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Abstract—As distributed systems continue to grow in size
and complexity, scalable and cost-efficient techniques are
needed for performing tasks such as problem determination
and fault diagnosis. In this paper, we address these tasks
using probes, or test transactions, which replace traditional
“passive” event-correlation techniques with a more active,
real-time information-gathering approach. We provide a the-
oretical foundation and a set of practical techniques for im-
plementing efficient probing strategies - the main issue is
minimizing the cost of probing while maximizing the diag-
nostic accuracy of the probe set. We show that finding an
optimal probe set is NP-hard and devise polynomial-time ap-
proximation algorithms that demonstrate excellent empirical
performance, even on large networks. We also implement an
active, on-line probing strategy that yields a significant re-
duction in the probe set size.

I. I NTRODUCTION

Accurate diagnosis and prediction of unobserved states
of a large, complex, multi-component system by making
inferences based on the results of various tests and mea-
surements is a common problem occurring in practice. Nu-
merous examples include medical diagnosis, airplane fail-
ure isolation, systems management, error-correcting cod-
ing, and speech recognition. Achieving high diagnostic
accuracy may require performing a large number of tests,
which can be quite expensive. Thus, our goal is developing
cost-efficient techniques for real-time diagnosis in complex
distributed systems, so that high accuracy can be achieved
with a small number of tests.

The key component of our approach is an “active” mea-
surement approach, calledprobing, instead of more “pas-
sive” data-analysis techniques. A probe is a test transaction
whose outcome depends on some of the system’s compo-
nents; accurate diagnosis can be achieved by appropriately
selecting the probes and analyzing the probe outcomes. Our
main contribution is in providing a theoretical foundation
and a set of practical techniques for implementing efficient
probing strategies.

Although our methods are quite generic and are applica-
ble to a wide variety of problem areas, we will focus specif-
ically on the area of distributed systems management. The
rapid growth in size and complexity of distributed systems
makes performance management tasks such as problem de-
termination – detecting system problems and isolating their

root causes – an increasingly important but also extremely
difficult task. For example, in IP network management, we
would like to quickly identify which router or link has a
problem when a failure or performance degradation occurs
in the network. In the e-Commerce context, our objective
could be to trace the root-cause of unsuccessful or slow
user transactions (e.g. purchase requests sent through a web
server) in order to identify whether it is a network problem,
a web or back-end database server problem, etc. Another
example is real-time monitoring, diagnosis and prediction
of the “health” of a large cluster system containing hun-
dreds or thousands of workstations performing distributed
computations (e.g., Linux clusters or GRID-computing sys-
tems).

Two general approaches are commonly used for problem
determination. The first isevent correlation([1], [2], [3]),
in which every managed device is instrumented to emit an
alarm when its status changes. By correlating the received
alarms a centralized manager is able to identify the prob-
lem. However, this approach usually requires heavy instru-
mentation, since each device needs to have the ability to
send out the appropriate alarms. Also it may be difficult
to ensure that alarms are sent out, e.g. by a device that is
down. To avoid these problems, which arise from using
a fixed, “passive” data-gathering approach, a more active
probing technologyhas been developed, which allows one
to “ask the right questions at the right time” in order to
provide more accurate and cost-efficient problem determi-
nation.

A. Probing Technology

In the context of distributed systems management, a
probe is a program that executes on a particular machine
(called a probe station) by sending a command or trans-
action to a server or network element and measuring the
response. Theping program is probably the most popular
probing tool that can be used to detect network availabil-
ity. Other probing tools, such as IBM’s EPP technology
([4]), provide more sophisticated, application-level probes.
For example, probes can be sent in the form of test e-mail
messages, web-access requests, and so on. Generally a dis-
tributed system (as well as many other applications) can be
represented by a logical “dependency graph”, where nodes
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Fig. 1. Probing Technology.

are either hardware elements (e.g., workstations, servers,
routers, links) or software components and services, and
links can represent both physical and logical connections
between the elements.

Figure 1 shows a simple example of a distributed sys-
tem with two probe stations, A and B, that send probes in
some scheduled way. The probes test particular services,
e.g., IP-connectivity, web-access to server SV1A, database
access to server SV1B, which in turn depend on back-end
database server SV2 and the availability of a particular
database (“service” SV3). The probes go through partic-
ular network elements and problem diagnosis is performed
by analyzing the results of different probes. For example, if
two probes fail (e.g. the two shown in Figure 1), that may
indicate a failure in some element that is common to both
of them.

Probing technology has many advantages; it does not re-
quire extra instrumentation and works with any server that
takes user transactions. It is very flexible; a probe station
can be placed in any location with network access and can
target multiple components. However using probes im-
poses costs, because of the additional network and server
load and the need to collect, store and analyze probe re-
sults. It is important to control these costs in order to use
probes effectively.

B. Pre-planned and Active Probing

In this work, we discuss using probing technology for the
purpose of problem determination. We consider two basic
approaches. In the first approach, a set of probes is selected
and scheduled to run periodically. Problem determination
is performed by analyzing the probe results. We call this
approachpre-plannedprobing.

In the second approach, a set of probes is selected to run
periodically as before, but only for the purpose ofdetecting
when a problem occurs. Whenever occurrence a problem is
detected by one or more of the probes, additional probes
are sent out to obtain further information about the prob-
lem, and this process may repeat - as more data is obtained,

decisions are made as to which probes to send next, until
finally the problem is completely determined. We refer to
this approach asactive probing.

In both approaches, a critical problem is how to select
probes. In the first approach, the set of probes must be pre-
selected so that, no matter what problem occurs, the prob-
lem can be completely determined from the probe results
without obtaining any additional information. In the sec-
ond approach, we need to pre-select probes that can detect
when problems occur, and in the active probing phase we
need to determine which probe to send next, given what has
been observed so far. To achieve cost-effective diagnosis,
the size of the probe set should be minimized while pro-
viding wide coverage in order to locate or detect problems
anywhere in the network.

C. Contributions

Probing technology is currently used for the purposes of
quality of service measurement, and in practice probe se-
lection is done using rather ad-hoc methodologies. This
paper makes the following contributions:

1) We formulate the probe selection problem for prob-
lem determination in a general framework and show
that both fault detection and fault localization are NP-
hard.

2) We develop linear and polynomial-time approxima-
tion algorithms which utilize information-theoretic
estimates of probe set quality, and show empirically
that they find near-optimal probe sets.

3) We develop an algorithm for active probing and
demonstrate the advantages of using it over pre-
planned probing.

The outline of the paper is as follows. In Section II we
introduce the basic concepts and in Section III we formu-
late the fault detection and localization problems precisely.
Section IV shows that these problems are NP-hard and de-
velops an information-theoretic measure of the quality of a
probe set. Section V utilizes this measure to develop ap-
proximation algorithms which are practical for large net-
works and shows experimentally that they find near-optimal
probe sets. Section VI investigates how to handle noise.
Section VII considers the active probing scenario, where
the selection of later probes depends on the results of ear-
lier probes. Section VIII discusses related work and then
we conclude.

II. N OTATION

Our formulation is a general one that applies to any situ-
ation in which tests, or probes, can be used to gain informa-
tion about the state of objects that are connected together or
are dependent on one other. Networks serve as a convenient
illustrative example.



3

A. Faults

We assume there is a finite setO of objects each of which
can be in one of two states,“up” , i.e. functioning correctly,
or “down” , not functioning correctly. Afault can be any
subsetf ⊆ O. A fault f occurs ifall the objects inf are
down. If f is the empty set, then “occurrence” of the fault
f corresponds to no problem - all objects are functioning
correctly.

As an example, suppose we wish to detect problems in a
network. A fault may be that a particular node or link (or
combination of nodes and links) is down. For example, one
fault may be{node 1}; this fault occurs if node 1 is down
(whether or not any other node is up or down). Another
fault might be{node 1, node 2}; this fault occurs if node 1
and node 2 are both down. Thus specification of the faults
depends on many details of the situation and what problems
we are interested in detecting.

B. Probes

A probe is a method of obtaining information about ob-
jects inO. We think of a probe as testing objects to deter-
mine whether or not they are up or down. Thus we regard a
probe also as a subsetp ⊆ O.

The occurrence of a fault affects some probes, while
other probes remain unaffected. A probep is affected by
a fault f if p tests any of the elements off ; i.e. there is
some element inf that is also inp:

A fault f affectsa probep if f
⋂

p 6= φ.

In a network, the “objects” may be physical entities such
as routers, servers, and links, or logical entities such as soft-
ware components, database tables, etc. Probes are issued
from machines, called probe-stations, where probing soft-
ware is installed, and traverse the network, testing the avail-
ability and performance of the various objects. Probes can
be low-level ping probes, or higher level test transactions
such as web access, e-mail, etc. Each probe may depend
on, and thus tests the functioning of, a wide variety of dif-
ferent objects in the network.

Thus there is alogical network associated with, but dis-
tinct from, the physical network. Nodes in the logical net-
work represent objects in the physical network; thus links in
the physical network can appear as nodes in the logical net-
work. Links in the logical network represent dependencies
between objects in the physical network. When we refer to
“nodes” in our network examples, we will be referring to
the logical network.

In a noise-free environment, if a probe is successful, then
every node it passes through must be up; conversely, if a
node is down then any probe which passes through that
node fails to return. The probe-station detects whether or
not the probe returns successfully. A probe fails to return if
it passes through any failed node.

Fig. 2. An example network with two probes.

C. Dependency Matrix

At this point it is convenient to introduce the notion
of a dependency matrix to capture the relationships be-
tween faults and probes. Given any set of faultsF =
{f1, f2, ..., fn} and probesP = {p1, p2, ..., pr}, the depen-
dency matrixDP,F is given by:

DP,F (i, j) = 1 if fault fj affects probepi

= 0 otherwise.

DP,F is anr-by-n matrix, wherer = |P | andn = |F |.
Each row ofDP,F represents a probe and each column rep-
resents a fault. Letcj denote thejth column ofDP,F - cj

is theprobe “signal” of fault fj ; it gives the results of the
probes when only faultfj occurs.

Example:To illustrate these ideas, consider the example
network shown in Figure 2, with simple ping probes. Probe
Pij denotes a probe sent from nodeNi to nodeNj along the
shortest path between the 2 nodes. For example, probeP15

follows the pathN1 → N2 → N5 while probeP16 follows
the pathN1 → N3 → N6.

Suppose we wish to be able to detect and localize a single
failure occurring in any of the nodes, or no failure anywhere
in the network. In this casefi = {Ni}, i =1 to 6, and
f7 = φ = the empty set. Then the dependency matrix will
contain one column for each node, as well as an additional
column forf7, no failure anywhere in the network.

For this example let the probe-stations be nodesN1 and
N4, and suppose that a probe can be sent from each probe-
station to any node along the shortest path between them.
The resulting dependency matrix is shown in Figure 3. For
each probe (row), there is a 1 in each node (column) that the
probe passes through, since each probe can detect a failure
in any node that it passes through.

III. PROBLEM FORMULATION

We assume that the faultsF we wish to be able to detect
and the collection of probesP that are available for use are
given. We are interested in finding small sets of probes for
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Fig. 3. The dependency matrix for the network in Figure 2.

the following two tasks:detecting whether or not a fault
occurs, andlocalizing any fault that occurs, i.e. determin-
ing whichf ∈ F has in fact occurred. The final probe set
must be a subset of the collection of probesP .

The tasks of fault detection and fault localization are im-
portant for the pre-planned and active probing strategies
outlined in Section I-B. In one scenario fault localization
is performed using only a pre-planned probe set; in the sec-
ond scenario fault localization is performed by first using a
pre-planned probe set for fault detection, and then sending
additional probes using active probing to localize the fault.

A. Fault Detection

The task of fault detection is to find the smallest subset
P ′ of the probe setP such that, if any (non-empty)f ∈ F
occurs, there is some probep ∈ P ′ that is affected byf .
This can be formulated in terms of the dependency matrix:

Detection: GivenDP,F , find P ∗ that minimizes|P ′|,
whereP ′ ⊆ P such that there is at least one 1 in every

column ofDP ′,F .

By monitoring the probes we will know, as soon as a
probe fails to return, that there is a problem somewhere in
the network, but we may not know exactly what the prob-
lem is.

B. Fault Localization

The task of fault localization is to find the smallest set of
probes such that, if anyf ∈ F occurs, we can determine,
from the return values of all the probes, exactly which fault
has occurred. Note that we are assuming that only one fault
occurs at a time; however, a fault may represent the simul-
taneous failure of one or more objects. We also assume that
objects do not change state (from up to down or vice-versa)
while probing is taking place.

Fault localization requires finding the smallest probe set
such that every fault has a unique probe signal, since in that
case exactly which fault has occurred can be determined
from the probe results. Since the probe signal of faultfj

is the columncj of DP,F , each fault has a unique probe
signal if and only if each column inDP,F is unique; i.e.
differs from every other column. Since two columnsci, cj

differ if and only if there is some entry where one of them
has the value 1 while the other has the value 0 (i.e. there is
some probe which is affected by one of the faults but not the
other), fault localization can be expressed using the number
of non-zero elements, denoted bynij , in ci

⊕
cj , where

⊕
denotes exclusive-OR:

Localization: GivenDP,F , find P ∗ which minimizes|P ′|,
whereP ′ ⊆ P satisfies∀fi, fj ∈ F, nij ≥ 1.

Since fault detection only requires finding the smallest
probe set such that every fault has a nonzero, but not nec-
essarily unique, signal, clearly fault localization requires a
larger probe set than fault detection.

Example: Returning to the example of Figure 3, fault
detection requires finding the smallest number of rows such
that every column (excluding, of course,f7) has at least one
1. In this example, this means the smallest set of probes
which pass through every node, so that, no matter which
node fails, there is a probe that will detect it. The following
set of 2 probes suffices:

f1 f2 f3 f4 f5 f6

p16 1 0 1 0 0 1
p45 0 1 1 1 1 0

Since no single probe passes through all the nodes, this
is clearly a smallest subset for fault detection. However
this set fails for the task of fault localization because, for
example, failures in nodesN1 and N6 cannot be distin-
guished from each other - they generate the same signal,
since their columns are identical. However the following
set of 3 probes is a minimal set for fault localization:

f1 f2 f3 f4 f5 f6 f7

p15 1 1 0 0 1 0 0
p16 1 0 1 0 0 1 0
p42 0 1 1 1 0 0 0

Note that the “fault”f7, denoting no failure anywhere
in the network, is included here, because we want its col-
umn to be unique, as well as the columns of each individual
node failure. Since all 7 columns are unique, the results of
these 3 probes allow us to determine exactly which node
has failed. For example, ifp15 andp16 both fail butp42

succeeds, then we infer that nodeN1 has failed.

IV. A NALYSIS

We now show that the tasks of fault detection and fault
localization are NP-hard. We then define a measure of the
quality of a probe set that will be useful in developing ap-
proximation algorithms.
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A. NP-hardness

We are given a set of faultsF = {f1, . . . , fn}, a col-
lection P = {p1, . . . , pr} of probes (and thus ther × n
dependency matrixDP,F = {dij} with dij = 1 if probepi

intersects faultfj and 0 otherwise). A set of probescov-
ersa fault if at least one of the probes in the set is affected
by the fault. We want to find the smallest subset ofP that
covers all ofF . The corresponding decision problem is to
determine, givenDP,F and some positive integerk ≤ r,
whetherP contains such a covering subset of size at most
k. We call this decision problemFAULT DETECTION.

Proposition 1: FAULT DETECTION is NP-hard.
Proof: FAULT DETECTION is precisely theM INI -

MUM SET COVER problem, which is known to be NP-
hard [5].

Given a set of faultsF , a collection of probesP , and a
positive integerk ≤ r, we want to determine whetherP
contains a subcollectionP ′ of size at mostk such that for
every pair of distinct faultsf1, f2 ∈ F , there is a probe
p ∈ P ′ that intersects exactly one off1 andf2 (thusp dis-
tinguishes betweenf1 andf2); or equivalentlyP ′ is such
that the columns of the dependency matrixDP ′,F are all
unique. We call this decision problemFAULT LOCALIZA -
TION.

Proposition 2: FAULT LOCALIZATION is NP-hard.
Proof: FAULT LOCALIZATION can be shown to be

NP-hard via a reduction from3-DIMENSIONAL MATCH-
ING. This problem (see [6]) is however not very well-
known, so it is instructive to reduceFAULT LOCALIZATION

from FAULT DETECTION. Intuitively, FAULT LOCALIZA -
TION is a harder problem thanFAULT DETECTION. How-
ever, because for any given instance the optimal solutions
of these two problems can be very different, the proof is not
straight-forward; the details can be found in the Appendix.

B. Localization Decomposition of a Probe Set

To develop polynomial-time algorithms that can approx-
imate the probe subset of minimal size, we will define a
measure which estimates the quality of a probe set. We
will focus on the more difficult fault localization problem;
similar ideas can be applied to the fault detection problem.

The quality of a probe set can be measured using the
amount of information provided by the probe set about
which fault has occurred. Given a dependency matrix
DP,F , faults inF that have the same column generate the
same probe signal when they occur, and hence cannot be
distinguished by the probe setP . For any faultsfi, fj ∈ F ,
definefault indistinguishability as:

fi ∼ fj if ci = cj , whereci is theith column ofDP,F .

Fault indistinguishability is an equivalence relation and
hence induces a decomposition ofF into an exhaustive col-
lection of disjoint subsets, which we denote bySP,F and
call the localization decompositionof P . Thus, if there
arek distinct columns inDP,F ,

SP,F = {Gi|i = 1 to k}, wherefj ∈ Gi if and only if cj is
identical to theith distinct column ofDP,F .

Example: Consider the dependency matrix correspond-
ing to the probe setP of Figure 2:

f1 f2 f3 f4 f5 f6 f7

p15 1 1 0 0 1 0 0
p16 1 0 1 0 0 1 0

In this example the localization decomposition is:

SP,F = {{f1}, {f2, f5}, {f3, f6}, {f4, f7}}
Recall thatfi = {Ni}, i =1 to 6,f7 = no failure. Thus this
decomposition reflects the facts that: Ifp15 andp16 both
fail, this indicates a failure inN1 (because both probes pass
through it); if p15 fails while p16 succeeds, this indicates a
failure in eitherN2 or N5; if p15 succeeds whilep16 fails,
this indicates a failure in eitherN3 or N6; finally if p15 and
p16 both succeed, this indicates a failure in eitherN4 or no
failure.

The localization decomposition can be used to find the
best probe to add to the current probe set. In this example
we seek a third probe that will further decompose each of
the 2-element subsets ofSP,F into singleton sets. To do this
we need a probe that passes through one of the 2 elements
in each subset ofSP,F but not the other. Examining the
dependency matrix of Figure 3 shows that probep42 does
this, giving the following probe setP ′:

f1 f2 f3 f4 f5 f6 f7

p15 1 1 0 0 1 0 0
p16 1 0 1 0 0 1 0
p42 0 1 1 1 0 0 0

Since all the columns are unique, all faults can be localized:

SP ′,F = {{f1}, {f2}, {f3}, {f4}, {f5}, {f6}, {f7}}
Since each probe either succeeds or fails (we do not con-

sider utilizing the actual value of the probe round-trip time),
a set ofr probes can generate no more than2r different
probe signals. Hence at leastdlog ne probes are needed to
localize a set ofn faults. Thus the above set is minimal,
because 7 faults require at leastdlog 7e = 3 probes. How-
ever in general the minimal probe set may be considerably
larger, depending on which probes are available. Details of
network structure, network routing, probe-station location,
and so on may affect the set of available probes.
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C. Localization Quality of a Probe Set

We define thelocalization quality Q(P, F ) of a set of
probesP for the task of fault-localization of a setF of
faults in terms of the amount of informationP provides
concerning which fault inF has occurred. IfX andY are
random variables taking valuesx1, ..., xn, y1, ..., ym, then
from information theory (see [7]) we have:

Entropy:H(X ) = −∑n
i=1 p(X = xi) log p(X = xi)

Conditional entropy:
H(Y|X ) =

∑n
i=1 p(X = xi)H(Y|X = xi)

Conditional entropy is the expected value of the entropies
of the conditional distributions, averaged over the condi-
tioning variable.

Now letF be the random variable denoting the fault;F
has some prior probability distribution specifyingp(F =
fi) for eachfi ∈ F. The localization decompositionSP,F

is a collection of groups{G1, ..., Gk}, where each group
Gi contains the faults that cannot be distinguished from one
another byP . LetG be the random variable denoting which
group ofSP,F contains the fault. Then we define thelocal-
ization quality of P as theconditional entropy H(F|G):

Q(P, F ) = H(F|G)

Since the mutual information I(F ;G) satisfies
I(F ;G) = H(F) − H(F|G) (see [7]), we can think
of localization quality as measuring the amount of addi-
tional information needed to localize the fault, beyond
the information provided by the probe setP . Thus lower
values ofQ(P, F ) correspond to better probe sets.

The following proposition illustrates the use of this mea-
sure:

Proposition 3: If faults are independent and equally
likely, then Q(P, F ) =

∑k
i=1

ni
n log ni, whereni is the

number of faults in groupGi of SP,F , andn = |F |.
Proof:

If faults are independent and equally likely, then:

p(G = Gi) = ni/n (1)

p(F = fj |G = Gi) = 1/ni if fj ∈ Gi (2)

= 0 otherwise (3)

Hence:

Q(P, F ) = H(F|G)

=
k∑

i=1

p(G = Gi)H(F|G = Gi)

(by definition of conditional entropy)

=
k∑

i=1

p(G = Gi)[−
n∑

j=1

p(F = fj |G = Gi)

log p(F = fj |G = Gi)]
(by definition of entropy)

=
k∑

i=1

ni

n
[−

ni∑

j=1

1
ni

log
1
ni

]

(using (1), (2) and (3))

=
k∑

i=1

ni

n
log ni

This expression has a natural interpretation. Since there
areni faults in groupGi, at leastlog ni additional probes
are needed to localize all the faults inGi. Since a ran-
dom fault lies inGi with probabilityni/n, the localization
qualityQ(P, F ) is simply the expected minimal number of
additional probes needed to completely localize the fault.
Note that lower values forQ(P, F ) correspond to better
probe sets, and thatQ(P, F ) = 0 ⇔ ni = 1∀i ⇔ all
faults are localizable.

Example::Suppose probe setP1 induces the decomposi-
tion S1 = {{f1, f2}, {f3, f4}} while probe setP2 induces
the decompositionS2 = {{f1}, {f2, f3, f4}}. AlthoughP2

can uniquely localize one fault andP1 cannot, it is possible
to add just a single probe toP1 and diagnose all the faults,
whereas at least two additional probes must be added toP2

before all faults can be diagnosed. Therefore,P1 is a better
probe set thanP2.

The localization quality reflects this:

Q(P1, F ) =
1
2

log 2 +
1
2

log 2 = log 2 = 1,

Q(P2, F ) =
1
4

log 1 +
3
4

log 3 =
3
4

log 3 = 1.19.

V. A LGORITHMS FORFINDING THE M INIMAL PROBE

SET

We now examine algorithms for finding the minimal
probe set for fault localization. Exhaustive search is im-
practical for large networks because the problem is NP-
hard, so approximation algorithms must be considered. We
present a quick (linear-time) “subtractive” search algorithm
and a family of “greedy search” algorithms requiring poly-
nomial time. An experimental comparison of the algo-
rithms is presented in Section D.
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The algorithms require computing the localization qual-
ity of probe sets, so we first describe how to do this effi-
ciently.

A. Computing the Localization Decomposition

The localization decompositionSP,F is an exhaustive
collection of disjoint sets, each containing the faults inF
whose columns inDP,F are identical. Comparing each col-
umn with every other column requiresO(n2r) time, where
r = number of probes (rows) andn = number of faults
(columns). The decomposition can be computed in only
O(nr) time by proceeding row-by-row - the idea is that
adding a row (i.e. a probe) results in a more extensive de-
composition, because faults in distinct groups remain dis-
tinguishable; an additional probe only has the effect of dis-
tinguishing previously indistinguishable faults.

Input: Dependency matrixDP,F , with rows
p1, p2, ..., pr

Output: Localization decompositionSP,F

Algorithm:
S0 = {{f1, f2, ..., fn}}
For each probepi

Si = φ
For eachG in Si−1

G0 = {f ∈ G|D(i, j) = 0}
If G0 6= φ, Si ← Si

⋃{G0}
G1 = {f ∈ G|D(i, j) = 1}
If G1 6= φ, Si ← Si

⋃{G1}
OutputSr

Computing the localization decompositionSP,F

The algorithm is shown above. At any stepi, Si repre-
sents the localization decomposition resulting from the first
i probes. The(i + 1)th probepi+1 decomposes each setG
in Si into 2 subsetsG0 andG1, depending on which faults
in G affectpi+1. G0 andG1 are added as elements toSi+1,
if they are non-empty. Note that there can never be more
thann = |F | sets inSi, because the decomposition cannot
proceed beyond{{f1}, {f2}, ..., {fn}}.

Example:In the example of section IV-B, the first probe
is:

f1 f2 f3 f4 f5 f6 f7

p15 1 1 0 0 1 0 0

This yields:

S1 = {{f1, f2, f5}, {f3, f4, f6, f7}}
Then consider the second probe:

f1 f2 f3 f4 f5 f6 f7

p16 1 0 1 0 0 1 0

This further decomposes each subset ofS1 according to
whether the corresponding entry is 1 or 0. This yields:

S2 = {{f1}, {f2, f5}, {f3, f6}, {f4, f7}},
and so on.

B. Quick Search

Quick search starts with the initial set ofr probes, con-
siders each probe in turn, anddiscards it if it is not needed;
i.e. if the localization quality remains the same even if it
is dropped from the probe set. This process terminates in
a subset with the same localization quality as the original
set but which may not necessarily be of minimal size. The
running time is linear in the size of the original probe set,
because each probe is considered only once.

Input: Dependency matrixDP,F , with rows
p1, p2, ..., pr

Output: Probe SetP ′ (possibly non-minimal size)
Algorithm:

P ′ = {p1, p2, ..., pr}
For i = 1 to r

If SP ′\pi,F = SP,F , P ′ ← P ′\pi

OutputP ′

Quick Search discards any unnecessary probe (O(r) time)

The order of the initial probe set is quite important for
the performance of this algorithm. Ordering the probes by
probe station may reduce the opportunity of exploiting in-
teractions among probes from different probe stations. The
size of the final probe set can be reduced by randomly or-
dering the initial probe set, or ordering it by target node.

C. Greedy Search

Another approach is a greedy search algorithm. The sim-
plest version of this algorithm is to add probes to the probe
set one-by-one; at each step add the probe that results in
the “most informative” probe set, using the quality measure
Q(P, F ) defined above. Continue until all faults can be lo-
calized or until the localization quality of the original probe
set is achieved. The running time of this algorithm isO(r2),
wherer is the size of the original probe set, because at each
step the localization quality achieved by adding each of the
remaining probes must be computed. The resulting probe
set is not necessarily optimal because of the greedy nature
of the search.
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Input: Dependency matrixDP,F , with rows
p1, p2, ..., pr

Output: Probe SetP ′ (possibly non-minimal size)
Algorithm:

P ′ = φ = empty set
While SP ′,F 6= SP,F

p∗ = argminp∈P\P ′Q(P ′⋃{p}, F )
P ′ ← P ′⋃{p∗},

OutputP ′

Greedy Search adds the best probe at each step (O(r2)
time)

This approach can be extended by adding at each step
the best remaining subset oft probes, for any fixedt. The
overall running time is easily seen to beO(rt+1). (Actually
near the end of this process one must consider all subsets
of t or fewer probes, to prevent adding probes that are un-
necessary, but this doesn’t change the essential results.) Of
course the larger the value oft, the closer the probe set will
be to the optimal one, but the longer the computation time
required. (The above algorithm is the caset = 1.)

D. Experiments

This section describes the empirical behavior of the min-
imum probe set size and the performance of the approxi-
mation algorithms. The main result is that the algorithms
find a probe set which is very close to the true minimum set
size, and can be effectively used on large networks where
exhaustive search is impractical.

For each network sizen, we generated twenty random
networks withn nodes by randomly connecting each node
to four other nodes. Each link is given a randomly gener-
ated weight, to reflect network load. The probe stations are
selected randomly. The available probes follow the least-
cost path from each probe station to each node.

The faults we are interested in diagnosing are any single
node being down or no failure anywhere in the network.
We assume that each node has the same prior probability of
failure, and that there is no noise in the probe results. Note
that in this casen probes are sufficient, because one can
always use just one probe-station and probe every single
node. Thus we expect that the minimal number of probes
should lie betweenlog n andn.

Exhaustive search is performed to find the true minimum
size probe set. Then the linear-time quick search algorithm
and the quadratic-time greedy search algorithm are used to
find probe sets.

Figure 4 shows the average probe set size, for the case
of three probe stations. The minimal probe set size lies be-
tweenlog n andn, as expected. The minimal size is always
larger than the theoretical lower bound oflog n, for three
reasons:

Fig. 4. Algorithms for Computing Probe Sets: True Minimum and Two
Approximation Algorithms on Small Networks

Fig. 5. The Approximation Algorithms on Large Networks.

• The networks are not very dense; the number of edges
increases only linearly with network size. Thus many
probe paths are simply not possible.

• Since the probes follow the least-cost path from probe
station to node, the probe paths tend to be short, pass-
ing through few nodes. This reduces the opportunities
for exploiting interactions between probe paths.

• The probe stations are selected randomly - a better
placing of probe stations would produce fewer probes.

The results also show that the approximation algorithms
perform well; the size of the probe set is much closer to the
true minimum than to the upper bound. Figure 5 illustrates
the performance of these algorithms on larger networks for
which exhaustive search is not feasible. The greedy algo-
rithm slightly outperforms the linear-time algorithm, but its
quadratic computational cost is higher. An alternative ap-
proach is to run the linear-time algorithm many times with
different initial orderings and take the best result.

VI. N OISE

So far we have assumed a noise-free environment in
which all the probe results are received correctly. In prac-
tice we cannot expect this to be the case; a probe may fail
even if there is no fault anywhere along its intended path, or
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Fig. 6. Probing Scenarios.

a probe may succeed even if there is a fault on its path, e.g.
because dynamic routing sends it along a different path.

Noise can be handled by expanding the probe set, in two
fundamentally different ways - in space or in time. For ex-
ample, suppose up tom probe results may be incorrectly
received. In this case faults are defined to be equivalent if
their probe signals differ in no more than2m + 1 places; if
nij is the number of non-zero elements inci

⊕
cj , where

ci is theith column ofDP,F , and
⊕

denotes exclusive-OR,
then:

fi ∼ fj if nij ≥ 2m + 1.

The choice of2m + 1 ensures that when the probe signal
is received, even if the results ofm probes are incorrect,
there is only one column in the dependency matrix which
is within Hamming distancem of the probe signal. Hence
the fault can be uniquely localized, despite the noise. Of
course the probe set size will increase asm increases.

Expanding the probe set in time refers to sending the
same probes repeatedly and assuming that a probe result
is valid if the probe yields the same result some number
of times; transient probe results are assumed to be the re-
sult of noise. More complex models to handle noise can
be developed; e.g. Bayesian networks are used in some of
our other work, which provides some theoretical bounds on
the diagnosis error and the number of probes required for
asymptotically error-free diagnosis. ([8]).

VII. A CTIVE PROBING

Here we extend the probing paradigm to allow forac-
tive probing. In this scenario the selection of later probes
depends on the results of earlier probes. One decides in
real-time which probes to send based on the current assess-
ment of the network; after the probe results are received,
one decides which further probes are needed, and so on.
The advantage of this approach is that fewer probes can be
used than if the entire probe set has to be pre-planned.

Two probing strategies are illustrated in Figure 6. In the
active probing scenario, a pre-planned probe set is used that

candetect that a fault has occurred; localizing the fault -
determining which fault has occurred - is then achieved by
sending additional probes in an active mode. In the pre-
planned, or “passive”, scenario the entire probe set must be
pre-planned so that it can determine exactly which fault has
occurred.

A. Analysis

A pre-planned probe set for complete localization will
always be larger than a probe set that is used for detection
only, and so the time from fault occurrence (t0 in Figure
6) to fault localization (tP in Figure 6) will be larger than
the time from fault occurrence to detecting that a fault has
occurred somewhere (t1 in Figure 6). However the impor-
tant question is whether the combination of pre-planning
for detection and then using active probing for localization
is better or worse than pre-planning for localization; i.e. is
tP larger or smaller thantA?

The following analysis indicates the issues involved. Let
nP be the number of probes needed for fault localization
using pre-planned probing, andnD the number needed for
fault detection; we know thatnD ≤ nP . Probing is per-
formed by sending probes at intervals, which may be sched-
uled either periodically or randomly. SupposeM probes
are sent simultaneously at any time, andτ1 is the average
time between probing intervals. Assume for simplicity that
in active mode only one probe is sent at a time; as soon as
that probe returns, the next probe to send is determined and
sent, and so on. LetnA be the number of probes needed in
the active phase to localize the problem andτ2 the average
time between these probes.

Then (assumet0 = 0 for convenience):

tP ∼ (nP /M)τ1

tA ∼ (nD/M)τ1 + nAτ2

In practical applicationsτ1 À τ2. This is becauseτ1 is
the average time between intervals when probes are sent -
to avoid overloading the network,τ1 is usually on the or-
der of magnitude of minutes. However in active mode, the
next probe can be sent as soon as the result of the previous
probe is received; thusτ2 consists of probe-round-trip time
together with the time for computing the next probe, soτ2

may be on the order of magnitude of milliseconds. Since
nD ≤ nP , active probing will achieve faster fault local-
ization unlessnA, the number of probes needed in active
mode, is very large. We now describe how to decide which
probe to send next, and present experimental results that
show thatnA is small when compared withnP .

In practice there will always be some costs of switching
into active probing mode. Thus the gains yielded by active
probing will depend on the frequency with which failures
occur; if failures are very frequent an entirely pre-planned
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approach may be more cost-effective. The benefits of active
probing increase as failure frequency decreases.

B. Selecting the Next Probe

Let F be a random variable denoting the fault. At
each stepk, Pr(F|Tk) denotes the probability distribu-
tion describing the joint probability of occurrence of faults,
given the outcomesTk of tests (probes) received so far.
Pr(F|Tk) can be computed using, for example, a Bayesian
approach for updating the prior probability of a hypothesis
given new evidence.

Assume only one probe at a time is sent in active mode.
Selection of the probepk+1 to send next is done by comput-
ing the expected information gain each probe will provide,
taking into account the likelihood that it fails or succeeds
and what would be learned about the fault distribution; the
most-informative probe is the one which maximizes the in-
formation gain.

For each candidate probepi, one computesPr(pi

fails) and Pr(pi succeeds). Then one computes the
hypothetical fault distributionsPr(F|Tk

⋃
(pi fails)) and

Pr(F|Tk
⋃

(pi succeeds)) Theinformation gain of pi fail-
ing is:

Ik(pi fails) = H(F|Tk))−H(F|Tk
⋃

(pi fails)), whereH
denotes entropy,

and similarly forpi succeeding.
The probe to send next is selected to maximize the ex-

pected information gain:

p∗k+1 = argmaxi[Pr(pi fails)Ik(pi fails)+Pr(pi

succeeds)Ik(pi succeeds)]

The analysis generalizes directly to the case of sendings
probes at a time; in practices is usually quite small.

C. Results

The method described above was implemented in the ex-
perimental framework described in Section V-D. In this
case, the algorithm for selecting the most-informative probe
given the previous probe outcomes can be simplified as fol-
lows. We maintain thetarget set- the minimal node set
which is guaranteed to contain the faulty node. (The “no
failure” situation is viewed as an additional node). Initially,
the target set includes all nodes. It is easy to see that the
maximum information gain is provided by the probe that
includes the largest number of nodes from the target set.

If the probe is successful, we remove the nodes on its
path from the target set, and send the next most-informative
probe. We continue doing so until we either get an un-
successful probe, or the set of target nodes becomes empty
(corresponding to the no-failure situation). As soon as a
probe is unsuccessful, the faulty node is pinpointed by do-
ing a binary search among target nodes on its path.

Fig. 7. Active Probing - small networks.

Fig. 8. Active Probing - large networks.

We ran simulations over the same set of networks de-
scribed in Section V-D. For each network, each node was
sequentially selected to be the faulty one, including the no-
failure “pseudo-node”. The number of probes required to
diagnose the fault was averaged over all networks of a given
size.

The results presented in Figure 7 (small networks) and
Figure 8 (large networks) clearly indicate the considerable
improvement resulting from active probing when compared
with pre-planned, or “passive”, probing. Thus we see that
an active probing approach can greatly reduce the number
of probes needed to successfully diagnose faults.

VIII. R ELATED WORK

Our previous work [9] and independently Ozmutlu et al.
[10] studied the probe selection problem for the purpose
of network management. Extending the previous work,
this paper develops a more general framework for prob-
lem determination using probes, proves the NP-hardness
of the problems, and studies the active probing approach
and demonstrates its advantages in reducing probe size and
time-to-decision. The active probing strategy, although
very intuitive, has not been formally discussed before.
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Our work relates to four broad categories of previous
work: event correlation, system-level diagnosis, network
fault diagnosis, and performance measurement. Event cor-
relation ([1], [2]) for identifying root-causes has long been
recognized as a critical issue in the system management do-
main. Problem determination is performed by analyzing
alarms emitted by devices when a significant situation oc-
curs. Unlike the probing scheme, alarms are “reactive” to
a situation and this requires intensive instrumentation, only
possible in a tightly managed environment. The probing ap-
proach uses test transactions that can be built easily without
touching the existing devices.

Nonetheless, event correlation has many similarities to
our work. The formulation of problem diagnosis as a
“decoding” problem, where “problem events” are decoded
from “symptom events”, was first proposed by [3]. In our
framework, the result of a probe constitutes a “symptom
event”, while a failure is a “problem event”. However
beyond this conceptual similarity the two approaches are
quite different. The major difference is that we use an ac-
tive probing approach versus a “passive” analysis of symp-
tom events; namely [3] selects codebooks (a combination of
symptoms encoding particular problems) from a specified
set of symptoms, while we actively construct those symp-
toms (probes), a much more flexible approach. Another
important difference is that [3] lacks a detailed discussion
of efficient algorithms for constructing optimal codebooks.

The problem of fault diagnosis in a system of intercon-
nected components dates back to [11] and [12]. Since that
time a large body of literature has developed [13]. In con-
trast with that work, in our case it is not possible for ev-
ery node in the network to be used to test other nodes -
only a small number of nodes can be used as probe stations
to generate the tests. As a result of this the probing prob-
lem becomes a “constrained-coding” problem, as explained
above.

Other approaches to fault diagnosis in communica-
tion networks and distributed computer systems include
Bayesian networks [14] and other probabilistic dependency
models [15]; another approach is statistical learning to de-
tect deviations from the normal behavior of the network
[16]. The probabilistic diagnosis issues are addressed in our
related work in [8], where a probabilistic approximation al-
gorithm using Bayesian networks is provided for finding
the most-likely problem diagnosis, and some theoretical
bounds on the diagnosis error are derived.

Finally, probing has been used for the purpose of per-
formance measurements. In particular, Duffield et al. [17]
and Ji et al. [18] recently developed a framework for esti-
mating the performance of a multi-cast network based on
probes. Duffield et al. [19] and Paxson [20] studied per-
formance measurements of end-to-end probing. Our work
focuses on the problem determination aspect in a typical IP

environment. We formulate and develop algorithms for the
probe selection problem that has not been studied by the
aforementioned authors.

IX. CONCLUSION

In this paper, we address the problem of diagnosis in dis-
tributed systems using test transactions, or probes. Probes
offer an approach to diagnosis that is more active than tradi-
tional “passive” techniques like event correlation. Our main
objective is developing a cost-efficient probing strategy; we
want a small probe set which at the same time provides
wide coverage for locating or detecting problems anywhere
in the network.

We formulate the probe selection problem using a gen-
eral optimization framework. By reasoning about the in-
teractions among the probe paths, an information-theoretic
estimate of which probes are valuable can be constructed.
This yields a quadratic-time algorithm which finds near-
optimal probe sets. We also implement a linear-time al-
gorithm which can be used to find small probe sets very
quickly.

We consider two probing approaches: entirely pre-
planned and active. The active probing approach has two
phases: fault detection by pre-planned probes, and fault lo-
calization by using additional probes as needed, based on
previous observations. Since fault detection requires fewer
probes than fault localization, the active probing approach
is usually a more efficient strategy.

Directions for future work include real-time diagnosis
with changing network state and intermittent faults, han-
dling dynamic routing and lack of precise knowledge of the
probe path, and adapting to non-stationary behavior of the
system using on-line learning that yields a dynamic, adap-
tive, probing strategy. Our main focus remains the cost-
efficiency and scalability requirements of problem determi-
nation, which will become increasingly important in the
context of new technological challenges related toauto-
nomic computing, a paradigm for new-generation IT sys-
tems capable of self-management and self-repair.
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APPENDIX

Here we prove thatFAULT LOCALIZATION is NP-hard.
Proof: We will show thatFAULT LOCALIZATION is

NP-hard via a reduction fromFAULT DETECTION.
Let the dependency matrixDP,F and the positive integer

k be an arbitrary instance ofFAULT DETECTION. We need
to construct, in polynomial time, setŝF , P̂ , and an integer
k̂ ≤ |P̂ |, such that there exists a subset ofP of size at most
k coveringF if and only if there exists a subset of̂P of
size at most̂k such thatDP̂ ,F̂ has unique columns.

The setF̂ contains all the elements ofF = {f1, . . . , fn},
plusn new elementsg1, . . . , gn. The setP̂ will contain all
the probes inP , plus n additional probes{fi, gi} for all

i ∈ {1, . . . , n}. The resulting dependency matrix will be of
size(r + n) × (2n). It can be visualized as the four-block
matrix [

DP,F 0
In In

]
,

whereIn denotes then×n identity matrix. We also set̂k =
k+n−1 (for reasons that will become clear later). It is easy
to see that the reduction can be done in polynomial time.
We now show both the sufficient and necessary conditions.

For the “if” direction, we assume that〈DP,F , k〉 ∈
FAULT DETECTION, thus there exists a subsetP ′ ⊆ P of
size at mostk such thatDP ′,F has at least one 1 in every
column. We need to show that〈DP̂ ,F̂ , k̂〉 is a positive in-
stance ofFAULT LOCALIZATION . Indeed, there exists a
subsetQ of at most rowŝk rows inducing a sub-matrix of
DP̂ ,F̂ with unique columns – namely,Q containsP ′ and
any(n− 1) of then additional rows{fi, gi}. SinceDP ′,F
has a 1 in every column, every column ofDQ,F̂ correspond-
ing to a fault inF will differ from any column correspond-
ing to a fault in{g1, . . . , gn}. Since removing a single row
from In leaves all then columns distinct, the columns cor-
responding to the elements ofF will all be distinct from
each other, as are the columns corresponding to the ele-
ments of{g1, . . . , gn}. Notice that|Q| ≤ k + n − 1 = k̂,
as desired.

To show the other direction, we assume that〈DP,F , k〉
is a negative instance ofFAULT DETECTION. We need to
show that〈DP̂ ,F̂ , k̂〉 will be a negative instance ofFAULT

LOCALIZATION . Indeed, if any subset of at mostk rows of
DP,F induces an all-0 column, then any submatrix ofDP̂ ,F̂

induced by a subset of at mostk̂ rows will contain duplicate
columns. To see this, letQ be a subset of at mostk̂ rows.
There are two cases to be considered:

1) Q contains at mostk elements ofP . Then, since
there is an all-0 column inDP,F induced byQ ∩ P ,
we know thatDQ,F̂ will have identical columns cor-
responding to faultsfi andgi, wherei is the index of
the all-0 column inDP,F .

2) Q contains more thank elements ofP . In this case
Q cannot contain more thann − 2 of the new rows
(since|Q| ≤ k̂). But thenQ will induce duplicate
columns in the right half ofDP̂ ,F̂ , since removing at
least two rows fromIn induces duplicate columns.

Thus any subsetQ of at most k̂ rows induces duplicate
columns inDP̂ ,F̂ , making it a negative instance ofFAULT

LOCALIZATION , as desired.


