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ABSTRACT 
 
This paper describes various noise robustness issues in a 
speech-to-speech translation system. We present quantitative 
measures for noise robustness in the context of speech 
recognition accuracy and speech-to-speech translation 
performance. To enhance noise immunity, we explore two 
approaches to improve the overall speech-to-speech translation 
performance. First, a multi-style training technique is used to 
tackle the issue of environmental degradation at the acoustic 
model level. Second, a pre-processing technique, CDCN, is 
exploited to compensate for the acoustic distortion at the signal 
level. Further improvement can be obtained by combining both 
schemes. In addition to recognition accuracy for speech 
recognition, this paper studies and examines how closely speech 
recognition accuracy is related the overall speech-to-speech 
recognition. When we apply the proposed schemes to an 
English-to-Chinese translation task, the word error rate for our 
speech recognition subsystem is substantially reduced by 28% 
relative, to 13.2% from 18.9% for test data of 15dB SNR. The 
corresponding BLEU score improves to 0.478 from 0.43 for the 
overall speech-to-speech translation. Similar improvements are 
also observed for a lower SNR condition. 

 
1. INTRODUCTION 

 
The need to develop technologies to accomplish useful and 
satisfactory translation between languages is increasingly 
appreciated with rapid growth of internet applications and 
globalization of economy development [4,5,10,11]. With the 
introduction of speech technology into pervasive computing, the 
challenges for speech-to-speech translation demand different 
considerations from those for desktop applications. The adverse 
environment where these devices are usually deployed becomes 
very prevalent. The task becomes even more delicate when 
imperfect output of speech recognition is further used for 
machine translation.  
 
Recently, we presented a speech translation system employing a 
statistical framework in a DARPA force protection domain[1]. 
Compared with another IBM system for an air travel domain[6], 
the force protection domain encompasses broader content 
coverage and, therefore, represents a more challenging task for 
translation. 
  
Besides domain coverage, the issue of environmental 
degradation remains to be an important challenge. When speech 

recognition accuracy degrades harshly, the subsequent NLU and 
NLG will be affected severely as well. The extent of successful 
noise robustness results differs for speech recognition and 
speech-to-speech translation. To address the lack of 
correspondence between them, we attempt to evaluate our 
system improvement on two different metrics, word error rate 
for speech recognition and BLEU[2] for speech-to-translation 
when the proposed techniques are incorporated into system. 
 
This paper is organized as follows, a brief overview of IBM’s 
speech-to-speech translation system, MASTOR, is presented in 
Section2. Section 3 describes two efficient techniques to 
improve the noise immunity. Then, details of system setup, 
experiments and results will be given in Section 4. Finally, a 
conclusion and summary will be presented in Section5. 
 

2. OVERVIEW OF SYSTEM 

 
    Figure 1:  The architecture of MASTOR 
 
MASTOR [1] (Multilingual Automatic Speech-To-Speech 
TranslatOR) is IBM’s highly trainable speech-to-speech 
translation system, targeting conversational spoken language 
translation between English and Mandarin Chinese for limited 
domains. Figure 1 depicts the architecture of MASTOR. The 
speech input is processed and decoded by a large-vocabulary 
speech recognition system. Then the transcribed text is analyzed 
by a statistical parser [1,6] for semantic and syntactic features. 
A sentence-level natural language generator based on maximum 
entropy (ME) modeling [3] is used to generate sentences in the 
target language from the parser output. The produced sentence 
in target language is synthesized into speech by a high quality 
text-to-speech system [8]. 

Speech 
Recognizer 

Information 
Extractor 

NLU 
Parser 

Phrase/Word 
Translation 

Statistical 
NLG 

Speech 
Synthesizer 

Translation 
Lexicon 

ME 
Model 

Input Speech 

Transcribed 
Text 

Parsed Tree 

Semantic/Syntactic 
Cues 



 
The speech recognizer used in MASTOR is a large-vocabulary 
continuous speech recognition system. Both English and 
Mandarin speech recognizers share the same architecture with 
different acoustic models and language models. The recognition 
system is designed for a general-purpose dictation application 
with a powerful domain-independent trigram language model. 
In case of domain-specific applications, adapted N-gram 
language models can be derived handily from existing trigram 
models by interpolating with domain-specific language models. 
The output from speech recognition is furnished to the 
following NLU parser for further processing. 
 
The NLU module [12] includes a statistical, decision-tree based 
parser. The parser extracts the semantic and syntactic 
information from input source sentence and produces a tree-
structured semantic/syntactic representation, which is 
comparable to interlingua. The NLG system consists of a 
maximum entropy probability model using both the sentence 
level and concept level classes as constituents. The features used 
in the ME modeling include the previous symbols, local 
sentence or phrase type in the semantic tree, and the concept list 
that remains to be generated before current symbol. During the 
translation, a recursive search is performed on the parse tree of 
the input sentence in a bottom-up manner to generate the output 
word sequence in the target language.  
. 
 

3. IMPROVING NOISE IMMUNITY 
Model adaptation techniques such as MLLR and MAP have 
been shown effective in reducing the mismatch between training 
and test condition. These approaches involve complex system 
re-configuration and expensive run-time requirement. Usually, 
they are accomplished during an off-line enrollment process. On 
the other hand, for real-time speech recognition in the speech-
to-speech applications, the constantly varying ambience is a 
common cause for system performance degradation. The need to 
accommodate a varying degree of mismatch motivates us to 
focus on techniques that do not introduce hefty overhead in 
recognition. 
 
3.1. Multi-Style Training 
Multi-style training [13] has been shown to be a simple yet 
efficient way to improve the robustness of speech recognition. 
One common use is to create an initial model for bootstrapping. 
It is accomplished by pooling data from different acoustic 
environments, similar to the scheme of pooling data from 
different speakers to train speaker-independent systems. 
 
There are two issues that need special handling in applying 
multi-style training. First, multi-style training is effective in 
boosting noise robustness for the cross-condition experiments 
[13] but usually at the expense of certain performance 
degradation for the matched conditions. Careful realization 
ought to be applied to reduce this negative impact. Second, 
there is a lack of knowledge on the optimal numbers of 
environments. Without prior knowledge about the test 
condition, it is not clear how many different acoustic conditions 
are sufficient to achieve environment independence. 
For speech-to-speech applications running on a portable device, 
babble speech is appropriate as ambient noise for acoustical 

degradation. In this paper, we carry out our experiments in the 
context of environmental degradation due to various speech 
babbles. The acoustical degradation is characterized in terms of 
signal noise ratio (SNR). Furthermore, we deliberately choose 
different SNRs for both training and test data to preserve 
acoustical mismatch between training and test conditions. 
 
3.2. Codebook Dependent Cepstral Normalization 
Unknown additive noise and unknown linear filtering 
(convolutional noise) are two important sources for acoustical 
degradation. Figure 2 depicts an environment model for 
acoustical degradation with these two noise sources. 
 

 
Figure 2: A model of environmental distortion for additive 
noise and linear filtering 
 
The model can be expressed as equation (1) in terms of cepstral 
vectors x, n, z, and q , where these are for clean signal, additive 
noise, noisy observed signal, and linear distortion respectively. 

                                   (1) 
 
where the additive vector  
 
                                                                                      (2) 
 
represents the joint effects of additive noise and linear filtering. 
 
The CDCN [7,9] algorithm attempts to reverse the effects of 
linear filter in a cepstral vector of q and the additive noise in 
cepstral vector, n. It first estimates the parameters, q, and 
r(x,n,q) using ML parameter estimation. Then it estimates the 
uncorrupted cepstral vector, x, given the corrupted observation 
vector, z, and the previously calculated q and r(x,n,q) using a 
MMSE criterion. Equation (3) denotes the estimated clean data 
given the noisy observation z, the linear filter parameter q, the 
correction vectors r, and mixture weights f[l], 
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4. EXPERIMENTS AND RESULTS 

Experiment Setup. The experiments carried out to evaluate the 
environmental robustness of the IBM MASTOR system [1] are 
conducted in a DARPA force protection domain. The source 
language for translation is English and the target language is 
Mandarin Chinese. The sentences from the DARPA force 
protection domain are relatively conversational, interactive, and 
less-constrained in sentence syntax compared with dictation 
applications. The language model is created by interpolating a 
general-domain LM with in-domain LM. 
 
One important goal of this paper is to investigate the correlation 
of acoustic robustness with translation performance in speech-
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to-speech translation applications.  The improvements on the 
acoustic robustness are measured in the context of speech 
recognition as well as speech-to-speech translation.  
 
Performance Measure  
For speech recognition, we use word error rate (WER), a 
commonly used measure for languages like English. However, it 
is more complicated to evaluate the performance of translation 
part. Intuitively, the translation quality is to be determined by 
the fluency and adequacy of the translation output. This needs 
multiple human judges and the scores are subjective. When any 
changes are added into the system, different translation results 
require a similarly huge amount of labors even for the same test 
data. 
 
Recently, IBM proposed an objective measure, BLEU [2], to 
evaluate the translation performance for simplicity and fast 
turnaround time. As shown in Equation (4), BLEU measures the 
translation quality based on N-gram probabilities and brevity 
between hypothesis and reference sentences. The BLEU score is 
in the range of 0 and 1, where 1 represents a perfect matched 
translation and 0 means an entirely mismatched translation. 
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where P(wi|wi-1,…,wi-n+1) is the n-gram probability, wn is the 
weight, and BP is the brevity penalty. 
 
For speech-to-speech translation, we evaluate the translation 
output using the BLEU score. The performance of speech 
translation is evaluated using the recognized transcription as 
input text. For comparison, we also yield the translation result 
using the correct transcription as input text.  
 
4.1. Multi-Style Training 
Noise is digitally added to the training data using recordings 
from ten different environments to simulate different acoustic 
environments. These recordings consist speech babble from 
cafeteria, classrooms, conference halls with lots of background 
speech. Each recording is 5 minutes long. We splice these ten 
recordings into one single file and noise samples are randomly 
selected from it during mixing. 
 
When creating noisy data, we choose not to add noise to the 
clean data at a fixed SNR. Instead, they are created by adding 
noise at a fixed magnitude scale. As the speech power varies 
from sentence to sentence, the resultant data have a wider range 
of SNRs. For categorization, we do specify the global SNR of 
the noisy data. Two global SNRs are used, 20dB and 10dB, for 
multi-style training. The clean training data set has 352,000 
sentences from 3200 speakers. A subset of the training corpus 
consisting of 160,000 sentences from 1560 speakers is used to 
generate noisy training data. The noisy data are added only in 
estimating mixture Gaussian distributions while the phonetic 
decision trees are calculated using the clean data.  
 
A set of test data was collected under a clean environment for 
the DARPA force protection domain. The test corpus has 1500 
sentences from 10 speakers. We deliberately select different 
global SNRs from those used for training data to generate noisy 
test data. One is 15dB and the other 8dB. 
 

Test Data Condition 
System 

clean 15dB 8dB 

BASLINE 7.23 18.9 44.7 
MST-20dB 7.07 15.5 34.8 
MST-10dB 7.42 15.4 31.6 

Table 1: Speech recognition error rates for baseline and two 
multi-style training 
 
Table 1 lists the speech recognition results for multi-style 
training using on all 1500 test sentences. The systems obtained 
using multi-style training at global SNRs of 20dB and 10dB are 
denoted as MTS-20dB and MTS-10dB, respectively. 
First, the baseline system degrades severely in adverse 
environments where speech babble is added. Not surprisingly, 
the recognition error rate decreases for noisy test data when the 
technique of multi-style training is employed. The MST-10dB 
system yields a WER of 15.4% (a 19.5% error reduction) for 
noisy test data of 15dB while a minor performance degradation 
is observed for clean test data.  The MST-20dB system produces 
a WER of 15.5% for the 15dB noisy data but no performance 
degradation is observed for the clean data.. 
 

System Test Data Condition 
 clean 15dB 8dB 

Correct Text Input  0.630 
BASLINE 0.545 0.430 0.275 
MST-20dB 0.551 0.452 0.319 
MST-10dB 0.553 0.457 0.329 

Table 2: Speech to speech translation performance in terms of 
BLEU scores for baseline and two multi-style training  
 
Table 2 compares with speech-to-speech translation 
performance between different systems. The BLEU scores are 
computed using 4 different references [2]. A BLEU score of 
0.63 is produced when the correct text is used as input to 
translation module.  It also shows that the improvement of 
speech recognition usually translates into higher BLEU scores.  
 
4.2. CDCN 
We apply CDCN to the front-end as a pre-processing 
component in all systems in Section 4.1. Table 3 lists the speech 
recognition results when CDCN is applied to the test data. It is 
shown that CDCN is effective in compensating for the noise for 
both 15dB and 8dB test corpora. The most interesting part is 
that CDCN also improves the recognition accuracy for clean test 
data by 7% relatively when used in baseline system. 
 

System Test Data Condition 
 clean 15dB 8dB 

CDCN + BASLINE 6.72 13.6 28.4 

CDCN + MST-20dB 6.72 13.2 26.0 
CDCN + MST-10dB 7.68 13.9 25.6 

Table 3: Comparison of CDCN results in speech recognition  
 
When applied to the two multi-style training systems, CDCN 
yields the best results. A 25% and a 19% relative error reduction 
are observed for the 8dB test data for MST-20dB and MST-
10dB systems, respectively. In fact, without the multi-style 
training, CDCN itself provides a substantial performance 



improvement of 36% relatively. Similarly, the improvement of 
noise robustness is also observed in speech-to-speech 
translation shown in Table 4. 
 

System Test Data Condition 
 clean 15dB 8dB 

CDCN + BASLINE 0.545 0.474 0.364 
CDCN + MST-20dB 0.552 0.478 0.380 
CDCN + MST-10dB 0.549 0.479 0.378 

Table 4: CDCN performances in speech-to-speech translation  
 
4.3. Noise Immunity of WER and BLEU 
Figure 3 and Figure 4 compare the best system, “CDCN+MST-
20dB”, with baseline in the context of both speech recognition 
and speech-to-speech translation, respectively. As expected, 
WER increases and BLEU drops when the speech babble noise 
intensifies. It also reveals the improvements resulting from 
multi-style training and CDCN for speech recognition are 
mostly carried over to the speech translation performance. 
 
The trend of the change in BLEU is more of interest than the 
absolute magnitude of change of BLEU. For example, 
“CDCN+MST-20dB” outperforms baseline for 8dB test data 
with a WER of 26.0% versus 44.7% in speech recognition. The 
corresponding BLEUs are 0.380 versus 0.275. In other words, a 
18.7% absolute error reduction in WER is translated into an 
increase of 0.105 in BLUE. Likewise, when the test data 
changes from “clean” to “15dB”, the system “CDCN+MST-
20dB” exhibits an absolute 6.48% change in WER and a change 
of 0.074 in BLEU.  
 
It is interesting to note that improvement on WER does not 
guarantee improvement on BLEU when the change is relatively 
small. For example, CDCN improves the WER of baseline 
system for clean data from 7.23% to 6.72% but no improvement 
in BLEU is observed. A careful examination of components in 
computing BLEU, N-gram coverage does increase, as expected, 
but the brevity penalty increases. This reflects the fact that when 
CDCN is used, less insertion errors are generated during 
recognition. Nevertheless, the general observation is that the 
more robust the speech recognition is, the better the overall 
performance can be achieved. 
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Figure 3: Comparison of word error rates (WER) for speech 
recognition between baseline and the best system 

clean 15dB  8dB 
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Acoustic Environment of Test Data

B
LE

U
 fo

r 
S

pe
ec

h−
to

−
S

pe
ec

h 
T

ra
ns

la
tio

n

Baseline System
CDCN+MST−20dB
Correct Text Input

 
Figure 4: Comparison of BLEU scores between the same systems in 
Figure 3; numbers in parentheses indicate the corresponding WER in % 

 
5. SUMMARY 

Severe performance degradation is observed due to acoustical 
distortions of babble noise when a speech-to-speech system is 
used for English-to-Chinese translation. We evaluate the 
degradation at both speech recognition and speech-to-speech 
translation scopes. Two techniques, multi-style training and 
CDCN, are shown effective in compensating for environmental 
degradations for a speech-to-speech translation application. The 
best result is achieved by combining CDCN with MST-20dB, 
which has a 6.72% and a 13.2% of WER for the clean and 15dB 
test data, respectively. We also study the relation of WER in 
speech recognition and BLEU in speech-to-speech translation 
performance. 
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