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Abstract—As distributed systems continue to grow in size root causes — an increasingly important but also extremely
and complexity, scalable and cost-efficient techniques are difficult task. For example, in IP network management, we
needed for performing tasks such as problem determination \yould like to quickly identify which router or link has a
and fault diagnosis. In this paper, we address these tasks ,,1em \when a failure or performance degradation occurs
using probes or test transactions, which replace traditional . L

in the network. In the e-Commerce context, our objective

“passive” event-correlation techniques with a more active, I h ‘ ful |
real-time information-gathering approach. We provide athe- Could be to trace the root-cause of unsuccessful or slow

oretical foundation and a set of practical techniques for im- USer transactions (e.g. purchase requests sent through a web
plementing efficient probing strategies - the main issue is server) in order to identify whether it is a network problem,
minimizing the cost of probing while maximizing the diag- a web or back-end database server problem, etc. Another
nostic accuracy of the probe set. We show that finding an example is real-time monitoring, diagnosis and prediction
optimal probe set is NP-hard and devise polynomial-time ap- of the “health” of a large cluster system containing hun-
proximation algorithms that demonstrate excellent empirical dreds or thousands of workstations performing distributed

performance, even on large networks. We also implement an tati Li lust GRID i
active, on-line probing strategy that yields a significant re- computations (e.g., Linux clusters or -computing sys-

duction in the probe set size. tems).
Two general approaches are commonly used for problem

determination. The first isvent correlation([1], [2], [3]),
in which every managed device is instrumented to emit an
Accurate diagnosis and prediction of unobserved statggrm when its status changes. By correlating the received
of a large, complex, multi-component system by makingarms a centralized manager is able to identify the prob-
inferences based on the results of various tests and mggs. However, this approach usually requires heavy instru-
surements is a common problem occurring in practice. Ngrentation, since each device needs to have the ability to
merous examples include medical diagnosis, airplane fajknd out the appropriate alarms. Also it may be difficult
ure isolation, systems management, error-correcting cg-ensure that alarms are sent out, e.g. by a device that is
ing, and speech recognition. Achieving high diagnostigown. To avoid these problems, which arise from using
accuracy may require performing a large number of tesfsfixed, “passive” data-gathering approach, a more active
which can be quite expensive. Thus, our goal is developigghhing technologyas been developed, which allows one
cost-efficient techniques for real-time diagnosis in complgy «ask the right questions at the right time” in order to

distributed systems, so that high accuracy can be achieyggyide more accurate and cost-efficient problem determi-
with a small number of tests. nation.

The key component of our approach is an “active” mea-
surement approach, callggobing instead of more “pas-
sive” data-analysis techniques. A probe is a test transactfon
whose outcome depends on some of the system’s compon the context of distributed systems management, a
nents; accurate diagnosis can be achieved by appropriatgiybe is a program that executes on a particular machine
selecting the probes and analyzing the probe outcomes. (aalled a probe station) by sending a command or trans-
main contribution is in providing a theoretical foundatiomction to a server or network element and measuring the
and a set of practical techniques for implementing efficiergsponse. Theing program is probably the most popular
probing strategies. probing tool that can be used to detect network availabil-

Although our methods are quite generic and are applidga: Other probing tools, such as IBM’'s EPP technology
ble to a wide variety of problem areas, we will focus speciff4]), provide more sophisticated, application-level probes.
ically on the area of distributed systems management. Tier example, probes can be sent in the form of test e-malil
rapid growth in size and complexity of distributed systentaessages, web-access requests, and so on. Generally a dis-
makes performance management tasks such as problentidadted system (as well as many other applications) can be
termination — detecting system problems and isolating the&presented by a logical “dependency graph”, where nodes

I. INTRODUCTION

Probing Technology



decisions are made as to which probes to send next, until

Probing Technology finally the problem is completely determined. We refer to
this approach aactive probing.
STA In both approaches, a critical problem is how to select

probes. In the first approach, the set of probes must be pre-
selected so that, no matter what problem occurs, the prob-
lem can be completely determined from the probe results
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ST ~_ without obtaining any additional information. In the sec-
Plee ond approach, we need to pre-select probes that can detect
Eemen Analyzing the probe results can be used to diagnose problems. . . .
SV- Service E.g. failure of the two probes shown here may indicate a problem in E3. When problems OCCUI‘, and in the actlve pl’ObIng phase we

need to determine which probe to send next, given what has
been observed so far. To achieve cost-effective diagnosis,
the size of the probe set should be minimized while pro-

viding wide coverage in order to locate or detect problems
are either hardware elements (e.g., workstations, servelSwhere in the network

routers, links) or software components and services, an
links can represent both physical and logical connections
between the elements. C. Contributions

Figure 1 shows a simple example of a distributed sys-Probing technology is currently used for the purposes of
tem with two probe stations, A and B, that send probes @tiality of service measurement, and in practice probe se-
some scheduled way. The probes test particular servidestion is done using rather ad-hoc methodologies. This
e.g., IP-connectivity, web-access to server SV1A, databdxper makes the following contributions:
access to server SV1B, which in turn depend on back-endl) We formulate the probe selection problem for prob-
database server SV2 and the availability of a particular lem determination in a general framework and show
database (“service” SV3). The probes go through partic- that both fault detection and fault localization are NP-
ular network elements and problem diagnosis is performed  hard.
by analyzing the results of different probes. For example, if 2) We develop linear and polynomial-time approxima-
two probes fail (e.g. the two shown in Figure 1), that may  tion algorithms which utilize information-theoretic
indicate a failure in some element that is common to both  estimates of probe set quality, and show empirically
of them. that they find near-optimal probe sets.

Probing technology has many advantages; it does not re3) We develop an algorithm for active probing and
quire extra instrumentation and works with any server that demonstrate the advantages of using it over pre-
takes user transactions. It is very flexible; a probe station planned probing.
can be placed in any location with network access and carThe outline of the paper is as follows. In Section Il we
target multiple components. However using probes irrtroduce the basic concepts and in Section Il we formu-
poses costs, because of the additional network and sefggs the fault detection and localization problems precisely.
load and the need to collect, store and analyze probe 8ction IV shows that these problems are NP-hard and de-
sults. It is important to control these costs in order to uselops an information-theoretic measure of the quality of a

Fig. 1. Probing Technology.

probes effectively. probe set. Section V utilizes this measure to develop ap-
proximation algorithms which are practical for large net-
B. Pre-planned and Active Probing works and shows experimentally that they find near-optimal

In this work, we discuss using probing technology forthprObe sets. Section VI investigates how to handle noise.
’ §ectlon VIl considers the active probing scenario, where

purpose of problem determination. We consider two ba%be selection of later probes depends on the results of ear-

hes. In the fi h, f '
approaches. In the first approach, a set of probes is se e‘?er probes. Section VIII discusses related work and then
and scheduled to run periodically. Problem determlnatlo O™ conclude.

is performed by analyzing the probe results. We call this
approactpre-planned probing.

In the second approach, a set of probes is selected to run Il. NOTATION
periodically as before, but only for the purposealefecting Our formulation is a general one that applies to any situ-
when a problem occurs. Whenever occurrence a problenai®n in which tests, or probes, can be used to gain informa-
detected by one or more of the probes, additional proktesn about the state of objects that are connected together or
are sent out to obtain further information about the prolre dependent on one other. Networks serve as a convenient
lem, and this process may repeat - as more data is obtainkuastrative example.



A. Faults

We assume there is a finite $2bf objects each of which
can be in one of two state®p” , i.e. functioning correctly,
or “"down” , not functioning correctly. Aault can be any P.s .~
subsetf C O. A fault f occurs ifall the objects inf are
down. If f is the empty set, then “occurrence” of the fault @
f corresponds to no problem - all objects are functioning
correctly.

As an example, suppose we wish to detect problems in a :
network. A fault may be that a particular node or link (or y
combination of nodes and links) is down. For example, one
fault may be{node %, this fault occurs if node 1 is downFig. 2. An example network with two probes.
(whether or not any other node is up or down). Another
fault might be{node 1, node R this fault occurs if node 1 C
and node 2 are both down. Thus specification of the faults

depends on many details of the situation and what problemgt this point it is convenient to introduce the notion
we are interested in detecting. of a dependency matrixto capture the relationships be-

tween faults and probes. Given any set of faults=

B. Probes {f17 f?) ey fn} and prObe§3 = {plap27 "‘7p7“}’ the depen_

, L _ dency matrixDp ¢ is given by:
A probe is a method of obtaining information about ob- y PFISg y

jects inO. We think of a probe as testing objects to deter- Dpr(i,j) = 1iffault f; affects probe;
mine whether or not they are up or down. Thus we regard a
probe also as a subsetC O.

The occurrence of a fault affects some probes, WhibP,F is anr-by-n matrix, wherer = |P| andn = |F.

other probes remain unaffected. A probés affected by gach row ofDp - represents a probe and each column rep-
a fault f if p tests any of the elements ¢f i.e. there is (esents a fault. Let; denote thejt® column of Dp - - ¢

some element irf that is also irp: is theprobe “signal” of fault f;; it gives the results of the

A fault f affectsa probep if f(\p # ¢. probes when only faulf; occurs.
Example:To illustrate these ideas, consider the example

In a network, the Obje?ts may b? physpgl entities Sucrb twork shown in Figure 2, with simple ping probes. Probe
as routers, servers, and links, or logical entities such as sqft-

"~ P;; denotes a probe sent from naleto nodeN; along the
ware components, database tables, etc. Probes are |sO§Z at P ¢ J 9

: . . est path between the 2 nodes. For example, gPobe
from machines, called probe-stations, where probing s P P

- X llows the pathV; — V- N5 while probeP;¢ follows
ware is installed, and traverse the network, testing the avajl- P L 2 s P 16

. . ) e pathN; — N3 — Ng.
ability and performance of the various objects. Probes CanSuppose we wish to be able to detect and localize a single

be low-level ping probes, or higher |evel test transactlo?gﬂ re occurring in any of the nodes, or no failure anywhere
such as web access, e-mail, etc. Each probe may depgen

d thus tests the functioning of i ot fd'f] e network. In this cas¢;, = {N;},i =1 to 6, and
on, an . us ?S s (he functioning of, a wide variety o 'f’7 = ¢ = the empty set. Then the dependency matrix will
ferent objects in the network.

. . , . . contain one column for each node, as well as an additional
Thus there is dogical network associated with, but dis-

tinct from. the phvsical network. Nodes in the logical ne,E:olumn for f7, no failure anywhere in the network.
I ; pnysi WOrK. : 9! For this example let the probe-stations be nogsand

work rep_resent objects inthe physical netwprk; thus I.inkSiJQ and suppose that a probe can be sent from each probe-
the physical network can appear as nodes in the logical nse[é_\tion to any node along the shortest path between them.

work. Links in the logical network represent dependenuq.'?]e resulting dependency matrix is shown in Figure 3. For

between objects in the physical network. When we refer 1 : .
) i . . each probe (row), there is a 1 in each node (column) that the
nodes” in our network examples, we will be referring tq : .

: probe passes through, since each probe can detect a failure
the logical network.

: . . . in any node that it passes through.
In a noise-free environment, if a probe is successful, then Y P g

every node it passes through must be up; conversely, if a

node is down then any probe which passes through that I1l. PROBLEM FORMULATION

node fails to return. The probe-station detects whether oMWe assume that the faults we wish to be able to detect
not the probe returns successfully. A probe fails to returndhd the collection of probeR that are available for use are

it passes through any failed node. given. We are interested in finding small sets of probes for

#

Dependency Matrix

0 otherwise



is the columnc; of Dpr, each fault has a unique probe
signal if and only if each column i®p ¢ is unique; i.e.

D d Matri
N+ and Njare the ependency Matnx

probe stations fo o f3 f, &5 fs f; : :

p. 1 1 0 0 0 0 O differs from every other column. Since two columfsc;
P, = probe from p 1 01 0000 differ if and only if there is some entry where one of them
station N; to target 1 011000 . . .
node N;, following P1s T 150100 has the value 1 while the other has the value O (i.e. there is
Sh°tﬁt95t'Path 215 i © 4100490 some probe which is affected by one of the faults but not the
routin 16 . . .

g_ P 0 11100 0 other), fault localization can be expressed using the number

ISy S 10 6; pPs O 01 1000 of non-zero elements, denotedy, in c; P c;, whered®
f; denotes no O 111100 d lusi OR:
fallure anywhere Pas enotes exclusive-OR:

ps 0O 01 1 0 10

Localization: GivenDp f, find P* which minimizes| P’|,
whereP’ C P satisfiesvf;, f; € F,n;; > 1.

Since fault detection only requires finding the smallest
' _ probe set such that every fault has a nonzero, but not nec-
the following two tasks:detecting whether or not a fault essarily unique, signal, clearly fault localization requires a
occurs, andocalizing any fault that occurs, i.e. determinygrger probe set than fault detection.
ing which f € [ has in fact occurred. The final probe set Example: Returning to the example of Figure 3, fault
must be a subset of the collection of prolfes detection requires finding the smallest number of rows such
The tasks of fault detection and fault localization are Imhat every column (exc|uding, of COUTS@) has at least one
portant for the pre-planned and active probing strategies |n this example, this means the smallest set of probes
outlined in Section I-B. In one scenario fault localizatioyhich pass through every node, so that, no matter which

is performed using only a pre-planned probe set; in the segrde fails, there is a probe that will detect it. The following
ond scenario fault localization is performed by first usingget of 2 probes suffices:

pre-planned probe set for fault detection, and then sending

Fig. 3. The dependency matrix for the network in Figure 2.

additional probes using active probing to localize the fault. fr fa fs fa fs e
pe 1 0 1 0 0 1
A. Fault Detection pgs 01 1 1 1 O

The task of fault detection is to find the smallest SUbsetSince no single probe passes through all the nodes, this

) :
P' of the probe seP such that, if any (non-empty) € g clearly a smallest subset for fault detection. However
occurs, there is some propec P’ that is affected byf. g set fails for the task of fault localization because, for
This can be formulated in terms of the dependency mat”ékample failures in noded’; and N cannot be distin-

Detection: GivenDp r, find P* that minimizeg P’|, guished from each other - they generate the same signal,
whereP’ C P such that there is at least one 1 in every since their columns are identical. However the following
column of Dp: p. set of 3 probes is a minimal set for fault localization:

By monitoring the probes we will know, as soon as a fi fo fs fi fs fo fr
probe fails to return, that there is a problem somewhere in ps 1 1. 0 0 1 0 0
the network, but we may not know exactly what the prob- b 10 1 00 1 0

lem is.
pee 01 1 1 0 0 O

B. Fault Localization Note that the “fault” f7, denoting no failure anywhere

The task of fault localization is to find the smallest set df the network, is included here, because we want its col-
probes such that, if any € F occurs, we can determine,umn to be unique, as well as the columns of each individual
from the return values of all the probes, exactly which fautode failure. Since all 7 columns are unique, the results of
has occurred. Note that we are assuming that only one fdbgse 3 probes allow us to determine exactly which node
occurs at a time; however, a fault may represent the simbis failed. For example, jf;5 andp;s both fail butp,s
taneous failure of one or more objects. We also assume thiagceeds, then we infer that nolig has failed.
objects do not change state (from up to down or vice-versa)
while probing is taking place. IV. ANALYSIS

Fault localization requires finding the smallest probe setWe now show that the tasks of fault detection and fault
such that every fault has a unique probe signal, since in thatalization are NP-hard. We then define a measure of the
case exactly which fault has occurred can be determinguhlity of a probe set that will be useful in developing ap-
from the probe results. Since the probe signal of fgult proximation algorithms.



A. NP-hardness Fault indistinguishability is an equivalence relation and
hence induces a decompositionfofnto an exhaustive col-
lection of disjoint subsets, which we denote By » and
call thelocalization decompositionof P. Thus, if there
arek distinct columns inDp g,

We are given a set of faults' = {f1,..., f,}, a col-
lection P = {p1,...,p,} of probes (and thus the x n
dependency matriOp r = {d;;} with d;; = 1 if probep;
intersects faultf; and 0 otherwise). A set of probesv-
ersa fault if at least one of the probes in the set is affectes} », = {G;|i = 1 to k}, wheref; € G; if and only if ¢; is
by the fault. We want to find the smallest subsefothat identical to thei*” distinct column of Dp r.
covers all ofF. The corresponding decision problem is to . .

. . o Example: Consider the dependency matrix correspond-
determine, givenDp r and some positive integér < r, . .
S . . ing to the probe seP of Figure 2:
whetherP contains such a covering subset of size at mos
k. We call this decision problefRAuLT DETECTION.
Proposition 1: FAULT DETECTIONIiS NP-hard. Bl fs fats fo fr
Proof: FAULT DETECTION is precisely theMiNi-
MUM SET COVER problem, which is known to be NP- pe 1 0 1 0 0 1 O
hard [5].

P15 1 1 0 01 0 O

In this example the localization decomposition is:

Given a set of faults”, a collection of probes”, and a Spr = {{fi}, {fo. 5}, {3, fe}, { fa, f2}}
positive integerk < r, we want to determine whethé? Recall thatf; = {N;},i =1 to 6, f; = no failure. Thus this

. . \
contains a subcollectioR’ of size at mosk such that for decomposition reflects the facts that: pif; and py both

every /p:;]ur Qf distinct faUIt#Ih f € F, tgere ;13 a p(;_obe fail, this indicates a failure iv; (because both probes pass
p € P' that intersects exactly one ¢f and > (thusp dis- through it); if p5 fails while p1 succeeds, this indicates a

tir?guirs]hes :aetweey:cl ﬁndde); o:jequivalentIyP’ is S“CIT failure in eitherN, or Ni; if p15 succeeds while; fails,
that the columns of the dependency maitly r» are a this indicates a failure in eith&¥s or Ng; finally if p15 and

unique. We call this decision probleRAULT L OCALIZA- p16 both succeed, this indicates a failure in eitharor no
TION. - ) failure.

Proposition 2: FAULT LOCALIZATION is NP-hard. The localization decomposition can be used to find the

Proof: - FAULT LOCALIZATION can be shown t0 be hegt hrohe to add to the current probe set. In this example

NP-hard via a reduction fror8-DIMENSIONAL MATCH- \ye seek a third probe that will further decompose each of
ING. This problem (see [6]) is however not very Wellyhe 5_glement subsets 6§ into singleton sets. To do this
known, so itis instructive to redud&ULT LOCALIZATION e need a probe that passes through one of the 2 elements
from FAULT DETECTION. Intuitively, FAULT LOCALIZA- in each subset 0§y, but not the other. Examining the

TION is a harder problem thai_FAULT DETECTIQN. How- _dependency matrix of Figure 3 shows that probe does
ever, because for any given instance the optimal solutigpg; giving the following probe se’:

of these two problems can be very different, the proof is not

straight-forward; the details can be found in the Appendix. fi fo fs fa fs fo fr
u ps 1 1.0 0 1 0 0

pg 1 01 0 0 1 0

B. Localization Decomposition of a Probe Set P2 001 1 1 0 0 0

To develop polynomial-time algorithms that can approx-. _ _
imate the probe subset of minimal size, we will define gince all the columns are unique, all faults can be localized:

measure which estimates the quality of a probe set. We Sp, = {{f1},{fo}, {fs}, {fu}, {f5}. {fe}. {f7}}

will focus on the more difficult fault localization problem; Si h orobe eith d tail d ¢
similar ideas can be applied to the fault detection problem. INCE €ach probe either succeeds or ails (we 0 hot con-
der utilizing the actual value of the probe round-trip time),

. . [

The quality of a probe set can be measured using e .
quatty P . 9 Set ofr probes can generate no more tti#ndifferent
amount of information provided by the probe set about

which fault has occurred. Given a dependency matr%EOb? signals. Hence at led$tg n| probes are _neegle_d 0
localize a set of, faults. Thus the above set is minimal,

Dp r, faults in F' that have the same column generate ttbe cause 7 faults require at ledisig 7| — 3 probes. How-

same probe signal when they occur, and hence cannotevgr in general the minimal probe set may be considerabl
distinguished by the probe st For any faultsf;, f; € F, 9 P y y

definefault indistinguishability as: larger, depending on which probes are available. Details of
g y as. network structure, network routing, probe-station location,
fi ~ f; if ¢; = c;, whereg; is theit® column of Dp r. and so on may affect the set of available probes.



C. Localization Quality of a Probe Set Hence:

QP F) = H(F|9)

k
We define thdocalization quality Q(P, F') of a set of = Zp(g = G)H(F|G =Gy)
probesP for the task of fault-localization of a set of i=1
faults in terms of the amount of informatiaR provides (by definition of conditional entropy)
concerning which fault irF* has occurred. I and) are k n
random variables taking values, ..., z,, y1, ..., Ym, then = Zp(g =Gy)— Zp(f = f;|1G = G))
from information theory (see [7]) we have: i=1 Jj=1
log p(F = £,1G = Gi)]
n by definition of entro
Entropy: H(X) = — Y/, p(X = ;) log p(¥ = z,) e onotenton)
n;
" . = > =) —log—]
Conditional entropy: oo T
H|X) =30 p(X =) HY|X = ;) (using (1), (2) and (3))
k
Conditional entropy is the expected value of the entropies = Z ) log n;
of the conditional distributions, averaged over the condi- Pl
tioning variable. -
Now let F be the random variable denoting the fait; ~ This expression has a natural interpretation. Since there
has some prior probability distribution specifyipgF = aren; faults in groupG;, at leastiog n; additional probes

fz) for eachf; € F. The localization decompositioﬁpyF are needed to localize all the faults @#. Since a ran-

is a collection of groupg(G‘l7 e Gk}, where each group dom fault lies inG; with probabllltyn,/n, the localization

G, contains the faults that cannot be distinguished from ofigality Q(P, F') is simply the expected minimal number of
another byP. Letg be the random variable denoting whictdditional probes needed to completely localize the fault.
group ofSp - contains the fault. Then we define tloeal- Note that lower values fo@(P, I) correspond to better

ization quality of P as theconditional entropy H(F|G): Probe sets, and th&@(P, F) = 0 < n; = 1Vi < all
faults are localizable.

Example:: Suppose probe sét induces the decomposi-

Q(P, F) = H(F|G) tion S1 = {{f1, f2},{f3, fa}} while probe set?, induces

the decompositioy = {{ f1}, {f2, f3, fa}}. AlthoughP»

Since the mutual information/(F;G) satisfies can uniquely localize one fault ag] cannot, it is possible
I(F;G) = H(F) — H(F|G) (see [7]), we can think to add just a single probe 8, and diagnose all the faults,
of localization quality as measuring the amount of addivhereas at least two additional probes must be addéy to

tional information needed to localize the fault, beyonbefore all faults can be diagnosed. Therefdteis a better

the information provided by the probe sBt Thus lower probe set thar.

values ofQ(P, F') correspond to better probe sets. The localization quality reflects this:
The following proposition illustrates the use of this mea- QP F) = %10g2 + %logZ —log2 =1,
sure:
1 3 3
Proposition 3: If faults are independent and equally QP F) = 4 log 1+ 4 log3 = 4 log3 = 1.19.

likely, then Q(P,F) = ¥ | ™ logn;, wheren; is the

=1 n

number of faults in groug; of Sp,, andn = |F|. V. ALGORITHMS FORFINDING THE MINIMAL PROBE

SET

Proof: We now examine algorithms for finding the minimal

probe set for fault localization. Exhaustive search is im-

practical for large networks because the problem is NP-

hard, so approximation algorithms must be considered. We

present a quick (linear-time) “subtractive” search algorithm
pG=Gi) = ni/n (1) and a family of “greedy search” algorithms requiring poly-

p(F=/fl6=Gi) = 1/niif f; € G;i (2) nomial time. An experimental comparison of the algo-

0 otherwise (3) rithms is presented in Section D.

If faults are independent and equally likely, then:



The algorithms require computing the localization quaFhis further decomposes each subsetSpfaccording to
ity of probe sets, so we first describe how to do this effivhether the corresponding entry is 1 or 0. This yields:

ciently.
So = {{fit. {fo, fs}, {f3: fe}, {fa, f7} },

A. Computing the Localization Decomposition and so on.

The localization decompositiofp 7 is an exhaustive
collection of disjoint sets, each containing the faultsFin
whose columns ilDp - are identical. Comparing each col-
umn with every other column requir€xn>r) time, where B. Quick Search
r = number of probes (rows) and = number of faults
(columns). The decomposition can be computed in onlyQuick search starts with the initial set ofprobes, con-
O(nr) time by proceeding row-by-row - the idea is thasiders each probe in turn, adécards it if it is not needed
adding a row (i.e. a probe) results in a more extensive dee. if the localization quality remains the same even if it
composition, because faults in distinct groups remain dis-dropped from the probe set. This process terminates in
tinguishable; an additional probe only has the effect of dig-subset with the same localization quality as the original
tinguishing previously indistinguishable faults. set but which may not necessarily be of minimal size. The
running time is linear in the size of the original probe set,

Input: ~ Dependency matrixDpr, with rows because each probe is considered only once.
b1,P2y .-y Pr
Output: Localization decompositio$ip, » Input: Dependency matrixDp , with rows
Algorithm: D1y P2y eees P |
So = {{f1; fas s fn}} Output: Probe SeP’ (possibly non-minimal size)
For each probe; Algorithm:
SZ:¢ . PlZ{pluva'”apT}
For each in S;_4 Fori=1tor
Go ={f € G|D(i,j) = 0} If S = Spp, P/ — P'\p;
; Ppi,F = Spr, P — P'\p;
If Go # ¢, Si — Si U{Go} Output]y
G ={f€GID(i,j) =1}
If G1 # ¢, 5; — S; U{G1} Quick Search discards any unnecessary prolie)(time)
Outputs;.

The order of the initial probe set is quite important for
Computing the localization decompositioi, 7 the performance of this algorithm. Ordering the probes by

The algorithm is shown above. At any steps; repre- Probe station may reduce the opportunity of exploiting in-

sents the localization decomposition resulting from the firfgtractions among probes from different probe stations. The

i probes. Théi + 1) probep;,; decomposes each &t size of the final probe set can be reduced by randomly or-

in S; into 2 subset&s, andG, depending on which faults dering the initial probe set, or ordering it by target node.

in G affectp;,1. Go andG, are added as elementsSp, 1,

if they are non-empty. Note that there can never be more

thann = |F| sets inS;, because the decomposition cannot

proceed beyond{ f1},{f2},.... {fn}}- C. Greedy Search
Example:In the example of section IV-B, the first probe
is: Another approach is a greedy search algorithm. The sim-
plest version of this algorithm is to add probes to the probe
Ji fo fs fa fs fo [f7 set one-by-one; at each step add the probe that results in
ps 11 0 0 1 0 0 the “most informative” probe set, using the quality measure
Q(P, F) defined above. Continue until all faults can be lo-
This yields: calized or until the localization quality of the original probe

setis achieved. The running time of this algorithroig-?),
wherer is the size of the original probe set, because at each

S1={{/f1, fo, [51, {f3: far fo, fr}}

Then consider the second probe: step the localization quality achieved by adding each of the
remaining probes must be computed. The resulting probe
fv fo f3s fa fs fo Jr set is not necessarily optimal because of the greedy nature

peg 1 0 1 0 0 1 O of the search.



Input:  Dependency matrixDpp, with rows
P1,D25 -, Pr
Output: Probe SeP’ (possibly non-minimal size)
Algorithm:
P’ = ¢ = empty set
While Spgp 7& SP,F
pt= argmianP\P’Q(P,U{p}v F)
Pl - Pl U{p*}1
Output P’

# of probes

\ . . . . . . .
6 8 10 12 14 16 18 20 22 24
Network size

Greedy Search adds the best probe at each &g [

time
) Fig. 4. Algorithms for Computing Probe Sets: True Minimum and Two

This approach can be extended by adding at each sf@proximation Algorithms on Small Networks
the best remaining subset ©probes, for any fixed. The
overall running time is easily seen to 6gr'™1). (Actually
near the end of this process one must consider all subsets
of ¢ or fewer probes, to prevent adding probes that are un-
necessary, but this doesn’t change the essential results.) Of
course the larger the value fthe closer the probe set will
be to the optimal one, but the longer the computation time
required. (The above algorithm is the case 1.)

# of probes

D. Experiments 0

80 100 120

o 20 40

60
Network size

This section describes the empirical behavior of the min-
imum probe set size and the performance of the approkig. 5. The Approximation Algorithms on Large Networks.
mation algorithms. The main result is that the algorithms
find a probe set which is very close to the true minimum set
size, and can be effectively used on large networks where’
exhaustive search is impractical.

For each network size, we generated twenty random
networks withn nodes by randomly connecting each node *
to four other nodes. Each link is given a randomly gener-
ated weight, to reflect network load. The probe stations are

selected randomly. The available probes follow the least- Th be stat lected doml bett
cost path from each probe station to each node. * 'he probe stations are selected randomly - a betler

The faults we are interested in diagnosing are any single placing of probe stations would proo!uce.fewer pr(?bes.
node being down or no failure anywhere in the network. The results also show that the approximation algorithms

We assume that each node has the same prior probabilitp8fform well; the size of the probe set is much closer to the
failure, and that there is no noise in the probe results. N&fe€ Minimum than to the upper bound. Figure 5 illustrates
that in this case: probes are sufficient, because one c4R€ Performance of these algorithms on larger networks for
always use just one probe-station and probe every sin§lBich éxhaustive search is not feasible. The greedy algo-
node. Thus we expect that the minimal number of probEm slightly outperforms the linear-time algorithm, but its
should lie betweeing 1 andn. quadrat_lc computatlo_nal cqst is hlgh.er. An alter_natlve ap-
Exhaustive search is performed to find the true minimuRf02ch is to run the linear-time algorithm many times with
size probe set. Then the linear-time quick search algorittfffiferent initial orderings and take the best result.
and the quadratic-time greedy search algorithm are used to
find.probe sets. ' V. NOISE
Figure 4 shows the average probe set size, for the case
of three probe stations. The minimal probe set size lies be-So far we have assumed a noise-free environment in
tweenlog n andn, as expected. The minimal size is always/hich all the probe results are received correctly. In prac-
larger than the theoretical lower boundlog n, for three tice we cannot expect this to be the case; a probe may fail
reasons: even if there is no fault anywhere along its intended path, or

The networks are not very dense; the number of edges
increases only linearly with network size. Thus many
probe paths are simply not possible.

Since the probes follow the least-cost path from probe
station to node, the probe paths tend to be short, pass-
ing through few nodes. This reduces the opportunities
for exploiting interactions between probe paths.



candetectthat a fault has occurred; localizing the fault -

PrOblng Scenarlos determining which fault has occurred - is then achieved by
sending additional probes in an active mode. In the pre-

planned, or “passive”, scenario the entire probe set must be

fault detected i
~ fal:m wel : aul Ioc:ahzed » pre-planned so that it can determine exactly which fault has
tug P=Probe Setpreplanned {1 ACTVEpcbing b occurred.
for fault DETECTION : :
_ fault accurs faultlocalized A. Analysis

% A pre-planned probe set for complete localization will

' always be larger than a probe set that is used for detection
only, and so the time from fault occurrenag {n Figure

Fig. 6. Probing Scenarios. 6) to fault localization {p in Figure 6) will be larger than

the time from fault occurrence to detecting that a fault has

a probe may succeed even if there is a fault on its path, edgcurred somewhere;(in Figure 6). However the impor-
because dynamic routing sends it along a different path.tant question is whether the combination of pre-planning
Noise can be handled by expanding the probe set, in tm detection and then using active probing for localization
fundamentally different ways - in space or in time. For exs better or worse than pre-planning for localization; i.e. is
ample, suppose up ta probe results may be incorrectlytp larger or smaller that,?
received. In this case faults are defined to be equivalent iff he following analysis indicates the issues involved. Let
their probe signals differ in no more tham + 1 places; if 7p be the number of probes needed for fault localization
n;; is the number of non-zero elementsdrd ¢;, where Using pre-planned probing, amg, the number needed for

¢; is thei™™ column of Dp , and@® denotes exclusive-OR, fault detection; we know thaip < np. Probing is per-
then: formed by sending probes at intervals, which may be sched-

uled either periodically or randomly. Suppos€ probes
are sent simultaneously at any time, ands the average
The choice oRm + 1 ensures that when the probe signdime between probing intervals. Assume for simplicity that
is received, even if the results af probes are incorrect, in active mode only one probe is sent at a time; as soon as
there is only one column in the dependency matrix whidhat probe returns, the next probe to send is determined and
is within Hamming distance. of the probe signal. Hencesent, and so on. Lets be the number of probes needed in
the fault can be uniquely localized, despite the noise. @ active phase to localize the problem andhe average
course the probe set size will increaseramcreases. time between these probes.

Expanding the probe set in time refers to sending theThen (assum& = 0 for convenience):
same probes repeatedly and assuming that a probe result
is valid if the probe yields the same result some number tp ~ (np/M)m
of times; transient probe results are assumed to be the re- ta ~ (np/M)m +nam
sult of noise. More complex models to handle noise can ) o o )
be developed: e.g. Bayesian networks are used in some dft Practical applications, > r,. This is because, is
our other work, which provides some theoretical bounds S} @verage time between intervals when probes are sent -

the diagnosis error and the number of probes required f8r2v0id overloading the networl; is usually on the or-
asymptotically error-free diagnosis. ([8]). der of magnitude of minutes. However in active mode, the

next probe can be sent as soon as the result of the previous
probe is received; thus consists of probe-round-trip time
together with the time for computing the next probe;so
Here we extend the probing paradigm to allow & may be on the order of magnitude of milliseconds. Since
tive probing. In this scenario the selection of later probesp < np, active probing will achieve faster fault local-
depends on the results of earlier probes. One decideszation unless: 4, the number of probes needed in active
real-time which probes to send based on the current assessele, is very large. We now describe how to decide which
ment of the network; after the probe results are receivgmipbe to send next, and present experimental results that
one decides which further probes are needed, and so siow thatn 4 is small when compared withp.
The advantage of this approach is that fewer probes can bé practice there will always be some costs of switching
used than if the entire probe set has to be pre-planned. into active probing mode. Thus the gains yielded by active
Two probing strategies are illustrated in Figure 6. In therobing will depend on the frequency with which failures
active probing scenario, a pre-planned probe set is used thatur; if failures are very frequent an entirely pre-planned

tﬂ:; P;= Probe Set pre-planned for fault LOCALIZATION

VIl. ACTIVE PROBING
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approach may be more cost-effective. The benefits of active ool andaivopobing.
probing increase as failure frequency decreases.

B. Selecting the Next Probe

Let F be a random variable denoting the fault. At
each stepk, Pr(F|T)) denotes the probability distribu-
tion describing the joint probability of occurrence of faults,
given the outcomeq;, of tests (probes) received so far.
Pr(F|T}y) can be computed using, for example, a Bayesian
approach for updating the prior probability of a hypothesis
given new evidence.

Assume only one probe at a time is sent in active mode.
Selection of the probgy 1 to send nextis done by comput-_
ing the expected information gain each probe will providg!g' !
taking into account the likelihood that it fails or succeeds
and what would be learned about the fault distribution; the
most-informative probe is the one which maximizes the in-
formation gain.

For each candidate probg;, one computesPr(p;
fails) and Pr(p; succeeds). Then one computes the
hypothetical fault distributiongr(F|Ty, |J(p; fails)) and

Pr(F|Ty, U(p: succeeds)) Thaformation gain of p; fail- ol -

ing is: /

I;(p; fails) = H(F|T)) — H(F|T), U(p; fails)), whereH 2 |
denotes entropy, — Active probing Nerwork siae

assi obing: quadratic approximation
— Passive probing: linear approximation

number of probes

Active Probing - small networks.

80 T T T T T

60 [~ b

40 ~ 1

number of probes

and similarly forp; succeeding.
The probe to'send nextis selected to maximize the 6%3.8. Active Probing - large networks.
pected information gain:

Phy1 = argmazi[Pr(p; fails)ly (p; fails)+Pr(p; We ran simulations over the same set of networks de-
succeeds), (p; succeeds) scribed in Section V-D. For each network, each node was
The analysis generalizes directly to the case of sendin§eduentially selected to be the faulty one, including the no-
probes at a time; in practiceis usually quite small. failure “pseudo-node”. The number of probes required to
diagnose the fault was averaged over all networks of a given

C. Results size.

The method described above was implemented in the ?.(—The results presented in Figure 7 (small networks) and

perimental framework described in Section V-D. In this'gure 8 (large networks) clearly indicate the considerable

. ) . . Improvement resulting from active probing when compared
case, the algorithm for selecting the most-informative probe : . .

. . o ith pre-planned, or “passive”, probing. Thus we see that
given the previous probe outcomes can be simplified as fol-

lows. We maintain thearget set- the minimal node set an active probing approach can greatly reduce the number

which is guaranteed to contain the faulty node. (The “n%( probes needed to successfully diagnose faults.

failure” situation is viewed as an additional node). Initially,
the target set includes all nodes. It is easy to see that the VIII. RELATED WORK
maximum information gain is provided by the probe that Our previous work [9] and independently Ozmutlu et al.
includes the largest number of nodes from the target set[10] studied the probe selection problem for the purpose
If the probe is successful, we remove the nodes on @b network management. Extending the previous work,
path from the target set, and send the next most-informatthés paper develops a more general framework for prob-
probe. We continue doing so until we either get an ufem determination using probes, proves the NP-hardness
successful probe, or the set of target nodes becomes engbtthe problems, and studies the active probing approach
(corresponding to the no-failure situation). As soon asamd demonstrates its advantages in reducing probe size and
probe is unsuccessful, the faulty node is pinpointed by diime-to-decision. The active probing strategy, although
ing a binary search among target nodes on its path. very intuitive, has not been formally discussed before.
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Our work relates to four broad categories of previowmvironment. We formulate and develop algorithms for the
work: event correlation, system-level diagnosis, netwogkobe selection problem that has not been studied by the
fault diagnosis, and performance measurement. Event cafierementioned authors.
relation ([1], [2]) for identifying root-causes has long been
recognized as a critical issue in the system management do-
main. Problem determination is performed by analyzing

alarms emitted by devices when a significant situation oc-|n this paper, we address the problem of diagnosis in dis-
curs. Unlike the probing scheme, alarms are “reactive” Abuted systems using test transactions, or probes. Probes
a situation and this requires intensive instrumentation, ordffer an approach to diagnosis that is more active than tradi-
possible in a tightly managed environment. The probing afonal “passive” techniques like event correlation. Our main
proach uses test transactions that can be built easily withggfective is developing a cost-efficient probing strategy; we
touching the existing devices. want a small probe set which at the same time provides
Nonetheless, event correlation has many similarities igde coverage for locating or detecting problems anywhere
our work. The formulation of problem diagnosis as @ the network.
“decoding” problem, where “problem events” are decoded we formulate the probe selection problem using a gen-
from “symptom events”, was first proposed by [3]. In ouéral optimization framework. By reasoning about the in-
framework, the result of a probe constitutes a “symptof8ractions among the probe paths, an information-theoretic
event”, while a failure is a “problem event”. Howevekstimate of which probes are valuable can be constructed.
beyond this conceptual similarity the two approaches argis yields a quadratic-time algorithm which finds near-
quite different. The major difference is that we use an agptimal probe sets. We also implement a linear-time al-
tive probing approach versus a “passive” analysis of symgorithm which can be used to find small probe sets very
tom events; namely [3] selects codebooks (a combinationdifickly.
symptoms encoding particular problems) from a specifiedwe consider two probing approaches: entirely pre-
set of symptoms, while we actively construct those symptanned and active. The active probing approach has two
toms (probes), a much more flexible approach. Anothghases: fault detection by pre-planned probes, and fault lo-
important difference is that [3] lacks a detailed discussiqyization by using additional probes as needed, based on
of efficient algorithms for constructing optimal codebookgyrevious observations. Since fault detection requires fewer
The problem of fault diagnosis in a system of intercorprobes than fault localization, the active probing approach
nected components dates back to [11] and [12]. Since thalisually a more efficient strategy.
time a large body of literature has developed [13]. In con- pirections for future work include real-time diagnosis
trast with that work, in our case it is not possible for eyith changing network state and intermittent faults, han-
ery node in the network to be used to test other nodegiing dynamic routing and lack of precise knowledge of the
only a small number of nodes can be used as probe statigishe path, and adapting to non-stationary behavior of the
to generate the tests. As a result of this the probing pr%tem using on-line |earning that y|e|ds a dynamic’ adap_
lem becomes a “constrained-coding” problem, as explaing@ probing strategy. Our main focus remains the cost-
above. efficiency and scalability requirements of problem determi-
Other approaches to fault diagnosis in communicgation, which will become increasingly important in the
tion networks and distributed computer systems includentext of new technological challenges relatedatio-
Bayesian networks [14] and other probabilistic dependenggmic computinga paradigm for new-generation IT sys-

models [15]; another approach is statistical learning to d@ms capable of self-management and self-repair.
tect deviations from the normal behavior of the network

[16]. The probabilistic diagnosis issues are addressed in our

related work in [8], where a probabilistic approximation al- REFERENCES
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APPENDIX @ cannot contain more tham — 2 of the new rows

Here we prove thafAULT LOCALIZATION is NP-hard. (since|@| < k). But then@ will induce duplicate

Proof: We will show thatFAULT LOCALIZATION is columns in the right half oD, ., since removing at
NP-hard via a reduction frolBAULT DETECTION. least two rows fronT,, induces duplicate columns.

Let the dependency matri®p  and the positive integer Thus any subsef) of at mostk rows induces duplicate
k be an arbitrary instance 6AULT DETECTION. We need columns inD, ;,, making it a negative instance BAULT
to construct, in polynomial time, sefs, P, and an integer LOCALIZATION, as desired.
k < |PJ, such that there exists a subseffbbf size at most ]
k covering F' if and only if there exists a subset @f of
size at most: such thatDpyﬁ, has unique columns.

The setF contains all the elements &f = {f1,..., f,},
plusn new elementgy, ..., g,. The setP will contain all
the probes inP, plusn additional probeq f;, g;} for all



