
RC-22877 (W0308-061) August 14, 2003
Computer Science

IBM Research Report

Supporting Activity-centric Collaboration Through
Peer-to-Peer Shared Objects

Werner Geyer*, Juergen Vogel**, Li-Te Cheng*, Michael Muller*

* IBM Research Division
TJ Watson Research Center

One Rogers Street
Cambridge MA, 02142, USA

** University of Mannheim

Lehrstuhl Praktische Informatik IV
L 15, 16

68131 Mannheim, Germany

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research
Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Supporting Activity-centric Collaboration
through Peer-to-Peer Shared Objects

�������������	�
������
������	�������������	����������������
�

��������	
���
��
���������
�����������
������������������

�
	������������� !���"���
�$ %�$&'�!%& �

()�����
��*����+�,��-�������
	���
�+-	.++��/0.�
��	
��	�

�

�
��"��1�����*��2��
�����	��

3�����.�+�4�
5���������2��	
��5��6�
3� 7�� $�

$8 ' ��
�����	��9��	
�*�
#!&�$� � 8 ��$ 7�

1���+0��2��	
��5
.��,	
�����	
���

ABSTRACT
We describe a new collaborative technology that is mid-way
between the informality of email and the formality of shared
workspaces. Email and other ad hoc collaboration systems are
typically lightweight and flexible, but build up an unmanageable
clutter of copied objects. At the other extreme, shared workspaces
provide formal, structured collaboration, but are too heavyweight
for users to set up. To bridge this gap between the ad hoc and
formal, this paper introduces the notion of “object-centric
sharing”, where users collaborate in a lightweight manner but
aggregate and organize different types of shared artifacts into
semi-structured activities with dynamic membership, hierarchical
object relationships, as well as real-time and asynchronous
collaboration. We present a working prototype implemented with
a replicated peer-to-peer architecture, which we describe in detail,
and demonstrate its performance in synchronous and
asynchronous modes.

Keywords
Object-centric sharing, replication, synchronization, peer-to-peer,
activity-centric collaboration, emerging collaboration.

1. INTRODUCTION
Collaborative processes very often emerge from unstructured ad
hoc communication activities to more structured types of formal
collaboration [3]. Groupware has focused on the two extremes of
this continuum but neglected many of the possible stages in-
between. Email at one extreme of this continuum can be
considered as today’s ultimate ad hoc communication support
system. Recent studies indicate that email is the place where
collaboration emerges (e.g. [7], [26]). A variety of email uses are
reported in the literature such as information management,
document management and sharing, task management, and
meeting management. Whittaker et al. [26] coined the term “email
overload” as the phenomenon of email being used for additional
functions other than communicating.

While email is extremely flexible, it also requires the user to do a
lot of work, such as manually keeping track of the organizational
process; users are mostly left alone with the contextual sense-
making of all the information contained in their cluttered inboxes.
Despite these drawbacks, people keep on using email instead of
managing their collaborative processes with special purpose
groupware systems such as shared team workspaces, decision-
support systems, or meeting management systems. While these
systems provide more structure and richer support for

collaboration, people often shy away from using them because
email is readily available, always on, often the focus of attention,
ad hoc, and does not require tedious set-up procedures.

Little work has been done to offer richer collaboration in email
and to help support the progression of collaboration from ad hoc
communication to more structured types of collaboration that are
already supported in many special purpose groupware systems
(see Sections 2.1, 2.2, and 8). We are currently investigating
technologies for activity-centric collaboration that can help bridge
this gap (see Figure 1).

We have designed and built a peer-to-peer prototype system that
supports lightweight and ad hoc forms of sharing information,
which we believe are key in bridging the gap because they do not
overload the user with the overhead of manually creating shared
workspaces or setting-up conferences.

This paper introduces the design concept behind our prototype
and then focuses on the implementation of this system. In Section
2, we introduce the notion of “object-centric” sharing, which is
fundamental to our design. Object-centric sharing allows
individuals to aggregate and organize shared artifacts into larger
collaborative activities, providing an emerging context that
evolves and engages a dynamic group of participants. Section 3
presents the prototype system from a user interface perspective.
We illustrate how the prototype can be used within email to
engage in lightweight activities. In Sections 4 and 5, we focus on
the architecture and implementation of this system. We not only
decided to make this system feel peer-to-peer from a user
perspective, but also implemented it based on a replicated peer-to-
peer architecture. This decision poses various technical
challenges. Keeping replicated data consistent in an architecture
that supports real-time and asynchronous collaboration at the
same time is not trivial, and relatively little research has been
done in addressing this problem (e.g., [10]). Our approach
enhances a popular consistency algorithm, which had been

P

P

P

P

P
P

P

P

P

P

P

P

P

P

P

P

P

P

P
P

P

P P

P

P

P

P

P

P

P

Ad hoc
communication

(email/IM)

Activity-centric
collaboration

Formal
collaboration

(shared workspaces)

P

P

P

P

P
P

P

P

P

P

P

P

P

P

P

P

P

P

P
P

P

P P

P

P

P

P

P

P

P

P

P

P

P

P
P

P

P

P

P

P

P

P

P

P

P

P

P

P
P

P

P P

P

P

P

P

P

P

P

Ad hoc
communication

(email/IM)

Activity-centric
collaboration

Formal
collaboration

(shared workspaces)

Figure1: From ad hoc communication to formal collaboration

1

originally designed for real-time collaboration. In Sections 6 and
7 we discuss preliminary results as well as trade-offs between
centralized and replicated architectures for blended synchronous
and asynchronous collaborative systems. Sections 8 and 9
conclude with related work and a summary of this contribution.

2. DESIGN PHILOSOPHY
In email, a collaborative work activity typically begins with a
single message that might or might not grow into a collection of
related messages including attachments [6]. While email is very
good in supporting the ad hoc nature of collaboration and
dynamic membership, it is not very good in preserving the context
and structure during a conversation; related messages and
attached documents are typically scattered or buried in the inbox
and they are hard to find. Moreover, email does not support real
sharing of content, let alone real-time collaboration. In order to
support those aspects of a work activity, people have to “leave
their inbox” and use other tools (shared workspaces, conferencing
applications etc.) that produce new artifacts that are related to the
original work activity. When they do this, they are totally
disconnected because those artifacts reside somewhere else on the
desktop, in the file system, or on a remote server. The design of
our system was mainly driven by the desire to combine the
lightweight and ad hoc characteristics of email and the rich
support for sharing and structure in shared workspace systems1.

2.1 Object-centric Sharing
Traditional shared workspaces typically entail a lot of
management overhead and are far from being lightweight or ad
hoc. They are “place-based”, i.e. users first have to create a place,
assign access rights, and then put content into that place in order
to be able to share it. They are based on the assumption that “the
team” already exists and that the purpose of collaboration is well
known. However, when collaboration starts off, this is often not
the case, and setting up a place can seem to be artificial if not
obstructive at this stage. In our research, people often prefer to
think in terms of whom to share with and what to share. Also
collaboration in these early stages might be very short-term and
instantaneous and involve only little amounts of data to be shared,
e.g., exchanging one or more files, setting up a meeting agenda
with people, or jointly annotating a document. These activities
might or might not become part of a larger collaborative work
process. However, people usually do not create heavyweight
shared workspaces to perform these tasks.

So unlike providing one persistent place for sharing multiple
pieces of information, our paradigm is rather “object-centric” or
“content-centric,” which is very similar to Dourish’s [5] notion of
“placeless” documents. In this approach, sharing becomes a
property of the content itself, i.e. content is collaboration-aware.
In this paper, we use the term “shared object” for one shared piece
of persistent information. Shared objects support membership,
provide object-level awareness, and enable group communication.
In other words, they define a set of people who are allowed to
access the information, they indicate who is currently looking at
the content, and they allow sending or broadcasting of data to
members of the object.

1 Our solution uses shared objects as its reference point. For a

contrasting solution that uses email as a reference point, see our
discussion of related work in Sections 2.2 and 8.

2.2 Conversational Structure
In our approach, shared objects are building blocks of
collaboration. We allow users to combine and aggregate them into
hierarchical structures as their collaboration evolves. We call a set
of related shared objects an activity thread, representing the
context of an evolving collaborative activity. Aggregating objects
allows people to add structure to their collaboration. We see this
structure being defined by their ongoing conversation, i.e. each
object added to an existing object can be considered as a “reply”
to the previous one. While this approach is similar to threads in
email or discussion databases, or thrasks [1], it is much richer
because (1) activity threads may contain different types of objects,
not only messages, (2) all objects are equal, unlike in email where
attachments are subordinates contained in the message, (3)
membership is dynamic and may differ within an activity thread
from object to object, (4) objects support real-time collaboration
and provide rich awareness information.

Unlike shared workspaces, we intentionally do not provide an
explicit object as a structural container for a collaborative activity.
Each individual shared object can be a container and thus could
be considered as a “seed” for collaboration that either decays or
grows to more structured forms with the structure being defined as
people collaborate.

Our design also deliberately does not make a distinction between
asynchronous and synchronous types of collaboration. If other
people are present at the time of accessing an object, they can
work synchronously, if not, work is asynchronous. From a more
technical perspective, objects can be considered as an “infinite”,
persistent (conferencing) session bounded only by the lifetime of
the object. Modifications to the object are broadcast to the
members of that object if they are online.

3. USER EXPERIENCE
The user interface to our prototype system is integrated into an
email client. The client supports sharing of five types of objects:
message, chat transcript, file, annotated screen shot, and to-do
item. These objects are managed through a simple tree-like user
interface that is contained in the right pane (A) in Figure 2. Each
“branch” in that tree represents an activity thread.

Users interact with shared objects by right-clicking on the nodes
of the tree which pops up a context menu. Users can create new
objects, delete objects, add and remove members etc. Our client
supports POP3 email messaging: The upper left pane is the inbox
(B) and the lower left pane a message viewer (C). In the
following, we use a scenario to illustrate how shared objects as
building blocks can be used to collaborate in an activity that starts
from an email message. Please note that the activity thread
displayed in Figure 2 is just a snapshot at the end of an activity
from the perspective of one of the actors (Bob); the thread is built
dynamically as the actors collaborate.

Bob is a project lead and he works with Dan on a project on
“Casual Displays”. Catherine is a web designer in their
company who is responsible for the external web site. Bob
receives an email from Catherine containing a draft for a project
description that she would like to put on their external web site
(1). She wants some feedback from Bob. Before getting back to
her, Bob wants to discuss the design of that web page with Dan.
Instead of forwarding the message to Dan via email, Bob decides
to start a new activity by creating a shared object based on this
message. He right-clicks on the original message in his inbox,
selects “share”, enters Dan’s email address, and hits “Share”. A

2

new shared message object (with Bob and Dan as members)
shows up in Bob’s activity tree in the right window pane (2). Bob
right-clicks on the shared object and adds a new shared message
to the initial one, because he wants to let Dan know that he
would like to discuss this with him. Bob’s message shows up as a
reply to the initial message similarly to a newsgroup thread (3).

A few hours later, Dan returns to his desktop, which is running
the client, and notices Bob’s newly created shared messages. He
opens one message and while he is reading it, Bob sees that Dan
is looking at the messages because the shared object is lit green
along with Dan’s name underneath the object (4). Bob takes this
as an opportunity to begin a discussion with Dan within the
context of the shared object. He right-clicks on the initial
message and adds a chat object to this activity (5). A chat
window pops up on Dan’s desktop and they chat. In their chat
conversation, Bob and Dan continue talking about the web page
over the phone. At some point during the discussion, Bob wants
to show directly how to change the web page. He right-clicks on
the chat object in his activity tree and adds a shared screen
object (6). A transparent window allows Bob to select and
“screen scrape” any region on his desktop. He freezes the
transparent window over Catherine’s draft web page. The screen
shot pops up on Dan’s desktop. Bob and Dan begin annotating
the web page in real-time like a shared whiteboard (7). As they
discuss a few changes, Bob is asking Dan to integrate a project

logo into the web page. Dan agrees but is pressured now to run
to another meeting. He says good-bye to Bob and tells him that
he will check with him next day. Dan closes all his windows and
as he leaves, his name turns gray throughout all of his shared
objects displayed on Bob’s client.

Now alone, Bob continues annotating the web page. He also
types in a few lines for Dan in the chat window before closing it.
He then right clicks on the chat object and creates a new shared
file object. He picks the logo file from his local file system and
the file object becomes part of Bob’s and Dan’s activity thread
(8). Bob closes all windows and leaves. Next morning when Dan
returns to his office, he finds Bob’s additional annotations, his
chat message, and the project logo file. He starts working on the
web page and few hours later, he puts the reworked page into the
activity thread as a shared file object (9) and adds a message
with some comments (10). He also shares these two objects with
Catherine (11) so that she can download and deploy the newly
revised web page and logo.

This scenario demonstrates how our prototype moves seamlessly
and effortlessly back and forth from private to public information,
and from asynchronous to synchronous real-time collaboration,
without manually creating a shared workspace or setting up a
meeting. Collaboration starts off with a single shared object and
evolves into a multi-object activity, which is structured by a
dynamic group of participants as they create and add new shared

CC

BB
AA

1010

11

22

33

44

66

77

88

99

55

1111

Figure 2: Prototype user interface, (A) Activity Thread Pane, (B) Email Inbox Pane, (C) Email Viewer Pane

3

objects. An activity thread provides the conversational context
and awareness for an emerging collaboration; it allows
aggregating a mix of different object types.

4. SYSTEM ARCHITECTURE
The design philosophy and the envisioned use of the system
contributed to our decision to implement our prototype as a peer-
to-peer system. In particular, the high administrative cost of
centralized shared workspace systems was a major factor in this
decision. We wanted users to be able to create shared objects on
the fly in order to facilitate instantaneous and effortless
collaboration. Giving full control to the user implies that the
system should function without any additional infrastructure.

Another major requirement is that users be able to collaborate
both synchronously and asynchronously. Asynchronous work may
take place while people are online but also offline when they are
disconnected from the network. To provide offline access at any
time, shared objects need not only be persistent but to reside on
the user’s local machine (desktop, laptop, or PDA). In order to
synchronize local replicas, the system must provide appropriate
communication and consistency control mechanisms. Since the
membership of shared objects can be highly dynamic, the system
also has to support late-joining users [25]. Besides ubiquitous
access to data, replication helps to achieve good responsiveness.

Finally, object-centric sharing as described in Section 2 implies
that membership management occurs individually for each shared
object. This fine-grained access to and control of shared objects
might entail a scalability penalty in a server-based system. A
replicated system scales better with respect to the number of
shared objects and the number of users.

Out of these considerations, we opted against a client-server
solution and decided to build a peer-to-peer system where each
user runs an equal instance of the application locally. Figure 3
shows three applications instances (A, B, and C).

Each local instance consists of a client component that provides
the user interface to the system (see description in Section 3) and
a service component, called ActivityService, that maintains a copy
of all shared objects that are relevant to the local user. Peer
discovery is accomplished by leveraging an existing instant
messaging infrastructure (as discussed in section 4.2). We use a
local database in each application instance to store and access
shared objects. Changes to the set of shared objects (e.g., by
creating new objects or modifying existing shared objects) must
be communicated to all peers that participate in an activity. In the
following sections of this paper, we refer to the set of shared
objects and their properties as the state of the application, and we

denote states and state changes that are distributed to the set of
users as operations.

From the user’s perspective, this peer-to-peer architecture means
that, apart from acquiring and running the application, no extra
steps are necessary before new shared objects can be created or
existing shared objects can be accessed. New peers can be invited
and integrated easily, for example, by an email referencing a web
link that automatically installs the application.

4.1 Communication Protocols
The application-level protocol description for the distribution of
states and state changes among the peers is based on XML,
mainly to allow rapid development and easy debugging.
Preliminary tests with our prototype have shown that the resulting
performance is sufficient, but should the need arise we plan to
switch to a binary protocol.

Since objects can be shared by an arbitrary number of users,
application data usually needs to be delivered to more than one
destination. Thus, the system has to employ a group
communication protocol. We opted against IP multicast due to its
insufficient deployment [4] and because it would require the use
of UDP as a transport protocol, which is blocked by firewalls in
many organizations. Instead, a sender delivers application data
directly via TCP to each receiver, forming a star-shaped
distribution topology. Since we expect groups for most activities
to be small (i.e., up to 10 participants), the network overhead
imposed by this approach seems to be acceptable. An alternative
would be to use an application-level multicast protocol such as
Narada [4] which remains an issue for future work.

4.2 Peer Discovery
Building the application’s communication on top of point-to-point
unicast connections means that a sender has to contact each
receiver individually. Therefore, a peer needs to know the IP
addresses of all the peers it is collaborating with. Since our
prototype is integrated into an email client, the natural contact
information of a peer is its user’s email address. This has to be
mapped to the IP address of the corresponding user’s computer.
The address resolution is a dynamic process because an IP address
might change when users connect via dial-up, work on different
computers, or use dynamic IP.

To allow a peer to connect to the system for the first time, we use
the existing instant messaging infrastructure in a company to
resolve email addresses (see Figure 3). Each peer connects to its
user’s corresponding instant messaging server. Each peer
contacting the server also leaves its own address information —
i.e. the IM infrastructure serves as a means for peer discovery and
address resolution. All addresses resolved by a peer are saved in a
local address table together with the time the information was
obtained. This address table is persistent and used on the first
attempt to establish a connection to another peer. Should this fail,
the instant messaging server is contacted to inquire whether the
peer’s IP address has changed. Once a peer makes contact to other
peers, they can exchange addresses to complement their local
address tables with new entries and to exchange outdated
addresses. This way communication with the address server can
be limited and the peer-to-peer system will be able to function for
some time in case the address server is not reachable.

We are not focusing on peer discovery protocols in this paper.
The above mechanisms could be also easily replaced with existing
peer discovery protocols such as Gnutella [16] and JXTA [21].

Activity
Service

'%

Client

Activity
Service

'%

ClientClient

Activity
Service

'%

Client

Activity
Service

'%

ClientClient

Activity
Service

'%

Client

Activity
Service

'%

ClientClient

IM
Infrastructure

A B

C

Figure 3: System architecture

4

Another alternative would be to make use of the email integration
and exchange IP addresses with special emails that are filtered by
the email client. The advantage of this approach would be that no
additional infrastructure for address resolution is required. Its
realization is an issue for future work.

5. CONSISTENCY CONTROL
The replication of the application’s state as described in Section 4
requires explicit mechanisms to keep all state copies consistent.
Much research has been done in keeping the state of synchronous
multi-user applications such as whiteboards, shared editors etc.
consistent. Likewise our prototype requires consistency
mechanisms when people are working on shared objects at the
same time. However, by design our system also supports offline
use when people are disconnected from the network and people
who are online are able to share objects with others who are
currently offline. Little work has been done on algorithms that
support consistency in blended synchronous and asynchronous
collaborative applications. We have chosen and modified an
existing consistency mechanism for synchronous collaboration so
that it also supports asynchronous collaboration. In the following,
we first describe consistency control in the “ideal” case when
everyone is online before we cover the asynchronous case.

5.1 Synchronous Collaboration
Consider the scenario described in Section 3. Let us assume that
Bob decides to change the name of the shared screen object that
he and Dan were annotating to “project homepage” (see (7) in
Figure 2). In order to execute this local state change in Dan’s
application, Bob’s application needs to propagate the pertinent
information. But since this transmission is subject to network
delay, Dan could also change the object’s name to “first draft” in
the brief time span before Bob’s update is received. In this case,
Bob’s and Dan’s changes are concurrent, and they conflict since
they target the same aspect of the state. Without further actions,
the name of Bob’s activity would be “first draft” and that of Dan
“project homepage”, meaning that the object’s state is
inconsistent. To prevent this from happening, the application
needs to employ an appropriate concurrency control mechanism.

To be more specific, there are two consistency criteria that the
application should observe: causality and convergence [9].
Causality means that an operation Ob that is issued at site i after
another operation Oa was executed at i needs to be executed after
Oa at all sites, so that the cause is always visible before the effect.
For example, the shared screen object has to be created before its
name can be changed. Convergence demands that the state of all
peers is identical after the same set of operations {Oi} was
executed. This means in our example that Bob and Dan should see
the same name of the screen activity.

We decided to use serialization [23] for establishing causality and
convergence. The basic idea is to execute a set of operations that
targets a certain object in the same order at all sites. As a
prerequisite, an appropriate ordering relation has to be defined.
Possible ordering relations are timestamps [19] or state vectors
[15]. When using timestamps, operations are ordered by their
assigned execution time. Timestamp ordering can be applied to all
types of applications, including continuous. However, it requires
that the clocks at all sites are synchronized, which increases the
administrative overhead and creates dependencies on a time
synchronization infrastructure. Hence, we decided to use state
vectors to order operations in our prototype. Moreover, this

seemed sufficient since shared objects in our system currently do
not support time-based state changes.

A state vector SV is a set of tuples (i,SNi), i = 1,..,n, where i
denotes a certain peer, n is the number of peers, and SNi is the
sequence number of peer i. Whenever i issues an operation O, SNi

is incremented by 1 and the new SV is assigned to O as well as to
the state that results after executing O. We define SV[i] := SNi.
With the help of state vectors, causality can be achieved as
follows [23]: Let SVO be the state vector of an operation O issued
at site a and SVb the state vector at site b at the time O is received.
Then O can be executed at site b when (1) SVO[a] = SVb[a] + 1,
and (2) SVO[i] � SVb[i] for all peers i ���. This means that prior
to the execution of O all other operations that causally precede O
have been received and executed. If this is the case, we call O
causally ready. But if O violates this rule it needs to be buffered
until it is causally ready, i.e., until all necessary preceding
operations have arrived and have been executed.

Convergence can be achieved by applying the following ordering
relation to all operations that are causally ready [23]: Let Oa and
Ob be two operations generated at sites a and b, SVa the
state vector of Oa and SVb the state vector of Ob, and
sum(SV) := �����	
� Then Oa < Ob, if (1) sum(SVa) < sum(SVb), or
(2) sum(SVa) = sum(SVb) and a < b.

In the following, we denote the set of operations that was received
by a peer and executed in the order defined above as operations
history. Due to the propagation delay of the network, it might
happen that an operation Oa that should have been executed
before an operation Ob according to the ordering relation is
received only after Ob has been executed, i.e., Oa would not be the
last operation when sorted into the history. This means that
applying Oa to the current state would cause an inconsistency.
Thus, a repair mechanism is required that restores the correct
order of operations. Timewarp [19] is such an algorithm and
works as follows: Each peer saves for each shared object the
history of all local and remote operations. Moreover, snapshots of
the current state are added periodically to the history. Let us
assume that an operation Oa is received out of order. First, it is
inserted into the history of the target object in the correct order.
Then the application’s state is set back to the last state saved
before Oa should have been executed, and all states that are newer
are removed from the history. After that, all operations following
Oa are executed in a fast-forward mode until the end of the history
is reached. To avoid confusion, only the repaired final state of the
application should be visible for the user.

The advantages of the timewarp algorithm are that it functions
exclusively on local information and does not require additional
communication among peers, it is robust and scalable, it is
applicable to all peer-to-peer applications, and the operations
history can be reused for other purposes such as versioning and
local recording. One major drawback is the memory usage of the
operations history which is determined to a large part by the
frequency of state snapshots. While a low frequency saves
memory, it increases the average processing time for the execution
of a timewarp. From our experience gained with the prototype
implementation, we opted to save a state snapshot every 10-15
operations, depending on the shared object.

The size of the operations history can be limited by analyzing the
information included in the state vector SVO of an operation O
issued by peer j and received by i: SVO[k] gives the sequence
number of the last operation that j received from k, i.e., j
implicitly acknowledges all older operations of k. Under the

5

condition that O is causally ready, there can be no timewarp
triggered by operations from j that are concurrent to operations
from k with SNk � SVO[k]. This means, that from j’s perspective, i
can remove all operations of k with SNk ����O[k] from its history.
Once i has received similar acknowledgements from all peers, old
operations can be cleared. This process can be sped up by
periodically exchanging status messages with the current state
vectors of a peer.

Under the unlikely event that a new peer late-joins an ongoing
collaboration on a shared object, obtains the current state, and
issues a state change concurrently to the operation of another
peer, the aforementioned improvement might fail since peers
clearing their history have no knowledge about the late-joining
peer. This can be prevented by keeping outdated operations for
some extra time span or by using an additional repair mechanism
such as a state request [24].

Another drawback of the timewarp algorithm is the processing
time to recalculate the application’s state. But since each shared
object has its own operations history and since states are inserted
frequently into the history, the time required for a timewarp is
usually below 40 ms on an AMD 2.0 GHz PC, which is not
noticeable for the user. Also, as found in [24], the number of
timewarps can be reduced dramatically by analyzing concurrent
actions.

The actual effect of a timewarp might be disturbing for a user: It is
possible that the recalculated state differs to a high degree from
the object’s state that was visible before, e.g., when objects are
deleted. In this case, an application should provide the user with
information about the cause of the visual artifact, and highlight
the objects and the users involved [24].

5.2 Asynchronous Collaboration
A key aspect of our prototype is that shared objects can be
accessed by users anytime and independently of others. They are
persistent even when all peers are offline, and they facilitate
synchronous as well as asynchronous collaboration. The latter
means for the scenario described in Section 3 that Bob can access
and manipulate data of the shared screen object (see (7) in Figure
2) even when Dan is offline and his ActivityService is not
running2. This raises the question how Dan’s application can
acquire the information that was missed once it is active again so
that it possesses the current state and Dan is able to continue the
collaboration. For easier discussion, we denote the process of
reconnecting after operations have been missed as late-join, the
peer that missed operations as late-join client, and any peer that
provides information to the late-join client as late-join server
[25].

One design option is whether the late-join client should be
provided with all operations missed or, alternatively, with a copy
of the current state. The latter option has the advantage that a state
transmission is more efficient in terms of data volume and
processing time whenever the number of missed state changes is
rather high (depending on the nature of the object’s state and the
state changes). But at the same time, this approach requires
additional measures to ensure the consistency of the late-join
client’s state [24]: The late-join server providing the object’s state

2 In case Dan is not currently working on a shared object but his

application is running, no additional actions are required since
Dan’s ActivityService still receives all state updates.

cannot guarantee its consistency since concurrent operations that
are not included yet could be under way. Thus, we chose the first
option and provide all missed operations. This is more robust
since the late-join client will possess a complete operations
history under the condition that all missing operations will be
delivered eventually. The late-join client is then able to ensure the
consistency of the object’s state as described in Section 5.1.

Other design options determine if the data transmission is initiated
by the late-join client or the server, and when the transmission
takes place. Initiating and controlling the transmission by the late-
join client is the obvious choice since the client has to ensure the
consistency of its own state. When starting the application
instance, the client therefore contacts all peers with whom it
collaborates one by one and hands over the current state vectors
of its shared objects. Comparing those state vectors to its own, a
peer can decide which operations from its history need to be sent
to the late-joining peer (if any). Thus, the late-join client can
obtain missed state changes from any peer that participates in a
shared object, not only from the original source of an operation.
This is especially useful when that source is offline at the time the
late-join client connects. Additionally, it increases the robustness
of the system and spreads the burden of initializing clients to all
peers. To further increase the probability that all missed
operations are received, information about the current state of
objects is also exchanged whenever a user joins a shared object.

However, this approach succeeds only if a peer that was already
participating in a shared object missed some state changes. But
another possibility is that a new shared object is created or that a
new member is invited to join an existing object (as in step (1) of
the scenario in Section 3). Notice that either the peer creating a
new shared object or the peer receiving a new shared object could
be offline. So when reconnecting, the late-join client does not
know about the new shared object and can therefore not ask for
the transmission of missed operations. Even worse, it might be
that the late-join client does not know the other peers that are
members of this shared object if they did not collaborate before.
Thus, in case a peer misses the creation of an object or the
invitation to an existing object, the responsibility for the
retransmission must be with the originator of that action. Should
both peers connect for the transmission of any other data, the
missed operations can be delivered to the late-join client. The
late-join server also tries to contact the client periodically
(depending on the current application and network load).

As in the previous case, the probability for quickly updating the
late-join client can be increased by placing the responsibility for
updating the late-join client not solely on the original source but
on all members of a shared object. The more members a shared
object has, the higher the likelihood is for a quick update. For this
purpose, the peer that created an object or invited new members to
an object informs all available peer members that the relevant
operations could not be delivered to one or more peers. All peers
are assigned the task to try to transmit the operations to the late-
join client either by making regular contact or by probing
periodically. They stop as soon as they receive a state vector from
the client that indicates that it possesses the required information.
In case the late-join client receives the same operations more than
once, it simply ignores them.

In summary, our approach to achieve a consistent application state
(also in case of asynchronous/offline use) is based on the
retransmission of missed operations, accomplished by the
aforementioned mechanisms in our prototype. Retransmissions

6

can be initiated by the late-joining peer, by the peer who was the
source for an operation, or by other peer members of a shared
object. All operations received by the late-joining peer are then
executed in the order defined in Section 5.1. They might trigger a
timewarp if necessary so that consistency can be achieved.

6. SIMULATION RESULTS
In order to evaluate the correctness and the performance of the
algorithms described above, we simulated different scenarios for
the synchronous and asynchronous collaboration of two and three
peers respectively. In each scenario we randomly reproduce the
activities of a typical work week with five days. During one
simulated workday, the following actions take place on average: A
total of three shared objects are created, each peer views the data
of an object fifteen times (i.e., opens and closes the view window
of an object fifteen times), and each peer modifies the state of an
object ten times. The simulated scenarios differ in respect to the
time span that each peer is working either online or offline. For
easier handling, we simulated each workday in 60 seconds. Please
note that this increases the probability for a timewarp when peers
work synchronously. Because of the limited number of operations
in our scenarios, we insert a state snapshot every 5 operations into
the history.

6.1 Results for the Timewarp Algorithm
When all peers are collaborating synchronously over the entire
simulation time, a timewarp can happen only under the rare
condition that two or more operations targeting the same shared
object are issued concurrently, i.e., within the time span that is
necessary to propagate these operations. For a scenario with two
peers, a total number of five timewarps was triggered with an
average duration of 26 ms and an average number of 6.4
operations that needed to be executed in order to regain a
consistent state3. When both peers are working online for only
80% of the simulated time, a timewarp becomes much more likely
since concurrent actions can now happen over the whole time
span where at least one peer is offline. Consequently, a total
number of 27 timewarps occurred that took an average execution
time of 28 ms and an average sequence of 6.7 operations to
rebuild the application’s state. When the time that peers spend
online is reduced further to 50%, 118 timewarps happened with
an average time of 32 ms and 13.2 operations to be executed. In
the last scenario, the two peers worked synchronously only for
20% of the simulated time. Since in this case many shared objects
and subsequent actions are actually created when being offline,
the total number of timewarps decreases to 44 with an average
duration of 30 ms and 9.5 operations in a timewarp sequence. In
all cases, the average time to execute a single timewarp is below
32 ms which is not noticeable for the user.

The effect of the algorithm to reduce the size of the operations
history can be seen in Figure 4, which depicts the total number of
operations exchanged in comparison with the actual size of the
history of the two peers, assuming an online time of 80%. In this
scenario, the algorithm is able to limit the size of the histories to
approximately 25% of the total number of exchanged operations.
For the other scenarios, this number lies between 20% and 40%.

3 Please note that the sequence of operations to be executed in the

case of a timewarp also includes operations that were not
causally ready before.

6.2 Results for the Delivery of Late-Join Data
While a peer is working offline, operations originating from or
targeting that peer cannot be delivered immediately. Instead, the
algorithms described in Section 5.2 transmit the missed operations
when the peer reconnects. Figure 5 shows the times peers are
collaborating synchronously in the scenario where the three peers
spend 80% of the simulation time online. The number of

operations that actually need to be delivered belatedly because the
receivers are unreachable is depicted in Figure 6. The late-join
algorithm manages to update peers as soon as they are online
again. The curves include those operations that are cached by all
receivers that were online at the time they were issued (see
Section 5.2). On average, peer 1 stores 5.3 operations (peer 2: 7.2,
peer 3: 5.3) for the other peers, and it takes about 3.9 s (peer 2:
4.4 s, peer 3: 4.0 s) between generating and delivering a certain

peer 2

peer 1

peer 3

0 50 100 150 200 250 300

simulation time [s]
Figure 5: Online time of peers

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300

nu
m

be
r

of
 o

pe
ra

tio
ns

simulation time [s]

operations exchanged
operations in history of peer 1
operations in history of peer 2

Figure 4: Size of operations history

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

nu
m

be
r

of
 o

pe
ra

tio
ns

simulation time [s]

operations cached by peer 1
operations cached by peer 2
operations cached by peer 3

Figure 6: Number of undeliverable operations

7

operation4. These numbers increase considerably for the scenario
where peers are online for 50% of the simulation time: Peer 1
caches on average 25.4 operations (peer 2: 15.3, peer 3: 22.5) and
missed operations are transmitted 22.7 s (peer 2: 13.5 s, peer 3:
20.5 s) after they were issued. In the last scenario where peers are
online for only 20% of the simulation time, the first peer meets
the other peers only rarely. Consequently, peer 1 stores on average
107.4 operations for 60.6 s (peer 2: 80.4 operations for 22.8 s,
peer 3: 66.4 for 27.6 s). These numbers show that the state of a
shared object might diverge to a considerable degree when peers
are working offline for a longer period of time. The algorithm for
the distributed caching of missed operations most likely will
alleviate this problem, if the number of members of a shared
object increases. However, its performance also depends on the
work patterns of the members of a shared object.

7. LESSONS LEARNED AND DISCUSSION
Our design philosophy and usage scenarios were a major factor in
the decision of building a peer-to-peer system that would function
without much administrative overhead. The most challenging
aspect of this system is to make it work for asynchronous/offline
collaboration as well as for real-time collaboration. Our approach
builds upon an existing consistency mechanism for synchronous
collaboration. In Section 5.2, we discussed several strategies that
we implemented to make sure that this algorithm would also work
in case of asynchronous/offline work. They are based on
recovering the operations history after periods of offline/
asynchronous work. While our simulation results in Section 6
indicate that our system design works and performs adequately,
this approach has also some shortcomings.

The time for reaching a consistent state after periods of offline use
depends very much on the user behavior. In the worst case, local
states of a shared objects might diverge for a very long period of
time, e.g. if two users are alternating between being offline and
online. Each user works on a state that is not the current state and
then, after eventually merging the operations history, they might
see an unexpected result. This reflects a major problem of this
approach: While the state is now consistent for both users, the
machine cannot guess what their actual intention was when they
were independently modifying the shared objects. The algorithm
only makes sure that both can see the same end result. However,
for the user it is difficult to understand how the resulting state of
the object came to be. We believe that it is crucial to provide
some mechanisms that assist the user in this task. For example, the
application could animate parts of the history to visualize the
sequence of operations that led to the current state. Also, a user
should possibly be able to restore parts of its operations history
after consulting with the conflicting user.

There are also two more technical solutions that would alleviate
the aforementioned problem: Adding additional servers, which
cache operations and update late-joining peers, would help to
decrease the time between resynchronizations of states. Whenever
peers are connected to the system, their application can send
operations to the caching server, if the collaborating peers are
currently offline. When the other peers connect, they first contact
the caching server to collect missed operations. The drawback of
this approach is that it requires additional infrastructure that needs

4 Peers are offline at the end of all simulations (see Figure 5) and

operations that have not been delivered are not included in the
analysis of the delivery time span.

to be maintained. Another technical approach could be to put
more semantics into the consistency algorithm itself. The ordering
of operations in state vectors is based on sequence numbers, i.e.
when people work offline for long periods of time, the system
only looks at the sequence numbers to restore a consistent state.
But the sequence numbers do not reflect when operations actually
took place. If two users work offline at different times, ordering of
operations could be prioritized by the recency of the state change,
which would probably help users in better understanding the
resulting state after merging the operation histories. This could be
achieved either by using globally synchronized clocks as a means
for ordering (which again requires infrastructure) or, more
elegantly, by using a modified state vector scheme that
incorporates local time into the numbering.

It is also noteworthy that when we started this project, we were
not anticipating the complexity of such a peer-to-peer system
despite the fact that some of the authors of this paper had several
years of experience in developing distributed systems. The
implementation of only the consistency mechanisms took three
full person months. And, before starting to work on the peer-to-
peer aspects, we already had a server-based prototype available5.

When building a peer-to-peer system, the advantages of this
approach have to be carefully traded off against the benefits that a
server-based solution offers. We believe that there is no definite
answer to the question peer-to-peer or server-based. The design
philosophy and the user experience of our system require offline
use. Hence, we need replication of data to the local machine.
However, the aspect of offline use would also greatly benefit from
having a server that helps synchronize divergent copies of the
distributed state as discussed above. We are currently
investigating hybrid architectures that use servers for
resynchronization, caching, address resolution, and other useful
more lightweight services. While they hold a master copy of the
state, local applications would still communicate directly peer-to-
peer. In this topology, the server would be just another peer with a
different role. The presence of a server facilitates synchronization.
However, please note that even with a server, there is still a need
for consistency algorithms like the one described in Section 5.
When working offline, local replicas and operations need to be
merged with the master copy on the server. With some
modifications, the algorithms described earlier in this paper could
be also used in a hybrid architecture. We are aware that a hybrid
architecture again comes with the problem of an additional
infrastructure that needs to be introduced and accepted within an
organization, which may take a long time. In the meantime pure
peer-to-peer systems help paving the road to get there.

We believe that ultimately the user experience has to be peer-to-
peer. Email is actually a very good example for such a hybrid
system that feels peer-to-peer from a user’s perspective but is
implemented through a network of mail servers (that talk peer-to-
peer to one another). Most email clients today also support offline
use by keeping local replicas of their inboxes. However, email
does not support shared states and real-time collaboration and
thus does not face the consistency challenges like in our system.

This paper has mainly focused on the technical aspects of a
system that supports object-centric sharing. However, this new
paradigm also deserves and needs to be studied from an HCI

5 Our prototype is implemented in Java 1.4 using SWT/JFACE

user interface widgets from the Eclipse framework [8].

8

perspective. A usage study is currently underway, and we do not
want to anticipate results here. However, there is some
preliminary feedback that is worth mentioning. The system was
shown to more than 50 people through demos on three
consecutive days. We also used the system informally in our own
group for a period of six weeks for discussions and bug reporting
specific to the system itself.

Many people reported that the notion of activity-centric work is a
substantial part of their everyday work practices. They liked the
capabilities in our prototype that support this notion, such as
aggregating related items and seamlessly moving back and forth
between different modes of collaboration. While the design
philosophies of object-centric sharing and conversational
structure seem to resonate very well, people had some concerns
about our user interface design and other shortcomings that we
had not addressed then. Our user interface, for example, shows
tree-like structures the way they are stored in the system. We
envision that there are better ways of presenting and navigating
that information. More conversational interfaces that are
structured by time could help understanding the history of an
activity. People-centered views could help focus on who you want
to collaborate with and could display shared objects that relate to
a certain user or a group of users. A disadvantage of the tree-like
approach is also that this tree-hierarchy is forced on all users,
including newcomers who might not understand how to navigate
this structure. Whether this is a serious hindrance or not will be
determined by our on-going user evaluation.

Another major issue was the management of shared objects.
People reported that they are engaged in numerous lightweight
activities every day. They were concerned that the user interface
can easily become cluttered and that it would be hard to find
information in the tree. More work needs to be done to face this
challenge. Activities might grow quickly and evolve to agile,
more formal public spaces. We need to provide means so that
people can transform these to a shared workspace system. Many
activities though will never reach that state. So as a major desired
feature of our system, people were asking for some kind of
archiving mechanism that helps them getting completed stuff out
of their way in the tree, with the option of still having access to
the information for later perusal.

8. RELATED WORK
Our notion of activity-centric collaboration based on shared
objects has been inspired by previous work in this area. This
includes a variety of studies on email and activities, collaborative
improvements to email, and “peer-to-peer like” systems featuring
replicated or synchronous shared objects.

The use of email has been widely studied and research indicates
that email is the place where collaboration emerges (e.g. [7], [6],
[18], or [26]). Ducheneaut et al. [6] report on how people manage
work activities within their email, confirming Bernstein’s [3]
description of emerging group processes. Their findings include:
the outcome of an activity is often unpredictable, membership in
activities is fluid, activities can evolve from the informal to the
formal, and late-joiners of activities are poorly supported because
they have no access to the history.

A number of recent collaboration systems illustrate concepts
similar to activity threads. Rohall et al. [22] show how automatic
analysis of subject headers and reply-relationships in different
emails can group them into a coherent thread of messages. They
also present how carefully designed thread visualizations can

reduce inbox clutter. However, their threads are not shared, nor
do they reflect any collaborative activity beyond the exchange of
messages.

Bellotti et al. [1] introduce the notion of a “thrask” as a means for
better organizing email activities. Thrasks are threaded task-
oriented collections that contain different types of artifacts such as
messages, hyperlinks, and attachments and treat such content at an
equal level. Thrasks can be manually created, with contents
assigned by users to meaningful activities. While all of these
attributes are similar to our use of activity threads, thrasks are not
shared: they are private collections of related artifacts, whose
organization are specific only to the owner of the thrasks, and lack
any awareness of how others are manipulating the artifacts.

Along the same lines, Kaptelinin [13] presents a system that helps
users organize resources into higher-level activities (“project-
related pools”). The system attempts to include not just email, but
also any desktop application. It allows manual addition of
resources of any type but also monitors user activities and
automatically adds resources to the current activity. However, the
system has been designed for personal information management
only, not complete synchronous/asynchronous sharing and
awareness. Rohall’s and Kaptelinin’s work demonstrate semi-
automatic management of activities and their artifacts. This is
something we should investigate in our future work to help make
managing activity threads more lightweight.

Whittaker et al. [27] present five design criteria for lightweight,
informal interactions, which influenced the design of our
prototype: conversational tracking, rapid connection, ability to
leave a message, context management, and shared real-time
objects. Their work also emphasizes the importance of work-
related artifacts to help manage the history and context of
intermittent interactions: “Task-related documents can serve to
hold the context of multiple ongoing conversations”. The system
they present mainly focuses on threaded IM-like conversations
using “sticky notes” on the desktop.

A variety of collaborative systems implement replicated shared
objects and “collaborative building blocks” similar to our
prototype. One example is Groove [12], a peer-to-peer system
which features a large suite of collaborative tools (chat, calendar,
whiteboard, etc.) and email integration. However, Groove is
workspace-centric (although creation of shared workspaces is
quick), and collaboration is centered on the tools placed in the
workspace (e.g., all shared files appear in the shared files tool),
except for persistent chat which appears across all tools. In
contrast, our system focuses collaboration around artifacts, which
can be organized in a single connected hierarchy of different
types. While Groove’s design philosophy is different from ours,
the architecture is very alike. Their system has to deal with
problems similar to the ones described in Section 5. However, we
have no technical information to compare the two approaches.

Another example is Eudora’s Sharing Protocol [11], which offers
a replicated shared file architecture completely based on email and
leverages special MIME headers. Kubi Spaces [14] also offers
replicated shared objects, with a richer suite of object types,
including to-dos, contacts, and timelines. Microsoft Outlook [20]
has a server-based “shared email folder” capability. Lotus Notes
[17] offers a replicated object architecture, although typically
email objects are copies, not shared amongst different users. A
powerful benefit of these “shared email solutions” is that no
additional infrastructure beyond email is needed. However,
synchronization only occurs on a triggered refresh interval and

9

depends on a non-real-time message delivery between
intermediary email servers. Thus, collaboration is entirely
asynchronous (e.g., users cannot work simultaneously on a
whiteboard in real-time) with no real-time presence awareness.

9. CONCLUSION
We described a new collaboration technology that targets
lightweight collaborative activities sitting mid-way between ad
hoc communication in email and more formal collaboration in
shared workspace systems. As a major new design principle, we
introduced the notion of object-centric sharing, which allows
people to aggregate and organize shared objects into activity
threads, providing an emerging context that evolves and engages a
dynamic group of participants. Being “placeless,” our approach
imposes little overhead and allows for lightweight, ad hoc
collaboration. We are currently conducting a larger user study to
better understand the usefulness and usability of this new
approach. As part of our future work, we are also looking into
user interface improvements, better ways of managing activity
threads, and new shared object types that introduce more structure
and help evolving activity threads to shared workspaces.

This work focused on describing technical aspects and
implementation challenges of a peer-to-peer prototype system
supporting the notion of object-centric sharing. As an implication
of our design philosophy we need to maintain consistency in a
blended synchronous and asynchronous collaborative system. Our
approach enhances a popular consistency algorithm, which had
been originally designed for real-time collaboration. Our
preliminary simulation results indicate that this approach works
well. However, a major difficulty is that during long phases of
asynchronous work the application state might diverge
significantly. To alleviate this problem, we are currently looking
into improved versions of our consistency algorithm and we are
also investigating new hybrid architectures that use lightweight
caching servers to make the system more robust.

10. REFERENCES
[1] Bellotti, V., Ducheneaut, N., Howard, M., Smith, I., “Taking

Email to Task: The Design and Evaluation of a Task
Management Centered Email Tool,” in: Proc. ACM CHI
2003, Ft. Lauderdale, Florida, 2003, 345-352.

[2] Bellotti, V., Smith, I., “Informing the Design of an
Information Management System with Iterative Fieldwork,”
in: Proc. ACM DIS’2000, Brooklyn, New York, 2000, 227-
238.

[3] Bernstein, A., “How Can Cooperative Work Tools Support
Dynamic Group Processes? Bridging the Specifity Frontier,”
in: Proc. ACM CSCW’00, 279-288.

[4] Chu, Y., Rao, S.G., Seshan, S., Zhang, H., “Enabling
Conferencing Applications on the Internet using an Overlay
Multicast Architecture”, in: Proc. ACM SIGCOMM 2001,
San Diego, CA, August 2001.

[5] Dourish, P., Edwards, W.K., Lamarca, A., Salisbury, M.,
“Presto: An Experimental Architecture for Fluid Interactive
Document Spaces,” in: ACM Transactions on Computer-
Human Interaction, Vol. 6, No. 2, June 1999, 133-161.

[6] Ducheneaut, N., Bellotti, V., “A Study of Email Work
Activities in Three Organizations,” working paper, Parc. Inc.

[7] Ducheneaut, N., Bellotti, V., “E-mail as Habitat: An
Exploration of Embedded Personal Information
Management,” in: ACM interactions, 9(5), 2001, 30-38.

[8] Eclipse Project, “The Eclipse Platform Subproject”,
http://www.eclipse.org/platform/index.html

[9] Ellis, C.A., Gibbs, S.J., “Concurrency Control in Groupware
Systems”, in: Proc. ACM SIGMOD 1989, Portland, OR, May
1989, 399- 407.

[10] Erickson, T., Smith, D.N., Kellogg, W.A., Laff, M.,
Richards, J.T., and Bradner, E., “Socially Translucent
Systems: Social Proxies, Persistent Conversation, and the
Design of Babble,” in: Proc. ACM CHI 1999, 1999, 72-79.

[11] Eudora, “Eudora Sharing Protocol (ESP)”,
http://www.eudora.com/email/features/esp.html

[12] Groove Networks, http://www.groove.net

[13] Kaptelinin, V., “UMEA: Translating Interaction Histories
into Project Contexts,” in: Proc. ACM CHI 2003, Ft.
Lauderdale, Florida, 2003, 353-360.

[14] Kubi Software, http://www.kubisoft.com

[15] Lamport, L., “Time, Clocks, and the Ordering of Events in a
Distributed System”, in Communications of the ACM, 21(7),
July 1978.

[16] LimeWire and Gnutella, http://www.limewire.com

[17] Lotus Notes, http://www.lotus.com/notes

[18] Mackay, Wendy E., “More Than Just a Communication
System: Diversity in the Use of Electronic Mail,” in: Proc.
ACM CSCW’88, Portland, Oregon, 1988, 344-353.

[19] Mauve, M., “Consistency in Continuous Distributed
Interactive Media”, in: Proc. ACM CSCW 2000,
Philadelphia, PA, December 2000.

[20] Microsoft Outlook, http://www.microsoft.com/outlook/

[21] Project JXTA , http://www.jxta.org

[22] Rohall, S. L., Gruen, D., Moody, P., Kellerman, S., “Email
Visualizations to Aid Communications,” in: Proc. IEEE
InfoVis 2001, San Diego, CA, October 22-23, 2001.

[23] Sun, C., Jia, X., Zhang, Y., Yang, Y., Chen, D., “Achieving
Convergence, Causality Preservation, and Intention
Preservation in Real-Time Cooperative Editing Systems”, in:
ACM Transactions on Computer-Human Interaction, Vol. 5,
No., 1, March 1998, 63-108.

[24] Vogel, J., Mauve, M., “Consistency Control for Distributed
Interactive Media”, in: Proc. ACM Multimedia 2001,
Ottawa, Canada, September 2001.

[25] Vogel, J., Mauve, M., Geyer, W., Hilt, V., Kuhmuench, C.,
“A Generic Late Join Service for Distributed Interactive
Media”, in: Proc. ACM Multimedia 2000, Los Angeles, CA,
November 2000, 259 – 268.

[26] Whittaker, S., Sidner, C., “Email Overload: Exploring
Personal Information Management of Email,” in: Proc. ACM
CHI’96, 1996, 276–283.

[27] Whittaker, S., Swanson, J., Kucan, J., Sidner, C.,
“TeleNotes: Managing Lightweight Interactions in the
desktop,” in: ACM Transactions on Computer-Human
Interaction, Vol. 4, No. 2, June 1997, 137-168.

10

