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ABSTRACT 
We describe a new collaborative technology that is mid-way 
between the informality of email and the formality of shared 
workspaces.  Email and other ad hoc collaboration systems are 
typically lightweight and flexible, but build up an unmanageable 
clutter of copied objects. At the other extreme, shared workspaces 
provide formal, structured collaboration, but are too heavyweight 
for users to set up.  To bridge this gap between the ad hoc and 
formal, this paper introduces the notion of “object-centric 
sharing”, where users collaborate in a lightweight manner but 
aggregate and organize different types of shared artifacts into 
semi-structured activities with dynamic membership, hierarchical 
object relationships, as well as real-time and asynchronous 
collaboration. We present a working prototype implemented with 
a replicated peer-to-peer architecture, which we describe in detail, 
and demonstrate its performance in synchronous and 
asynchronous modes. 

Keywords 
Object-centric sharing, replication, synchronization, peer-to-peer, 
activity-centric collaboration, emerging collaboration. 

1. INTRODUCTION 
Collaborative processes very often emerge from unstructured ad 
hoc communication activities to more structured types of formal 
collaboration [3]. Groupware has focused on the two extremes of 
this continuum but neglected many of the possible stages in-
between. Email at one extreme of this continuum can be 
considered as today’s ultimate ad hoc communication support 
system. Recent studies indicate that email is the place where 
collaboration emerges (e.g. [7], [26]). A variety of email uses are 
reported in the literature such as information management, 
document management and sharing, task management, and 
meeting management. Whittaker et al. [26] coined the term “email 
overload” as the phenomenon of email being used for additional 
functions other than communicating. 

While email is extremely flexible, it also requires the user to do a 
lot of work, such as manually keeping track of the organizational 
process; users are mostly left alone with the contextual sense-
making of all the information contained in their cluttered inboxes. 
Despite these drawbacks, people keep on using email instead of 
managing their collaborative processes with special purpose 
groupware systems such as shared team workspaces, decision-
support systems, or meeting management systems. While these 
systems provide more structure and richer support for 

collaboration, people often shy away from using them because 
email is readily available, always on, often the focus of attention, 
ad hoc, and does not require tedious set-up procedures. 

Little work has been done to offer richer collaboration in email 
and to help support the progression of collaboration from ad hoc 
communication to more structured types of collaboration that are 
already supported in many special purpose groupware systems 
(see Sections 2.1, 2.2, and 8). We are currently investigating 
technologies for activity-centric collaboration that can help bridge 
this gap (see Figure 1). 

We have designed and built a peer-to-peer prototype system that 
supports lightweight and ad hoc forms of sharing information, 
which we believe are key in bridging the gap because they do not 
overload the user with the overhead of manually creating shared 
workspaces or setting-up conferences.  

This paper introduces the design concept behind our prototype 
and then focuses on the implementation of this system. In Section 
2, we introduce the notion of “object-centric” sharing, which is 
fundamental to our design. Object-centric sharing allows 
individuals to aggregate and organize shared artifacts into larger 
collaborative activities, providing an emerging context that 
evolves and engages a dynamic group of participants. Section 3 
presents the prototype system from a user interface perspective. 
We illustrate how the prototype can be used within email to 
engage in lightweight activities. In Sections 4 and 5, we focus on 
the architecture and implementation of this system. We not only 
decided to make this system feel peer-to-peer from a user 
perspective, but also implemented it based on a replicated peer-to-
peer architecture. This decision poses various technical 
challenges. Keeping replicated data consistent in an architecture 
that supports real-time and asynchronous collaboration at the 
same time is not trivial, and relatively little research has been 
done in addressing this problem (e.g., [10]). Our approach 
enhances a popular consistency algorithm, which had been 
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Figure1: From ad hoc communication to formal collaboration 
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originally designed for real-time collaboration. In Sections 6 and 
7 we discuss preliminary results as well as trade-offs between 
centralized and replicated architectures for blended synchronous 
and asynchronous collaborative systems. Sections 8 and 9 
conclude with related work and a summary of this contribution.  

2. DESIGN PHILOSOPHY 
In email, a collaborative work activity typically begins with a 
single message that might or might not grow into a collection of 
related messages including attachments [6]. While email is very 
good in supporting the ad hoc nature of collaboration and 
dynamic membership, it is not very good in preserving the context 
and structure during a conversation; related messages and 
attached documents are typically scattered or buried in the inbox 
and they are hard to find. Moreover, email does not support real 
sharing of content, let alone real-time collaboration. In order to 
support those aspects of a work activity, people have to “leave 
their inbox” and use other tools (shared workspaces, conferencing 
applications etc.) that produce new artifacts that are related to the 
original work activity.  When they do this, they are totally 
disconnected because those artifacts reside somewhere else on the 
desktop, in the file system, or on a remote server. The design of 
our system was mainly driven by the desire to combine the 
lightweight and ad hoc characteristics of email and the rich 
support for sharing and structure in shared workspace systems1. 

2.1 Object-centric Sharing 
Traditional shared workspaces typically entail a lot of 
management overhead and are far from being lightweight or ad 
hoc.  They are “place-based”, i.e. users first have to create a place, 
assign access rights, and then put content into that place in order 
to be able to share it. They are based on the assumption that “the 
team” already exists and that the purpose of collaboration is well 
known. However, when collaboration starts off, this is often not 
the case, and setting up a place can seem to be artificial if not 
obstructive at this stage. In our research, people often prefer to 
think in terms of whom to share with and what to share. Also 
collaboration in these early stages might be very short-term and 
instantaneous and involve only little amounts of data to be shared, 
e.g., exchanging one or more files, setting up a meeting agenda 
with people, or jointly annotating a document. These activities 
might or might not become part of a larger collaborative work 
process. However, people usually do not create heavyweight 
shared workspaces to perform these tasks.  

So unlike providing one persistent place for sharing multiple 
pieces of information, our paradigm is rather “object-centric” or 
“content-centric,” which is very similar to Dourish’s [5] notion of 
“placeless” documents. In this approach, sharing becomes a 
property of the content itself, i.e. content is collaboration-aware. 
In this paper, we use the term “shared object” for one shared piece 
of persistent information. Shared objects support membership, 
provide object-level awareness, and enable group communication. 
In other words, they define a set of people who are allowed to 
access the information, they indicate who is currently looking at 
the content, and they allow sending or broadcasting of data to 
members of the object. 

                                                                 
1 Our solution uses shared objects as its reference point.  For a 

contrasting solution that uses email as a reference point, see our 
discussion of related work in Sections 2.2 and 8. 

2.2 Conversational Structure 
In our approach, shared objects are building blocks of 
collaboration. We allow users to combine and aggregate them into 
hierarchical structures as their collaboration evolves. We call a set 
of related shared objects an activity thread, representing the 
context of an evolving collaborative activity. Aggregating objects 
allows people to add structure to their collaboration. We see this 
structure being defined by their ongoing conversation, i.e. each 
object added to an existing object can be considered as a “reply” 
to the previous one. While this approach is similar to threads in 
email or discussion databases, or thrasks [1], it is much richer 
because (1) activity threads may contain different types of objects, 
not only messages, (2) all objects are equal, unlike in email where 
attachments are subordinates contained in the message, (3) 
membership is dynamic and may differ within an activity thread 
from object to object, (4) objects support real-time collaboration 
and provide rich awareness information. 

Unlike shared workspaces, we intentionally do not provide an 
explicit object as a structural container for a collaborative activity. 
Each individual shared object can be a container and thus could 
be considered as a “seed” for collaboration that either decays or 
grows to more structured forms with the structure being defined as 
people collaborate.  

Our design also deliberately does not make a distinction between 
asynchronous and synchronous types of collaboration. If other 
people are present at the time of accessing an object, they can 
work synchronously, if not, work is asynchronous. From a more 
technical perspective, objects can be considered as an “infinite”, 
persistent (conferencing) session bounded only by the lifetime of 
the object. Modifications to the object are broadcast to the 
members of that object if they are online. 

3. USER EXPERIENCE 
The user interface to our prototype system is integrated into an 
email client. The client supports sharing of five types of objects: 
message, chat transcript, file, annotated screen shot, and to-do 
item. These objects are managed through a simple tree-like user 
interface that is contained in the right pane (A) in Figure 2. Each 
“branch” in that tree represents an activity thread.  

Users interact with shared objects by right-clicking on the nodes 
of the tree which pops up a context menu. Users can create new 
objects, delete objects, add and remove members etc. Our client 
supports POP3 email messaging: The upper left pane is the inbox 
(B) and the lower left pane a message viewer (C). In the 
following, we use a scenario to illustrate how shared objects as 
building blocks can be used to collaborate in an activity that starts 
from an email message. Please note that the activity thread 
displayed in Figure 2 is just a snapshot at the end of an activity 
from the perspective of one of the actors (Bob); the thread is built 
dynamically as the actors collaborate. 

Bob is a project lead and he works with Dan on a project on 
“Casual Displays”. Catherine is a web designer in their 
company who is responsible for the external web site. Bob 
receives an email from Catherine containing a draft for a project 
description that she would like to put on their external web site 
(1). She wants some feedback from Bob. Before getting back to 
her, Bob wants to discuss the design of that web page with Dan. 
Instead of forwarding the message to Dan via email, Bob decides 
to start a new activity by creating a shared object based on this 
message. He right-clicks on the original message in his inbox, 
selects “share”, enters Dan’s email address, and hits “Share”. A 

2



new shared message object (with Bob and Dan as members) 
shows up in Bob’s activity tree in the right window pane (2). Bob 
right-clicks on the shared object and adds a new shared message 
to the initial one, because he wants to let Dan know that he 
would like to discuss this with him. Bob’s message shows up as a 
reply to the initial message similarly to a newsgroup thread (3). 

A few hours later, Dan returns to his desktop, which is running 
the client, and notices Bob’s newly created shared messages. He 
opens one message and while he is reading it, Bob sees that Dan 
is looking at the messages because the shared object is lit green  
along with Dan’s name underneath the object (4). Bob takes this 
as an opportunity to begin a discussion with Dan within the 
context of the shared object. He right-clicks on the initial 
message and adds a chat object to this activity (5). A chat 
window pops up on Dan’s desktop and they chat.  In their chat 
conversation, Bob and Dan continue talking about the web page 
over the phone. At some point during the discussion, Bob wants 
to show directly how to change the web page. He right-clicks on 
the chat object in his activity tree and adds a shared screen 
object (6). A transparent window allows Bob to select and 
“screen scrape” any region on his desktop. He freezes the 
transparent window over Catherine’s draft web page. The screen 
shot pops up on Dan’s desktop.  Bob and Dan begin annotating 
the web page in real-time like a shared whiteboard (7). As they 
discuss a few changes, Bob is asking Dan to integrate a project 

logo into the web page. Dan agrees but is pressured now to run 
to another meeting. He says good-bye to Bob and tells him that 
he will check with him next day. Dan closes all his windows and 
as he leaves, his name turns gray throughout all of his shared 
objects displayed on Bob’s client.   

Now alone, Bob continues annotating the web page. He also 
types in a few lines for Dan in the chat window before closing it. 
He then right clicks on the chat object and creates a new shared 
file object. He picks the logo file from his local file system and 
the file object becomes part of Bob’s and Dan’s activity thread 
(8). Bob closes all windows and leaves. Next morning when Dan 
returns to his office, he finds Bob’s additional annotations, his 
chat message, and the project logo file. He starts working on the 
web page and few hours later, he puts the reworked page into the 
activity thread as a shared file object (9) and adds a message 
with some comments (10). He also shares these two objects with 
Catherine (11) so that she can download and deploy the newly 
revised web page and logo. 

This scenario demonstrates how our prototype moves seamlessly 
and effortlessly back and forth from private to public information, 
and from asynchronous to synchronous real-time collaboration, 
without manually creating a shared workspace or setting up a 
meeting. Collaboration starts off with a single shared object and 
evolves into a multi-object activity, which is structured by a 
dynamic group of participants as they create and add new shared 

CC

BB
AA

1010

11

22

33

44

66

77

88

99

55

1111
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objects. An activity thread provides the conversational context 
and awareness for an emerging collaboration; it allows 
aggregating a mix of different object types. 

4. SYSTEM ARCHITECTURE 
The design philosophy and the envisioned use of the system 
contributed to our decision to implement our prototype as a peer-
to-peer system. In particular, the high administrative cost of 
centralized shared workspace systems was a major factor in this 
decision. We wanted users to be able to create shared objects on 
the fly in order to facilitate instantaneous and effortless 
collaboration. Giving full control to the user implies that the 
system should function without any additional infrastructure. 

Another major requirement is that users be able to collaborate 
both synchronously and asynchronously. Asynchronous work may 
take place while people are online but also offline when they are 
disconnected from the network. To provide offline access at any 
time, shared objects need not only be persistent but to reside on 
the user’s local machine (desktop, laptop, or PDA). In order to 
synchronize local replicas, the system must provide appropriate 
communication and consistency control mechanisms. Since the 
membership of shared objects can be highly dynamic, the system 
also has to support late-joining users [25]. Besides ubiquitous 
access to data, replication helps to achieve good responsiveness. 

Finally, object-centric sharing as described in Section 2 implies 
that membership management occurs individually for each shared 
object. This fine-grained access to and control of shared objects 
might entail a scalability penalty in a server-based system. A 
replicated system scales better with respect to the number of 
shared objects and the number of users.  

Out of these considerations, we opted against a client-server 
solution and decided to build a peer-to-peer system where each 
user runs an equal instance of the application locally. Figure 3 
shows three applications instances (A, B, and C).  

Each local instance consists of a client component that provides 
the user interface to the system (see description in Section 3) and 
a service component, called ActivityService, that maintains a copy 
of all shared objects that are relevant to the local user. Peer 
discovery is accomplished by leveraging an existing instant 
messaging infrastructure (as discussed in section 4.2). We use a 
local database in each application instance to store and access 
shared objects. Changes to the set of shared objects (e.g., by 
creating new objects or modifying existing shared objects) must 
be communicated to all peers that participate in an activity. In the 
following sections of this paper, we refer to the set of shared 
objects and their properties as the state of the application, and we 

denote states and state changes that are distributed to the set of 
users as operations. 

From the user’s perspective, this peer-to-peer architecture means 
that, apart from acquiring and running the application, no extra 
steps are necessary before new shared objects can be created or 
existing shared objects can be accessed. New peers can be invited 
and integrated easily, for example, by an email referencing a web 
link that automatically installs the application. 

4.1 Communication Protocols 
The application-level protocol description for the distribution of 
states and state changes among the peers is based on XML, 
mainly to allow rapid development and easy debugging. 
Preliminary tests with our prototype have shown that the resulting 
performance is sufficient, but should the need arise we plan to 
switch to a binary protocol. 

Since objects can be shared by an arbitrary number of users, 
application data usually needs to be delivered to more than one 
destination. Thus, the system has to employ a group 
communication protocol. We opted against IP multicast due to its 
insufficient deployment [4] and because it would require the use 
of UDP as a transport protocol, which is blocked by firewalls in 
many organizations. Instead, a sender delivers application data 
directly via TCP to each receiver, forming a star-shaped 
distribution topology. Since we expect groups for most activities 
to be small (i.e., up to 10 participants), the network overhead 
imposed by this approach seems to be acceptable. An alternative 
would be to use an application-level multicast protocol such as 
Narada [4] which remains an issue for future work.  

4.2 Peer Discovery 
Building the application’s communication on top of point-to-point 
unicast connections means that a sender has to contact each 
receiver individually. Therefore, a peer needs to know the IP 
addresses of all the peers it is collaborating with. Since our 
prototype is integrated into an email client, the natural contact 
information of a peer is its user’s email address. This has to be 
mapped to the IP address of the corresponding user’s computer. 
The address resolution is a dynamic process because an IP address 
might change when users connect via dial-up, work on different 
computers, or use dynamic IP. 

To allow a peer to connect to the system for the first time, we use 
the existing instant messaging infrastructure in a company to 
resolve email addresses (see Figure 3). Each peer connects to its 
user’s corresponding instant messaging server. Each peer 
contacting the server also leaves its own address information —  
i.e. the IM infrastructure serves as a means for peer discovery and 
address resolution. All addresses resolved by a peer are saved in a 
local address table together with the time the information was 
obtained. This address table is persistent and used on the first 
attempt to establish a connection to another peer. Should this fail, 
the instant messaging server is contacted to inquire whether the 
peer’s IP address has changed. Once a peer makes contact to other 
peers, they can exchange addresses to complement their local 
address tables with new entries and to exchange outdated 
addresses.  This way communication with the address server can 
be limited and the peer-to-peer system will be able to function for 
some time in case the address server is not reachable.  

We are not focusing on peer discovery protocols in this paper. 
The above mechanisms could be also easily replaced with existing 
peer discovery protocols such as Gnutella [16] and JXTA [21]. 
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Another alternative would be to make use of the email integration 
and exchange IP addresses with special emails that are filtered by 
the email client. The advantage of this approach would be that no 
additional infrastructure for address resolution is required. Its 
realization is an issue for future work. 

5. CONSISTENCY CONTROL 
The replication of the application’s state as described in Section 4 
requires explicit mechanisms to keep all state copies consistent. 
Much research has been done in keeping the state of synchronous 
multi-user applications such as whiteboards, shared editors etc. 
consistent. Likewise our prototype requires consistency 
mechanisms when people are working on shared objects at the 
same time. However, by design our system also supports offline 
use when people are disconnected from the network and people 
who are online are able to share objects with others who are 
currently offline. Little work has been done on algorithms that 
support consistency in blended synchronous and asynchronous 
collaborative applications. We have chosen and modified an 
existing consistency mechanism for synchronous collaboration so 
that it also supports asynchronous collaboration. In the following, 
we first describe consistency control in the “ideal” case when 
everyone is online before we cover the asynchronous case.  

5.1 Synchronous Collaboration 
Consider the scenario described in Section 3. Let us assume that 
Bob decides to change the name of the shared screen object that 
he and Dan were annotating to “project homepage” (see (7) in 
Figure 2). In order to execute this local state change in Dan’s 
application, Bob’s application needs to propagate the pertinent 
information. But since this transmission is subject to network 
delay, Dan could also change the object’s name to “first draft” in 
the brief time span before Bob’s update is received. In this case, 
Bob’s and Dan’s changes are concurrent, and they conflict since 
they target the same aspect of the state. Without further actions, 
the name of Bob’s activity would be “first draft” and that of Dan 
“project homepage”, meaning that the object’s state is 
inconsistent. To prevent this from happening, the application 
needs to employ an appropriate concurrency control mechanism. 

To be more specific, there are two consistency criteria that the 
application should observe: causality and convergence [9]. 
Causality means that an operation Ob that is issued at site i after 
another operation Oa was executed at i needs to be executed after 
Oa at all sites, so that the cause is always visible before the effect. 
For example, the shared screen object has to be created before its 
name can be changed. Convergence demands that the state of all 
peers is identical after the same set of operations {Oi} was 
executed. This means in our example that Bob and Dan should see 
the same name of the screen activity. 

We decided to use serialization [23] for establishing causality and 
convergence. The basic idea is to execute a set of operations that 
targets a certain object in the same order at all sites. As a 
prerequisite, an appropriate ordering relation has to be defined. 
Possible ordering relations are timestamps [19] or state vectors 
[15]. When using timestamps, operations are ordered by their 
assigned execution time. Timestamp ordering can be applied to all 
types of applications, including continuous. However, it requires 
that the clocks at all sites are synchronized, which increases the 
administrative overhead and creates dependencies on a time 
synchronization infrastructure. Hence, we decided to use state 
vectors to order operations in our prototype. Moreover, this 

seemed sufficient since shared objects in our system currently do 
not support time-based state changes. 

A state vector SV is a set of tuples (i,SNi), i = 1,..,n, where i 
denotes a certain peer, n is the number of peers, and SNi is the 
sequence number of peer i. Whenever i issues an operation O, SNi 

is incremented by 1 and the new SV is assigned to O as well as to 
the state that results after executing O. We define SV[i] := SNi. 
With the help of state vectors, causality can be achieved as 
follows [23]: Let SVO be the state vector of an operation O issued 
at site a and SVb the state vector at site b at the time O is received. 
Then O can be executed at site b when (1) SVO[a] = SVb[a] + 1, 
and (2) SVO[i] �  SVb[i] for all peers i ���. This means that prior 
to the execution of O all other operations that causally precede O 
have been received and executed. If this is the case, we call O 
causally ready. But if O violates this rule it needs to be buffered 
until it is causally ready, i.e., until all necessary preceding 
operations have arrived and have been executed. 

Convergence can be achieved by applying the following ordering 
relation to all operations that are causally ready [23]: Let Oa and 
Ob be two operations generated at sites a and b, SVa the  
state vector of Oa and SVb the state vector of Ob, and  
sum(SV) := �����	
� Then Oa < Ob, if (1) sum(SVa) < sum(SVb), or 
(2) sum(SVa) = sum(SVb) and a < b.  

In the following, we denote the set of operations that was received 
by a peer and executed in the order defined above as operations 
history. Due to the propagation delay of the network, it might 
happen that an operation Oa that should have been executed 
before an operation Ob according to the ordering relation is 
received only after Ob has been executed, i.e., Oa  would not be the 
last operation when sorted into the history. This means that 
applying Oa to the current state would cause an inconsistency. 
Thus, a repair mechanism is required that restores the correct 
order of operations. Timewarp [19] is such an algorithm and 
works as follows: Each peer saves for each shared object the 
history of all local and remote operations. Moreover, snapshots of 
the current state are added periodically to the history. Let us 
assume that an operation Oa is received out of order. First, it is 
inserted into the history of the target object in the correct order. 
Then the application’s state is set back to the last state saved 
before Oa should have been executed, and all states that are newer 
are removed from the history. After that, all operations following 
Oa are executed in a fast-forward mode until the end of the history 
is reached. To avoid confusion, only the repaired final state of the 
application should be visible for the user. 

The advantages of the timewarp algorithm are that it functions 
exclusively on local information and does not require additional 
communication among peers, it is robust and scalable, it is 
applicable to all peer-to-peer applications, and the operations 
history can be reused for other purposes such as versioning and 
local recording. One major drawback is the memory usage of the 
operations history which is determined to a large part by the 
frequency of state snapshots. While a low frequency saves 
memory, it increases the average processing time for the execution 
of a timewarp. From our experience gained with the prototype 
implementation, we opted to save a state snapshot every 10-15 
operations, depending on the shared object. 

The size of the operations history can be limited by analyzing the 
information included in the state vector SVO of an operation O 
issued by peer j and received by i: SVO[k] gives the sequence 
number of the last operation that j received from k, i.e., j 
implicitly acknowledges all older operations of k. Under the 
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condition that O is causally ready, there can be no timewarp 
triggered by operations from j that are concurrent to operations 
from k with SNk � SVO[k]. This means, that from j’s perspective, i 
can remove all operations of k with SNk ����O[k] from its history. 
Once i has received similar acknowledgements from all peers, old 
operations can be cleared. This process can be sped up by 
periodically exchanging status messages with the current state 
vectors of a peer. 

Under the unlikely event that a new peer late-joins an ongoing 
collaboration on a shared object, obtains the current state, and 
issues a state change concurrently to the operation of another 
peer, the aforementioned improvement might fail since peers 
clearing their history have no knowledge about the late-joining 
peer. This can be prevented by keeping outdated operations for 
some extra time span or by using an additional repair mechanism 
such as a state request [24]. 

Another drawback of the timewarp algorithm is the processing 
time to recalculate the application’s state. But since each shared 
object has its own operations history and since states are inserted 
frequently into the history, the time required for a timewarp is 
usually below 40 ms on an AMD 2.0 GHz PC, which is not 
noticeable for the user. Also, as found in [24], the number of 
timewarps can be reduced dramatically by analyzing concurrent 
actions. 

The actual effect of a timewarp might be disturbing for a user: It is 
possible that the recalculated state differs to a high degree from 
the object’s state that was visible before, e.g., when objects are 
deleted. In this case, an application should provide the user with 
information about the cause of the visual artifact, and highlight 
the objects and the users involved [24]. 

5.2 Asynchronous Collaboration 
A key aspect of our prototype is that shared objects can be 
accessed by users anytime and independently of others. They are 
persistent even when all peers are offline, and they facilitate 
synchronous as well as asynchronous collaboration. The latter 
means for the scenario described in Section 3 that Bob can access 
and manipulate data of the shared screen object (see (7) in Figure 
2) even when Dan is offline and his ActivityService is not 
running2. This raises the question how Dan’s application can 
acquire the information that was missed once it is active again so 
that it possesses the current state and Dan is able to continue the 
collaboration. For easier discussion, we denote the process of 
reconnecting after operations have been missed as late-join, the 
peer that missed operations as late-join client, and any peer that 
provides information to the late-join client as late-join server 
[25].  

One design option is whether the late-join client should be 
provided with all operations missed or, alternatively, with a copy 
of the current state. The latter option has the advantage that a state 
transmission is more efficient in terms of data volume and 
processing time whenever the number of missed state changes is 
rather high (depending on the nature of the object’s state and the 
state changes). But at the same time, this approach requires 
additional measures to ensure the consistency of the late-join 
client’s state [24]: The late-join server providing the object’s state 

                                                                 
2 In case Dan is not currently working on a shared object but his 

application is running, no additional actions are required since 
Dan’s ActivityService still receives all state updates.  

cannot guarantee its consistency since concurrent operations that 
are not included yet could be under way. Thus, we chose the first 
option and provide all missed operations. This is more robust 
since the late-join client will possess a complete operations 
history under the condition that all missing operations will be 
delivered eventually. The late-join client is then able to ensure the 
consistency of the object’s state as described in Section 5.1.  

Other design options determine if the data transmission is initiated 
by the late-join client or the server, and when the transmission 
takes place. Initiating and controlling the transmission by the late-
join client is the obvious choice since the client has to ensure the 
consistency of its own state. When starting the application 
instance, the client therefore contacts all peers with whom it 
collaborates one by one and hands over the current state vectors 
of its shared objects. Comparing those state vectors to its own, a 
peer can decide which operations from its history need to be sent 
to the late-joining peer (if any). Thus, the late-join client can 
obtain missed state changes from any peer that participates in a 
shared object, not only from the original source of an operation. 
This is especially useful when that source is offline at the time the 
late-join client connects. Additionally, it increases the robustness 
of the system and spreads the burden of initializing clients to all 
peers. To further increase the probability that all missed 
operations are received, information about the current state of 
objects is also exchanged whenever a user joins a shared object.  

However, this approach succeeds only if a peer that was already 
participating in a shared object missed some state changes. But 
another possibility is that a new shared object is created or that a 
new member is invited to join an existing object (as in step (1) of 
the scenario in Section 3). Notice that either the peer creating a 
new shared object or the peer receiving a new shared object could 
be offline. So when reconnecting, the late-join client does not 
know about the new shared object and can therefore not ask for 
the transmission of missed operations. Even worse, it might be 
that the late-join client does not know the other peers that are 
members of this shared object if they did not collaborate before. 
Thus, in case a peer misses the creation of an object or the 
invitation to an existing object, the responsibility for the 
retransmission must be with the originator of that action. Should 
both peers connect for the transmission of any other data, the 
missed operations can be delivered to the late-join client. The 
late-join server also tries to contact the client periodically 
(depending on the current application and network load).  

As in the previous case, the probability for quickly updating the 
late-join client can be increased by placing the responsibility for 
updating the late-join client not solely on the original source but 
on all members of a shared object. The more members a shared 
object has, the higher the likelihood is for a quick update. For this 
purpose, the peer that created an object or invited new members to 
an object informs all available peer members that the relevant 
operations could not be delivered to one or more peers. All peers 
are assigned the task to try to transmit the operations to the late-
join client either by making regular contact or by probing 
periodically. They stop as soon as they receive a state vector from 
the client that indicates that it possesses the required information. 
In case the late-join client receives the same operations more than 
once, it simply ignores them. 

In summary, our approach to achieve a consistent application state 
(also in case of asynchronous/offline use) is based on the 
retransmission of missed operations, accomplished by the 
aforementioned mechanisms in our prototype. Retransmissions 
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can be initiated by the late-joining peer, by the peer who was the 
source for an operation, or by other peer members of a shared 
object. All operations received by the late-joining peer are then 
executed in the order defined in Section 5.1. They might trigger a 
timewarp if necessary so that consistency can be achieved.  

6. SIMULATION RESULTS 
In order to evaluate the correctness and the performance of the 
algorithms described above, we simulated different scenarios for 
the synchronous and asynchronous collaboration of two and three 
peers respectively. In each scenario we randomly reproduce the 
activities of a typical work week with five days. During one 
simulated workday, the following actions take place on average: A 
total of three shared objects are created, each peer views the data 
of an object fifteen times (i.e., opens and closes the view window 
of an object fifteen times), and each peer modifies the state of an 
object ten times. The simulated scenarios differ in respect to the 
time span that each peer is working either online or offline. For 
easier handling, we simulated each workday in 60 seconds. Please 
note that this increases the probability for a timewarp when peers 
work synchronously. Because of the limited number of operations 
in our scenarios, we insert a state snapshot every 5 operations into 
the history. 

6.1 Results for the Timewarp Algorithm 
When all peers are collaborating synchronously over the entire 
simulation time, a timewarp can happen only under the rare 
condition that two or more operations targeting the same shared 
object are issued concurrently, i.e., within the time span that is 
necessary to propagate these operations.  For a scenario with two 
peers, a total number of five timewarps was triggered with an 
average duration of 26 ms and an average number of 6.4 
operations that needed to be executed in order to regain a 
consistent state3. When both peers are working online for only 
80% of the simulated time, a timewarp becomes much more likely 
since concurrent actions can now happen over the whole time 
span where at least one peer is offline. Consequently, a total 
number of 27 timewarps occurred that took an average execution 
time of 28 ms and an average sequence of 6.7 operations to 
rebuild the application’s state.  When the time that peers spend 
online is reduced further to 50%, 118 timewarps happened with 
an average time of 32 ms and 13.2 operations to be executed. In 
the last scenario, the two peers worked synchronously only for 
20% of the simulated time. Since in this case many shared objects 
and subsequent actions are actually created when being offline, 
the total number of timewarps decreases to 44 with an average 
duration of 30 ms and 9.5 operations in a timewarp sequence. In 
all cases, the average time to execute a single timewarp is below 
32 ms which is not noticeable for the user.  

The effect of the algorithm to reduce the size of the operations 
history can be seen in Figure 4, which depicts the total number of 
operations exchanged in comparison with the actual size of the 
history of the two peers, assuming an online time of 80%. In this 
scenario, the algorithm is able to limit the size of the histories to 
approximately 25% of the total number of exchanged operations. 
For the other scenarios, this number lies between 20% and 40%. 

                                                                 
3 Please note that the sequence of operations to be executed in the 

case of a timewarp also includes operations that were not 
causally ready before. 

6.2 Results for the Delivery of Late-Join Data 
While a peer is working offline, operations originating from or 
targeting that peer cannot be delivered immediately. Instead, the 
algorithms described in Section 5.2 transmit the missed operations 
when the peer reconnects. Figure 5 shows the times peers are 
collaborating synchronously in the scenario where the three peers 
spend 80% of the simulation time online. The number of 

operations that actually need to be delivered belatedly because the 
receivers are unreachable is depicted in Figure 6. The late-join 
algorithm manages to update peers as soon as they are online 
again. The curves include those operations that are cached by all 
receivers that were online at the time they were issued (see 
Section 5.2). On average, peer 1 stores 5.3 operations (peer 2: 7.2, 
peer 3: 5.3) for the other peers, and it takes about 3.9 s (peer 2: 
4.4 s, peer 3: 4.0 s) between generating and delivering a certain 
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operation4. These numbers increase considerably for the scenario 
where peers are online for 50% of the simulation time: Peer 1 
caches on average 25.4 operations (peer 2: 15.3, peer 3: 22.5) and 
missed operations are transmitted 22.7 s (peer 2: 13.5 s, peer 3: 
20.5 s) after they were issued. In the last scenario where peers are 
online for only 20% of the simulation time, the first peer meets 
the other peers only rarely. Consequently, peer 1 stores on average 
107.4 operations for 60.6 s (peer 2: 80.4 operations for 22.8 s, 
peer 3: 66.4 for 27.6 s). These numbers show that the state of a 
shared object might diverge to a considerable degree when peers 
are working offline for a longer period of time. The algorithm for 
the distributed caching of missed operations most likely will 
alleviate this problem, if the number of members of a shared 
object increases. However, its performance also depends on the 
work patterns of the members of a shared object.   

7. LESSONS LEARNED AND DISCUSSION 
Our design philosophy and usage scenarios were a major factor in 
the decision of building a peer-to-peer system that would function 
without much administrative overhead. The most challenging 
aspect of this system is to make it work for asynchronous/offline 
collaboration as well as for real-time collaboration. Our approach 
builds upon an existing consistency mechanism for synchronous 
collaboration. In Section 5.2, we discussed several strategies that 
we implemented to make sure that this algorithm would also work 
in case of asynchronous/offline work. They are based on 
recovering the operations history after periods of offline/ 
asynchronous work. While our simulation results in Section 6 
indicate that our system design works and performs adequately, 
this approach has also some shortcomings. 

The time for reaching a consistent state after periods of offline use 
depends very much on the user behavior. In the worst case, local 
states of a shared objects might diverge for a very long period of 
time, e.g. if two users are alternating between being offline and 
online. Each user works on a state that is not the current state and 
then, after eventually merging the operations history, they might 
see an unexpected result. This reflects a major problem of this 
approach: While the state is now consistent for both users, the 
machine cannot guess what their actual intention was when they 
were independently modifying the shared objects. The algorithm 
only makes sure that both can see the same end result. However, 
for the user it is difficult to understand how the resulting state of 
the object came to be. We believe that it is crucial to provide 
some mechanisms that assist the user in this task. For example, the 
application could animate parts of the history to visualize the 
sequence of operations that led to the current state. Also, a user 
should possibly be able to restore parts of its operations history 
after consulting with the conflicting user. 

There are also two more technical solutions that would alleviate 
the aforementioned problem: Adding additional servers, which 
cache operations and update late-joining peers, would help to 
decrease the time between resynchronizations of states. Whenever 
peers are connected to the system, their application can send 
operations to the caching server, if the collaborating peers are 
currently offline. When the other peers connect, they first contact 
the caching server to collect missed operations. The drawback of 
this approach is that it requires additional infrastructure that needs 

                                                                 
4 Peers are offline at the end of all simulations (see Figure 5) and 

operations that have not been delivered are not included in the 
analysis of the delivery time span. 

to be maintained. Another technical approach could be to put 
more semantics into the consistency algorithm itself. The ordering 
of operations in state vectors is based on sequence numbers, i.e. 
when people work offline for long periods of time, the system 
only looks at the sequence numbers to restore a consistent state. 
But the sequence numbers do not reflect when operations actually 
took place. If two users work offline at different times, ordering of 
operations could be prioritized by the recency of the state change, 
which would probably help users in better understanding the 
resulting state after merging the operation histories. This could be 
achieved either by using globally synchronized clocks as a means 
for ordering (which again requires infrastructure) or, more 
elegantly, by using a modified state vector scheme that 
incorporates local time into the numbering. 

It is also noteworthy that when we started this project, we were 
not anticipating the complexity of such a peer-to-peer system 
despite the fact that some of the authors of this paper had several 
years of experience in developing distributed systems. The 
implementation of only the consistency mechanisms took three 
full person months. And, before starting to work on the peer-to-
peer aspects, we already had a server-based prototype available5.  

When building a peer-to-peer system, the advantages of this 
approach have to be carefully traded off against the benefits that a 
server-based solution offers. We believe that there is no definite 
answer to the question peer-to-peer or server-based. The design 
philosophy and the user experience of our system require offline 
use. Hence, we need replication of data to the local machine. 
However, the aspect of offline use would also greatly benefit from 
having a server that helps synchronize divergent copies of the 
distributed state as discussed above. We are currently 
investigating hybrid architectures that use servers for 
resynchronization, caching, address resolution, and other useful 
more lightweight services. While they hold a master copy of the 
state, local applications would still communicate directly peer-to-
peer. In this topology, the server would be just another peer with a 
different role. The presence of a server facilitates synchronization. 
However, please note that even with a server, there is still a need 
for consistency algorithms like the one described in Section 5. 
When working offline, local replicas and operations need to be 
merged with the master copy on the server. With some 
modifications, the algorithms described earlier in this paper could 
be also used in a hybrid architecture. We are aware that a hybrid 
architecture again comes with the problem of an additional 
infrastructure that needs to be introduced and accepted within an 
organization, which may take a long time. In the meantime pure 
peer-to-peer systems help paving the road to get there. 

We believe that ultimately the user experience has to be peer-to-
peer. Email is actually a very good example for such a hybrid 
system that feels peer-to-peer from a user’s perspective but is 
implemented through a network of mail servers (that talk peer-to-
peer to one another). Most email clients today also support offline 
use by keeping local replicas of their inboxes. However, email 
does not support shared states and real-time collaboration and 
thus does not face the consistency challenges like in our system.  

This paper has mainly focused on the technical aspects of a 
system that supports object-centric sharing. However, this new 
paradigm also deserves and needs to be studied from an HCI 

                                                                 
5 Our prototype is implemented in Java 1.4 using SWT/JFACE 

user interface widgets from the Eclipse framework [8]. 
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perspective. A usage study is currently underway, and we do not 
want to anticipate results here. However, there is some 
preliminary feedback that is worth mentioning. The system was 
shown to more than 50 people through demos on three 
consecutive days. We also used the system informally in our own 
group for a period of six weeks for discussions and bug reporting 
specific to the system itself. 

Many people reported that the notion of activity-centric work is a 
substantial part of their everyday work practices. They liked the 
capabilities in our prototype that support this notion, such as 
aggregating related items and seamlessly moving back and forth 
between different modes of collaboration. While the design 
philosophies of object-centric sharing and conversational 
structure seem to resonate very well, people had some concerns 
about our user interface design and other shortcomings that we 
had not addressed then. Our user interface, for example, shows 
tree-like structures the way they are stored in the system. We 
envision that there are better ways of presenting and navigating 
that information. More conversational interfaces that are 
structured by time could help understanding the history of an 
activity. People-centered views could help focus on who you want 
to collaborate with and could display shared objects that relate to 
a certain user or a group of users. A disadvantage of the tree-like 
approach is also that this tree-hierarchy is forced on all users, 
including newcomers who might not understand how to navigate 
this structure. Whether this is a serious hindrance or not will be 
determined by our on-going user evaluation. 

Another major issue was the management of shared objects. 
People reported that they are engaged in numerous lightweight 
activities every day. They were concerned that the user interface 
can easily become cluttered and that it would be hard to find 
information in the tree. More work needs to be done to face this 
challenge. Activities might grow quickly and evolve to agile, 
more formal public spaces. We need to provide means so that 
people can transform these to a shared workspace system. Many 
activities though will never reach that state. So as a major desired 
feature of our system, people were asking for some kind of 
archiving mechanism that helps them getting completed stuff out 
of their way in the tree, with the option of still having access to 
the information for later perusal. 

8. RELATED WORK 
Our notion of activity-centric collaboration based on shared 
objects has been inspired by previous work in this area. This 
includes a variety of studies on email and activities, collaborative 
improvements to email, and “peer-to-peer like” systems featuring 
replicated or synchronous shared objects. 

The use of email has been widely studied and research indicates 
that email is the place where collaboration emerges (e.g. [7], [6], 
[18], or [26]). Ducheneaut et al. [6] report on how people manage 
work activities within their email, confirming Bernstein’s [3] 
description of emerging group processes. Their findings include: 
the outcome of an activity is often unpredictable, membership in 
activities is fluid, activities can evolve from the informal to the 
formal, and late-joiners of activities are poorly supported because 
they have no access to the history. 

A number of recent collaboration systems illustrate concepts 
similar to activity threads.  Rohall et al. [22] show how  automatic 
analysis of subject headers and reply-relationships in different 
emails can group them into a coherent thread of messages. They 
also present how carefully designed thread visualizations can 

reduce inbox clutter.  However, their threads are not shared, nor 
do they reflect any collaborative activity beyond the exchange of 
messages.   

Bellotti et al. [1] introduce the notion of a “thrask” as a means for 
better organizing email activities. Thrasks are threaded task-
oriented collections that contain different types of artifacts such as 
messages, hyperlinks, and attachments and treat such content at an 
equal level. Thrasks can be manually created, with contents 
assigned by users to meaningful activities.  While all of these 
attributes are similar to our use of activity threads, thrasks are not 
shared: they are private collections of related artifacts, whose 
organization are specific only to the owner of the thrasks, and lack 
any awareness of how others are manipulating the artifacts. 

Along the same lines, Kaptelinin [13] presents a system that helps 
users organize resources into higher-level activities (“project-
related pools”). The system attempts to include not just email, but 
also any desktop application.  It allows manual addition of 
resources of any type but also monitors user activities and 
automatically adds resources to the current activity. However, the 
system has been designed for personal information management 
only, not complete synchronous/asynchronous sharing and 
awareness. Rohall’s and Kaptelinin’s work demonstrate semi-
automatic management of activities and their artifacts.  This is 
something we should investigate in our future work to help make 
managing activity threads more lightweight.   

Whittaker et al. [27] present five design criteria for lightweight, 
informal interactions, which influenced the design of our 
prototype: conversational tracking, rapid connection, ability to 
leave a message, context management, and shared real-time 
objects. Their work also emphasizes the importance of work-
related artifacts to help manage the history and context of 
intermittent interactions: “Task-related documents can serve to 
hold the context of multiple ongoing conversations”. The system 
they present mainly focuses on threaded IM-like conversations 
using “sticky notes” on the desktop. 

A variety of collaborative systems implement replicated shared 
objects and “collaborative building blocks” similar to our 
prototype.  One example is Groove [12], a peer-to-peer system 
which features a large suite of collaborative tools (chat, calendar, 
whiteboard, etc.) and email integration. However, Groove is 
workspace-centric (although creation of shared workspaces is 
quick), and collaboration is centered on the tools placed in the 
workspace (e.g., all shared files appear in the shared files tool), 
except for persistent chat which appears across all tools.  In 
contrast, our system focuses collaboration around artifacts, which 
can be organized in a single connected hierarchy of different 
types.  While Groove’s design philosophy is different from ours, 
the architecture is very alike. Their system has to deal with 
problems similar to the ones described in Section 5. However, we 
have no technical information to compare the two approaches. 

Another example is Eudora’s Sharing Protocol [11], which offers 
a replicated shared file architecture completely based on email and 
leverages special MIME headers. Kubi Spaces [14] also offers 
replicated shared objects, with a richer suite of object types, 
including to-dos, contacts, and timelines. Microsoft Outlook [20]  
has a server-based “shared email folder” capability.  Lotus Notes 
[17] offers a replicated object architecture, although typically 
email objects are copies, not shared amongst different users.  A 
powerful benefit of these “shared email solutions” is that no 
additional infrastructure beyond email is needed.  However, 
synchronization only occurs on a triggered refresh interval and 
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depends on a non-real-time message delivery between 
intermediary email servers. Thus, collaboration is entirely 
asynchronous (e.g., users cannot work simultaneously on a 
whiteboard in real-time) with no real-time presence awareness. 

9. CONCLUSION 
We described a new collaboration technology that targets 
lightweight collaborative activities sitting mid-way between ad 
hoc communication in email and more formal collaboration in 
shared workspace systems. As a major new design principle, we 
introduced the notion of object-centric sharing, which allows 
people to aggregate and organize shared objects into activity 
threads, providing an emerging context that evolves and engages a 
dynamic group of participants. Being “placeless,” our approach 
imposes little overhead and allows for lightweight, ad hoc 
collaboration. We are currently conducting a larger user study to 
better understand the usefulness and usability of this new 
approach. As part of our future work, we are also looking into 
user interface improvements, better ways of managing activity 
threads, and new shared object types that introduce more structure 
and help evolving activity threads to shared workspaces. 

This work focused on describing technical aspects and 
implementation challenges of a peer-to-peer prototype system 
supporting the notion of object-centric sharing. As an implication 
of our design philosophy we need to maintain consistency in a 
blended synchronous and asynchronous collaborative system. Our 
approach enhances a popular consistency algorithm, which had 
been originally designed for real-time collaboration. Our 
preliminary simulation results indicate that this approach works 
well. However, a major difficulty is that during long phases of 
asynchronous work the application state might diverge 
significantly. To alleviate this problem, we are currently looking 
into improved versions of our consistency algorithm and we are 
also investigating new hybrid architectures that use lightweight 
caching servers to make the system more robust. 
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