
RC22929 (W0310-029) October 6, 2003
Computer Science

IBM Research Report

On Accommodating Inter Service Dependencies in Web
Process Flow Composition

Kunal Verma1, Rama Akkiraju2, Richard Goodwin2, Prashant Doshi3,
Juhnyoung Lee2

1University of Georgia
Athens, GA 30602-7404

 2IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

3University of Illinois
851 S. Morgan

Chicago, IL 60607

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

On Accommodating Inter Service Dependencies in Web Process Flow
Composition

Kunal Verma1, Rama Akkiraju2, Richard Goodwin2, Prashant Doshi3, and Juhnyoung Lee2

1Department of Computer Science, University of Georgia, Athens, Georgia, GA 30602-7404
2IBM T. J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532

3Department of Computer Science, University of Illinois, 851 S. Morgan, Chicago, IL 60607
verma@cs.uga.edu

{akkiraju,rgoodwin, jyl}@us.ibm.com
pdoshi@cs.uic.edu

Abstract
Current business process flow representation languages
such as BPEL4WS are prescriptive and operate at the
execution level. They do not accommodate abstract
specifications of business activities and dynamic binding
of Web Services at run time. Moreover, dynamic selection
of Web services for a process is, often, not a stand-alone
operation. There may be many inter-service dependencies
and domain constraints that need consideration in
selecting legal and meaningful services for realizing an
abstract flow. In this paper, we present a system for
dynamic binding of Web Services for abstract
specifications of business integration flows using a
constraint based semantic discovery mechanism. Building
on prior work in this area (Mandel and McIlraith 2002),
we provide a way of modeling and accommodating
scoped constraints and inter-service dependencies within
a process flow while dynamically binding services. The
result is a system that allows people to focus on creating
appropriate high level flows, while providing a robust and
adaptable runtime.

1. Introduction
The Business Process Execution Language for Web
Services (BPEL4WS) (BPEL 2002) is a language to
specify business processes and business interaction
protocols. It superseded XLANG (Thatte 2001) and
WSFL (Layman et al. 2001) as a standard for Web
services flow specification. BPEL4WS provides a
representation mechanism for process execution flows
consisting of a number of constructs for representing
complex flows, data handling and correlation.
Unfortunately, in its current specification, BPEL4WS
operates at the execution layer. That is, BPEL4WS
requires static binding of services to the flows. The
process model defined by BPEL4WS is based on the
WSDL (Christenson et al. 2001) service description
model. WSDL lacks semantic expressivity, which is
crucial to capturing service capabilities at abstract levels.

Also, BPEL4WS does not specify how to model
constraint scopes and inter-service dependencies in a
process flow. These limitations hinder the promise of
software interoperability.

Some of these limitations are already being addressed in
parallel efforts by the Semantic Web community.
Recently, this community has developed automatically
inferenceable ontology markup languages such as DAML
(DAML 2000), DAML+OIL (DAML+OIL 2001) and
OWL (OWL 2002). To address the lack of semantics in
the industry backed Web Services standards, the Semantic
Web Community developed a DAML+OIL ontology for
Web Services known as DAML-S (Ankolekar et al.,
2002). This DAML family of semantic markup languages
together lays the foundation for Semantic Web Services
(McIlraith, Son and Zeng 2001), automatic service
discovery, and service composition. However, much work
still needs to be done to tie in these foundation
technologies with business process integration issues in
the context of industry setting.

In our work, we take a consultant’s view of business
process flow representation rather than an IT
programmer’s view. We argue that business process flow
specifications should be defined at abstract task levels
leaving the details of specific service bindings and
execution flows for the system to discover either
automatically or semi-automatically. To investigate the
realizability of this claim, we have developed a system
that can enhance the business process flow representation
of BPEL4WS with semantics to facilitate runtime
discovery of Web Services. In this paper, we discuss our
experiences with dynamic binding of Web Services in
process flows. In particular, we contend that the selection
of Web services for a step in a process flow is, often, not
a stand-alone operation, as there may be dependencies on
previously chosen services for the process. For example, a
process flow in which a document is encrypted using the
services of a 512-bit encryption algorithm at one step
might need to ensure that it chooses a compatible service

mailto:akkiraju,rgoodwin, jyl}@us.ibm.com
mailto:pdoshi@cs.uic.edu

that can decrypt the previously chosen encryption
algorithm in the subsequent steps. Therefore, representing
and accommodating context-based constraints is crucial to
the selection of legal and meaningful services in fleshing
out the abstract flows. To illustrate this, in section 2 we
present two motivating scenarios in which constraints
pose service selection limitations. The first scenario
presents Web Service description based constraints while
the second scenario poses domain constraints. Next, we
present the architecture of our system, and discuss how it
works with one of the reference scenarios in section 3.
We then review the related work in this area and outline
our contributions in section 4. Finally, we present our
conclusions and plans for future work in section 5.

2. Motivating Scenarios
To demonstrate the need for accommodating inter-service
dependencies and constraints, we have chosen two
scenarios. Both of them are variations of a purchase order
scenario. The first one demonstrates domain constraints
and the second inter-service dependencies.

Suppose that a retailer sends an order for three sets of
electronic parts to a distributor: item 1, item 2, and item 3.
The distributor has a set of preferred suppliers from
whom she orders the parts. Say suppliers A, B and C can
supply item 1, suppliers D, E and F can supply item 2 and
suppliers G, H and I can supply item 3. Say that there are
some incompatibilities in the technology of suppliers. The
incompatible sets might look like: (A, E) (B, F) (E, I) and
(C, G) meaning that supplier A’s technology is
incompatible with that of supplier E’s and so on. The job
of the distributor is to fulfill retailer’s order while
accounting for any technology constraints. A high level
process flow is shown in figure 1.

Figure 1: A schematic illustration of Distributor process

This distributor process for placing a purchase order for
the retailer requested items can be further elaborated
using the following steps. First, distributor has to find
suitable service providers that can supply the requested
items from amongst her preferred supplier list. Second,
the distributor should check for feasible and compatible

suppliers based on technology constraints. Third, the
distributor must verify the availability of requested items
from the suppliers and place purchase orders upon
availability confirmation (this process of placing a
purchase order many not be a simple operation. It could
involve discovering some additional services such as
document signing and encryption if the distributor
requires such pre processing. This forms the focus of our
second scenario). Finally, the distributor must monitor the
status of the order items on a regular basis to monitor
timeliness of delivery and act on tardy orders. Figure 2
shows the detailed distributor process.

 Figure 2: A schematic illustrating the details in the distributor
process

In figure 2, we group the logical steps of the overall flow
into units of scope. Within each unit of scope, there are
domain constraints that need to be considered while
binding services. For example, in scope 1, supplier
technology constraints dictate the selection of services for
order items. In scope 2, the delivery times of each order
item might pose constraints in selecting substitutes for
tardy orders. Although it is simplistic to assume that
domain constraints can be separated out cleanly into units
of scope, this scenario, nevertheless, brings forth the
issues in dynamic binding of services.

Our second scenario involves a retailer sending a
purchase order to a distributor and monitoring the order
status. Suppose that the distributor requires the order
documents to be signed and encrypted using public-key
and private-key technology. The business process flow in
this scenario involves finding document signing and
encrypting services in the binding process. The encryption
capabilities of service providers are further elaborated
based on encryption types and key lengths such as 256-
bit, 512-bit, and 1024-bit etc. The following inter service
dependencies are evident in this flow: (1) a plain text
order document has to signed and encrypted before

For each Item:
1. Find Suitable Suppliers,
2. Check Availability and
3. Place Order

Receive Purchase Order

Monitor Order Status,
Send alerts

for
tardy delivery

Split Order Items

Order item
1

Order item
2

Order item
3

Select Candidate
Suppliers

Domain
Constraints:

Supplier
technology

Receive Purchase Order

Select Candidate
Suppliers

Select Candidate
Suppliers

Check Constraints &
Create Compatible
Service Sets

Invoke to Check
Availability &

Place Order

Invoke to Check
Availability &

Place Order

Invoke to Check
Availability &

Place Order

Monitor
Order Status

Monitor
Order Status

Monitor
Order Status

Unit Scope 1: Place Purchase Order

Unit Scope 2: Monitor Order
Status

 2

processing (2) a document should be encrypted only after
it is signed, (3) a key must be obtained before a signed
document can be encrypted. This process is shown in
figure 3. The high level flow is shown in the boxes that
run top-to-bottom. The details of preparing a purchase
order for submission are shown in the cloud. The steps in
the cloud are meant to be discovered automatically during
execution.

Figure 3: Document encryption scenario process flow

This scenario illustrates the need for accommodating inter
service dependencies during dynamic binding of Web
process flows.

3. Our Solution Approach
In this section, we explain the details of our solution
approach by referencing the electronic parts purchase
order scenario. The key components of our architecture
are shown in Figure 4. They are: a Generic Web Service
Proxy, A Semantic UDDI module, a Constraint Checker,
a Dynamic Binder and Invoker.

We used the following technologies for developing our
system: (1) DAML family of semantic markup languages
for ontology, and service capability representations (2) A
semantic UDDI server (Akkiraju et. al 2003) for finding
suitable services (3) a DAML-S matching engine (Doshi
et. al 2003) for matching service semantics (4) a semantic
network based ontology management system known as
SNoBASE (Lee et al 2003) that offers DQL-based Java
API for querying ontologies represented in
DAML+OIL/OWL (5) IBM’s ABLE (Bigus et al 2001)
engine for inferencing (6) BPEL4WS for representing the
process flows (7) BPWS4J– IBM’s BPEL execution
engine (BPWS4J 2002) and (8) Websphere Application
Server: IBM’s Java application server for deploying and
executing Web Services and BPEL4WS flows.

First, we represent the context of the process flow along
with any domain constraints in DAML+OIL. In the
electronic parts scenario, we represent the relationships
between electronic items such as network adapters, power
cords, batteries, their corresponding technologies such as

network type, voltage input/output specs, Lithium-Ion
(Li-Ion) battery vs. Nickel Cadmium battery (Ni-Cad).
etc. Then, we instantiate distributor’s preferred suppliers
and capture their technology constraints in the ontology.
Once the domain is defined, we encode the supplier
services for item availability check, purchase order
receivers as Web Services in DAML-S. We deploy these
DAML-S descriptions as external description in UDDI
via t-Models (UDDI 2002). These descriptions are later
used in the selection of suitable services for a given set of
requirements. The corresponding WSDL descriptions of
these services are used for invoking the actual Web
Services.

Receive Purchase Order Find Digital
Signing Service Find

Encryption Service

 (Consider Encryption
Type)

Prepare Purchase Order
Obtain Public

Key
for Submission

Once the domain ontologies, service semantics and the
corresponding WSDL files are all created, users can then
create abstract BPEL4WS flows to represent business
processes. An abstract BPEL4WS flow is divided in to a
set of unit scopes. For the electronic parts purchase order
process example, we define a high level BPEL4WS
document with two steps one for each unit of scope: (1)
finding suitable partners, checking item availability and
placing orders (2) monitoring the status of purchase
orders. This notion of unit of scope tells our system that
activities within this scope might have interdependencies
and that service selection and binding should be done as
an atomic operation. For instance, the technology of one
service provider might be incompatible with that of
another even though the capabilities of both of them
match with those of requirements. We use scoping as a
way of defining a manageable search space for finding
compatible services. Since humans possess the inherent
capability to group related things in a given problem
domain, we rely on users to tell us the boundaries of
scopes via abstract flow definitions. In essence, these
abstract flows hide the details of activities within a scope.
We bind a generic Web Service to each unit scope thus
defined in the high level BPEL4WS process flow
document. The Generic Web Service Proxy is a Web
Service defined via a WSDL document that can be
statically bound to a node in the BPEL4WS flow. We use
this proxy to defer specifying the execution details of the
activities within a unit of scope. We then deploy this high
level BPEL4WS document in BPWS4J, IBM’s
BPEL4WS execution engine-BPWS4J.

Submit Transformed Invoke all
Services

Bind all
Services Purchase Order

Purchase Order

Monitor
Order Status

The Generic Web Service Proxy module takes the
following as inputs: a sub BPEL4WS flow that consists of
the semantic descriptions of the service requirements
represented in DAML-S, domain constraints or service
dependency constraints represented in OWL, the location
of public or private UDDI registries to find suitable
matches. The sub BPEL4WS flow expands the activities
within a logical step. We use the approach specified in
(Sivashanmugan et al. 2003) to augment this BPEL4WS

 3

to carry the semantic descriptions of service requirements
instead of the services themselves.

During the execution of the high level BPWS4J flow, at
each node (alternately unit scope), the Generic Web
Service Proxy gets invoked. At a high level the Generic
Web Service Proxy discovers suitable services,
automatically binds feasible sets and invokes them and
returns control to the upper BPEL4WS flow. BPWS4J
engine then proceeds with the execution of the remaining
steps of the flow.

Figure 4: Interaction flow between abstract process flow and our
dynamic service binder.

Below, we describe the details of the Generic Web
Service Proxy component. The job of The Generic Web
Service Proxy is to bind all nodes in the sub flow that it is
responsible for and to execute them. First, it invokes our
semantic UDDI module to find a set of candidate services
that are described in DAML-S and those that are
advertised under related industry categories. For example,
in the electronic parts scenario, all the supplier services
that are registered under a UNSPSC category known as
‘Electronic Components and Supplies’ are retrieved. The
proxy then invokes a DAML-S semantic matching engine
to perform matching between the capabilities of services
that are retrieved in the previous step and requirements of
those that are specified at a given node in the sub flow.
Our DAML-S matching engine is capable of finding
simple services as well as compositions of sets of services
that together match the given requirements. In the
electronic parts scenario, all suppliers that can supply the
requested parts whose item availability service
capabilities match that of the request specified by the
distributor get returned by the matchmaker. These
matching services are then passed back to the Generic
Web Service Proxy. It then invokes the Constraint
Checker module. This module takes the set of suitable
services selected from the previous step for each node in
the flow, the domain or service constraints and creates

feasible/compatible sets of services ready for binding. The
Constraint Checker module uses SNoBASE- the semantic
network based ontology management system to infer the
technological compatibility of suppliers’ parts. We
provide a generic interface to perform the constraint
checking. Many heuristic approaches can be implemented
for generating feasible sets of services for a given sub-
flow. We have implemented a greedy look-ahead
algorithm in our current implementation for generating
these compatible sets. Various selection criteria such as
cost, time, quality etc. can be employed in choosing a
compatible set from the possibly many that get created.
The chosen compatible set of services can then be bound
to each node in the BPEL4WS flow and the flow can be
executed using a BPEL engine. This invocation happens
within our Dynamic Invoker module. The output of the
invoked unit of scope is then passed back to the high level
BPEL4WS flow.

 Semantic UDDI

UDDI 2. Find suitable
candidate services

DAML-S
Matchma

1. Abstract process flow
3. Check Constraints and generate
compatible sets of services

Generic 4. Related Work Web Constrai
nt In our view, processing high level descriptions of process

flows and generating executable flows from it consists of
three steps. First, we need to augment the BPEL4WS
language with semantics for representing process and
service semantics. Second, we need to dynamically
discover services that match given high level descriptions
using semantic matching of Web Services. Finally, we
need to accommodate inter service dependencies and
domain constraints in selecting suitable services to bind
for a given process. Some work has already been done in
all these aspects.

Service
 Checker Proxy

BPEL Dynamic
Binder

& Invoker 4. Bind compatible
services and invoke

Sivashanmugam et al. developed a template-based
approach to capturing the semantic requirements of
process services using DAML-S language constructs
(Sivashanmugam et al. 2002). The semantic information
about services in the templates can be used to
dynamically discover suitable services and generate
executable BPEL4WS documents. Paolucci et al
(Paolucci et al. 2002b), and Akkiraju et al., (Akkiraju et al
2003) present mechanisms for dynamically discovering
Web Services using semantic extensions to UDDI
registry. Mandel et al (Mandel and McIlraith 2002)
present an approach to combine DAML-S and BPEL4WS
for achieving dynamic binding. They also account for
user defined constraints in service selection. A significant
difference between this work and our approach is that we
capture the scope of related services within the
BPEL4WS flow and use this information to bind all
services that are related or belong to a local scope at once
to accommodate their domain constraints and service
dependencies. The result is a set of bindings that are legal
and feasible in the operating domain.

 4

5. Conclusion and Future work
 In this paper, we argued that business process flow
specifications should be defined at abstract task levels
leaving the details of specific service bindings and
execution flows for the system to discover either
automatically or semi-automatically. To support this
argument, we have presented an approach to achieve
dynamic binding of Web services in business process
flow composition while considering inter-service
dependencies and constraints. Our work leverages the
advances in semantic web technologies, to augment the
flexibility to the current industry standards. We have
shown the usefulness of our work by implementing our
system in the context of two scenarios: purchase order
scenario in electronic parts domain and a secure document
purchase order scenario. We contend that this paper adds
to current work in this area, by presenting an approach to
handle dependencies between services in a process.

In this work, by clearly separating the scopes of services
we have simplified the problem in many ways. The real
world business process flows tend to be much more
complex with many interdependencies and no clear unit
of scopes. This calls for further explorations in the area of
accommodating complex process dependencies. As a
follow on to our current work, we are exploring service
execution monitoring and recovery of process flows that
are dynamically composed using probabilistic models.

6. References
[1] Ankolekar A., Burstein M., Hobbs J. J., et al. 2001.

DAML-S: Semantic Markup for Web Services. In
Proceedings of the International Semantic Web
Working Symposium (SWWS).

[2] Berners-Lee T., Hendler J., Lassila O. 2001. The
Semantic Web. Scientific American.

[3] Bigus J., and Schlosnagle D. 2001. Agent Building
and Learning Environment Project: ABLE.
http://www.research.ibm.com/able/

[4] BPEL Technical Committee. 2002. Business Process
Execution Language: BPEL. IBM Developer Works
Article. http://www-
106.ibm.com/developerworks/webservices/library/ws
-bpel/

[5] Christenson E., Curbera F., Meredith G., and
Weerawarana S. 2001. Web Services Description
Language (WSDL). www.w3.org/TR/wsdl

[6] DAML Technical Committee. 2000. DARPA Agent
Markup Language- DAML. http://www.daml.org

[7] DAML+OIL Technical Committee. 2001.
DAML+OIL.
http://www.daml.org/2001/03/daml+oil-index

[8] IBM 2002. The IBM Business Process Execution
Language for Web Services JavaTM Run Time
(BPWS4J).
http://www.alphaworks.ibm.com/tech/bpws4j

[9] Layman F., Curberra F., Roller D., and Schmidt M.
Web Services Flow Language: WSFL. http://www-
3.ibm.com/software/solutions/webservices/pdf/WSF
L.pdf

[10] Lee J., Goodwin R. T., Akkiraju R., Doshi P., Ye Y.
SNoBASE: A Semantic Network-based Ontology
Ontology Management.
http://alphaWorks.ibm.com/tech/snobase.

[11] McIIraith S., Son T., and Zeng H. 2001. Mobilizing
the Semantic Web with DAML-Enabled Web
Services. Semantic Web Workshop.

[12] OWL Technical Committee. 2002. Web Ontology
Language (OWL). http://www.w3.org/TR/2002/WD-
owl-ref-20021112/

[13] Paolucci M., Kawamura T., Payne T. R., and Sycara
K. Semantic Matching of Web Services Capabilities.
The First International Semantic Web Conference
(ISWC), Sardinia (Italy), June, 2002.

[14] Paolucci M., Kawamura T., Payne T. R., and Sycara
K. 2002. Importing the Semantic Web in UDDI. In
Web Services, E-Business and Semantic Web
Workshop.

[15] RDF Technical Committee. 1999. Resource
Description Framework: RDF.
http://www.w3.org/TR/1999/REC-rdf-syntax-
19990222/

[16] Thatte S. 2001. XLANG: Web Services for Business
Process Design.
http://www.gotdotnet.com/team/xml_wsspecs/xlang-
c/default.htm

[17] UDDI Technical Committee. 2002. Universal
Description, Discovery and Integration (UDDI).
http://www.oasis-open.org/committees/uddi-spec/

[18] Weerawarana S., Curbera F. 2002. Business Process
with BPEL4WS: Understanding BPEL4WS.
http://www-
106.ibm.com/developerworks/webservices/library/ws
-bpelcol1/

[19] XML Technical Committee. 2000. Extensible
Markup Language: XML.
http://www.w3.org/TR/REC-xml

5

http://www.research.ibm.com/able/
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://www.w3.org/TR/wsdl
http://www.daml.org/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
http://www.uddi.org/

	Introduction
	Motivating Scenarios
	Our Solution Approach
	Related Work
	Conclusion and Future work
	References

