothesize that the exploitation of correlation (pos-
itive and negative) between the basis and target concepts
is key to the performance gains offered by the DMF frame-
work. The accuracy and coverage improvements of this
approach offer a robust, consistent framework for enhanc-
ing the performance of any video retrieval system. There
are many open issues, including the selection of an optimal
basis, the capacity of the system to acquire novel concepts
(given a set of fixed pre-deployed basis concept detectors)
and training set size which need to be studied further.
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