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Abstract

This paper explores the impact of options on supply chain performance when consumer
demand is uncertain. The analysis is based on an environment involving a single supplier and
multiple retailers. Each retailer can either buy product directly from the supplier, or purchase
options on product. An option gives the retailer the right, but not the obligation, to buy an
additional unit of product. As such, the retailer will exercise an option if and only if that unit of
product is needed to meet demand. The retailer must balance the reduced uncertainty that options
afford against the price premium that must be paid to procure product with options.

Unlike other options and option-like contract arrangements that have been studied in the
supply chain management literature, the options considered in this paper are independent of any
contractual arrangement made between a particular buyer and seller. As such, these instruments
can be traded among retailers as more information about the actual demand each faces becomes
available, allowing contingency claims to flow to those retailers whose supply needs are greatest.

We first derive optimal replenishment policies for the retailers, the optimal production policy
for the supplier, and closed-form solutions for optimal expected profits. We then show how options
enhance information flows, encourage risk sharing, and improve supply chain efficiency. The paper
includes a discussion of how options can be used to align the incentives of supply chain partners, and
to improve supply chain responsiveness to changes in the business environment. We then consider an
open market for trading supply chain derivatives, and characterize how an individual retailer should
react to the opportunity to buy and sell options on product. We characterize the equilibrium market
price at which options should trade, and demonstrate that this trading increases the expected profits
of all retailers. Additional insights into the value of a market for trading supply chain options are
derived through numerical exploration.

Keywords: Supply Chain Options, Options Trading, Options Price, Risk Management, Replenish-
ment Flexibility, Channel Coordination, Risk Sharing, Information Sharing.



1. Introduction

Supply chain risks can have a significant impact on a firm’s operating and financial perfor-

mance. Demand uncertainty can result in under- or over-production, leading to either lost sales or

excess inventory. Shortages of critical inputs can lead to expedited purchases at higher prices, or

even cause major production or supply chain disruptions. Insufficient capacity can result in lost

sales, while excess capacity can yield uncompetitive production costs.

Numerous examples illustrate how unexpected events can affect the smooth functioning of

supply chains. In March 2000, lightning struck a Philips Electronics facility, causing a fire that shut

down the plant for several weeks (Latour 2001). Because Philips was the sole source for critical

components used by Ericsson to produce mobile phone handsets, and because Ericsson had no

contingency plans to manage supply disruptions, the shutdown caused a reported $400 million in lost

revenue. Poor demand forecasting and rigid procurement contracts at Cisco Systems precipitated

$2.5 billion in inventory write-offs in 2001 (Berinato 2001). Difficulties implementing supply chain

management software at Nike led to severe inventory difficulties in 2001, decreasing third quarter

revenue by $100 million and reducing the firm’s market capitalization by almost 20% (Piller 2001

and Wilson 2001). Quality problems with Firestone tires on the Ford Explorer resulted in over one

hundred highway fatalities and forced massive tire recalls (Bradsher 2001 and Kashiwagi 2001), not

only creating a potential multi-billion dollar legal exposure for the two firms, but also leading to

significant loss of brand valuation.

With technological advancements and new business models, managing supply chain risks has

become increasingly difficult. As supply chains continue to get leaner, they become far more depen-

dent on the carefully orchestrated coordination of a complex network of supply chain partners. This

new business environment is characterized by intense, global competition, short product life cycles,

increased technological innovation, time-sensitive customer demand, and greater use of outsourcing.

Operating in this environment reduces a firm’s margin for error.
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The consequences of failing to effectively manage supply chain risk have also become more

severe. In addition to the direct impact on revenue and profit, disruptions in supply or demand

can also hurt a firm’s trading partners (e.g., customers and suppliers), since the interconnectedness

of supply chain causes a ripple effect that affects the entire supply ecosystem. The equity markets

can be equally unforgiving. Hendricks and Singhal (2003) demonstrated that firms reporting supply

chain difficulties typically lose about 10% of their market capitalization in the two days following

announcement of the event.

However, supply chain risks can be managed, both operationally and financially. Opera-

tionally, a firm can reduce risk by changing its degree of vertical integration, product strategy,

procurement practices, and inventory policies. Financially, a firm can carry insurance, modify sup-

ply contract terms, and hedge with derivatives such as futures contracts, options, and swaps. While

considerable research has focused on how to operationally manage supply chain risks (see, e.g.,

Tayur et al. 1999), there has been only limited study of the use of financial instruments to manage

supply chain risk.

Derivative instruments have consistently proven their value as a means for managing risk (see,

e.g., Crouhy et al. 2001), and financial futures and options are actively traded on many exchanges.

Derivatives are routinely used to manage financial risks, e.g., exposure to security price fluctuations,

foreign exchange rate movements, and changes in interest rates (Hull 1997). Within a more limited

scope, a few industries have also used derivatives to manage risk (see, e.g., Pilipovic 1998 on the

use of options in energy markets, Bassok et al. 1997 on the practice at IBM printer division, and

Farlow et al. 1995 on the practice at Sun Microsystems).

Supply contract terms and conditions often have characteristics that make them behave much

like financial derivatives. Option-like contract arrangements explored in the literature include buy

back policies (Pasternack 1985, Emmons and Gilbert 1998), backup agreements (Eppen and Iyer

1997), pay-to-delay capacity reservation (Brown and Lee 1998), and quantity flexibility (Tsay 1999,

– 2 –



Tsay and Lovejoy 1999). Barnes-Schuster et al. (2002) explored the impact of contractual real

options in a buyer-supplier system.

Note that in the supply arrangements listed above the options are embedded in the contract

itself. In contrast, the options studied in this paper are completely separate from any supply chain

contract, and can thus be traded in an open market. This structure offers a number of advantages.

First, option holders can adjust the quantity of options they hold as they learn more about the

market and their exposure to risk. For example, a retailer facing lower-than-expected demand can

sell options to a retailer facing higher-than-expected demand, perhaps even realizing a profit on the

transaction. In contrast, embedded options are not fungible - holders cannot divide them and take

a fraction of a position. As such, an embedded option is a sunk cost for its holder, since it cannot

be recovered once the contract has been signed.

Separating options from supply contracts also allows organizations to align their supply chain

investments with their risk preference. Supply chain partners can have very different perceptions

of value and risk, differences that can prevent optimal investment in inventory and capacity and

degrade overall supply chain efficiency. Tradable options allow risk to be assumed and shared among

those organizations that have the inclination and capacity to bear risk. These could include other

suppliers or buyers, risk intermediaries such as insurance companies or banks, or even speculators.

Finally, information about supply and demand is an important element of supply chain man-

agement (see e.g., Lee et al. 1997). A market for supply chain options provides a rich source of

data (e.g., option prices and trading volumes) that can be used to facilitate capacity planning and

production scheduling.

The supply chain is the nexus for a wide variety of risks. Firms face risks when buying

from their suppliers, and when selling goods and services to their customers (Grey and Shi 2003).

These risks can derive from several sources, such as demand uncertainty, price fluctuations, supply

disruptions, inventory risk, quality problems, and complexities associated with new technologies.
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The options described in this paper are derivatives whose value is linked to customer demand.

However, the framework developed here can be easily modified to study derivatives whose value is

dependent on other forms of supply chain uncertainty.

The remainder of the paper is organized as follows. Section 2 describes the problem setting

and derives optimal policies for both a collection of retailers and a single supplier. Section 3 dis-

cusses the impact of options on the supply chain with respect to flexibility, channel coordination,

and risk and information sharing. Section 4 presents a model for trading options among buyers,

which facilitates the analysis of the value of options trading. Section 5 numerically investigates the

effectiveness of an options market with respect to various parameters. Section 6 concludes with a

summary and suggestions for further research. All mathematical details and proofs are relegated to

the Appendix.

2. Problem Formulation and Solution

We consider a supply chain comprised of a supplier producing short-life-cycle products, and

a set of retailers {1, 2, . . . , N} who order product from the supplier and then sell to end-users. Each

retailer must independently decide how many units of a single product to purchase to cover a selling

season, i.e., a time period [0, τ ]. We assume that the procurement lead-time is long relative to the

selling season, so that retailers cannot observe demand before placing an order. Because of the long

lead-time, there is no opportunity for retailers to replenish inventory through new orders once the

season has begun. However, as discussed in Section 4, retailers can adjust their positions by trading

options with one another at time t > 0.

At time t = 0, retailers can obtain goods from the supplier by two means: either through

a firm order or by buying and exercising call options. Before the start of the season, each retailer

i places an order for Qi units of product at unit wholesale price W . These units are physically

delivered at time t = 0. Each retailer i also purchases qi options at unit cost C, each of which gives
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the retailer the right (but not the obligation) to buy one unit of product at exercise price X after

demand has been observed at time 0 < t < τ .

Assume that the product has unit retail price R (which is the same for all retailers, though

prices that vary across retailers can be easily accommodated) and unit manufacturing cost M .

After the selling season, any excess product, regardless of whether it is owned by the retailer or the

supplier, can be salvaged at unit value S. Before the selling season, the demand faced by retailer i,

denoted by Di, is uncertain. Most of the analysis applies to general continuous demand distributions

with density function f(Di) and cumulative distribution function F (Di).

Both the retailers and the supplier make decisions prior to the selling season. Each retailer

i places orders for Qi units of product and qi options, and the supplier subsequently decides the

number of units of product Y to produce. Clearly Y must be at least as great as
N∑

i=1

Qi, since each

Qi represents a firm order. Retailer i only exercises options when Di > Qi, and the likelihood that

the retailer i will not exercise all qi options is positive. Therefore, the number of units Y produced

by a rational supplier is between
N∑

i=1

Qi and
N∑

i=1

(Qi + qi). However, when Y <
N∑

i=1

(Qi + qi), there is

a positive probability that the supplier will default on its commitment to fill all options. In such a

case, the supplier incurs a unit penalty cost P for each exercised option that cannot be immediately

fulfilled from inventory.

The penalty cost P can have different interpretations. P may represent the cost the supplier

incurs to obtain an additional unit of product by expediting production or buying from an alternative

source. It could also represent a pre-determined cash penalty specified in the option contract.

However, these two mechanisms for settling option defaults result in a different set of incentives for

retailers, even for the same value of P . When the supplier finds an alternative means for delivering

the product, retailers only exercise options that are truly supported by actual demand. In contrast,

when the supplier incurs a cash penalty for defaulting, retailers will exercise all options as soon

as they learn that the supplier cannot meet the options commitment, regardless of whether or not
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there is actual demand. For this reason, we assume that all options are settled by physical delivery

of product rather than cash settlement.

There are several natural feasibility conditions in the supply chain:

M < W < C +X < R (1)

P > M > S (2)

X > S (3)

Conditions M < W < R and C +X < R must hold to ensure profit for both the retailers and the

supplier. Moreover, if W ≥ C+X , it would be advantageous for the retailers to only order options.

Condition (2) states that penalty cost P is always greater than the normal production cost M ,

which is always larger than salvage value S. Condition (3) is necessary to prevent the retailers from

exercising all of their options, even when there is no actual demand, and salvaging the purchased

products.

Supply arrangements involving embedded options are special cases of this general framework

(see, e.g., Barnes-Schuster et al. 2002, and Shi et al. 2003). This model also differs from Barnes-

Schuster et al. (2002), where the supplier must produce the maximum quantity possibly requested

but without penalty P . Moreover, the focus in this paper is on the impact of options trading among

retailers, while Barnes-Schuster et al. (2002) studied the role of options in a single buyer-supplier

system where trading is not possible.

2.1. The Retailers’ Decisions at time t = 0

Each retailer i has two decision variables: the number of units Qi to order and the number

of call options qi to purchase. We introduce Ti = Qi + qi to represent the total order quantity for

retailer i. Note that determining (Qi, qi) is equivalent to determining (Qi, Ti). The retailer will

always first fulfill demand using firm orders Qi. When Qi is insufficient to meet all demand, the
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retailer will exercise up to qi options. The expected profit for retailer i with options is given as:

EΠRi
(Qi, qi) = EDi

[
Rmin(Di, Ti) + S(Qi −Di)+ −WQi − Cqi −Xmin

(
qi, (Di −Qi)+

)]
. (4)

The first term is total revenue, which reflects the fact that the retailer’s sales are limited by

both total demand and total supply. The second term represents the salvage value of any leftover

product. The last three terms capture the cost of ordering product directly, of purchasing options,

and of exercising options as required, respectively. Substituting qi = Ti −Qi in (4), we can rewrite

the expression for expected profit as a separable function in Qi and Ti:

EΠRi
(Qi, Ti) = (X+C−W )Qi−(R−S)

∫ Qi

0
F (Di)dDi+(R−X−C)Ti−(R−X)

∫ Ti

Qi

F (Di)dDi. (5)

Retailer i seeks to identify Qi and Ti that maximize EΠRi
(Qi, Ti), subject to the constraint

that 0 ≤ Qi ≤ Ti. It is straightforward to show that, because of (1) – (3), the expected profit

function is concave with respect to Qi and Ti, and thus has a unique maximum. The optimality

conditions are given by the following result.

Proposition 1. Let Q∗
i be the optimal number of units that retailer i should order, and T ∗

i the

optimal total order quantity. Then:

F (T ∗
i ) = Pr(Di ≤ T ∗

i ) =
(R−X − C)

(R−X)
(6)

F (Q∗
i ) = Pr(Di ≤ Q∗

i ) =
(X + C −W )

(X − S)
(7)

and the optimal expected profit for retailer i is given by:

EΠRi
(Q∗

i , T
∗
i ) = (X + C −W )Q∗

i − (R− S)
∫ Q∗

i

0
F (Di)dDi + (R−X − C)T ∗

i − (R −X)
∫ T ∗

i

Q∗
i

F (Di)dDi. (8)

Note that Q∗
i ≤ T ∗

i implies that C ≤ (W−S)(R−X)
(R−S)

. This shows that if the option cost C is too high,

retailer i will not order any options. Throughout this paper, we assume that the cost parameters

always satisfy this constraint.

– 7 –



The classic newsvendor model (Hadley and Whitin 1962) is a special case of this formulation

where the retailer cannot purchase options. The optimal order quantity QNV
i and optimal expected

profit EΠNV
Ri

for retailer i in the classic newsvendor formulation are represented by:

F (QNV
i ) = Pr(D ≤ QNV

i ) =
(R−W )
(R− S)

(9)

EΠNV
Ri

(Q∗
NV) = (R − S)

∫ QNV
i

0
Df(D)dD = (R−W )QNV

i − (R− S)
∫ QNV

i

0
F (D)dD. (10)

Equation (9) can be rewritten as F (QNV
i ) = Cu

(Cu+Co)
, where Cu = R−W is the unit underage

cost of forgone profit, and Co = W −S is the unit overage cost of salvage loss. Equations (6) and (7)

also take this form. In (6), Cu = R− (X +C) is the forgone profit if a unit of demand is unfulfilled

for lack of options to exercise, and Co = C is the cost of an unexercised option. Similarly in (7),

Cu = X + C − W and Co = W − (C + S). If actual demand is greater than Qi, the retailer pays

a premium (X + C −W ) to satisfy the demand with options instead of firm orders. On the other

hand, if actual demand is less than Qi, then the retailer incurs the cost for purchasing the product

(but avoids the options cost), and salvages the product instead.

2.2. The Supplier’s Decision

Before the selling season, the supplier must determine prices (W,C,X) and how many units

to produce. Let Y denote the supplier’s production volume. We assume the following sequence of

interactions between the retailers and the supplier:

• Prices (W,C,X) are determined and announced.

• Each retailer i places orders (Qi, qi) according to expressions (6) and (7).

• The supplier produces Y units of product, and delivers Qi units to each retailer i, holding

the remaining Y −
N∑

i=1

Qi units in inventory.
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• During the selling season, each retailer i exercises up to qi options, and additional units of

product are delivered to retailers as required.

Retailer i will procure a total of zi = Q∗
i + min [q∗i , (Di −Q∗

i )
+] units of product from the

supplier to meet demand Di. Thus, the supplier has an obligation to deliver a total of Z =
N∑

i=1

zi

units to all of the retailers. Let fZ(z) and FZ(z) be the density and cumulative distribution functions

of Z, respectively. The supplier’s expected profit over all retailers is then given by:

EΠS(Y,W,C,X) = ED1,...,DN

N∑
i=1

{
WQ∗

i + Cq∗i +Xmin
[
q∗i , (Di −Q∗

i )
+]

+ S[Y − Z]+ − P [Z − Y ]+ −MY
}
. (11)

The first four terms in expression (11) reflect the revenues realized by the supplier from (i) the

sale of product, (ii) the sale of options, (iii) options that are exercised, and (iv) salvaging unsold

product, respectively. The fifth term captures the total penalty incurred when options are exercised

but can’t be fulfilled, and the final term is the total manufacturing cost. For a given set of prices

(W,C,X), the optimal production quantity Y ∗ is given by the following result.

Proposition 2. Given prices (W,C,X), compute Y ∗∗ such that:

FZ(Y ∗∗) = Pr(Z ≤ Y ∗∗) =
(P −M)
(P − S)

. (12)

Then the optimal production quantity is Y ∗ = min
[

N∑
i=1

(Q∗
i + q∗i ),max(

N∑
i=1

Q∗
i , Y

∗∗)
]

Expression (12) also takes the form of the newsvendor model with Cu = P − M and Co =

M−S. Thus, the underage cost to the supplier is the premium (P−M) paid to supply an additional

unit from an alternative source, while the overage cost is the difference between what the supplier

paid to produce the unit and the amount that can be realized in salvage. Note that since the

revenue realized by the supplier is independent of the chosen stock level, the production quantity is

independent of W , X , and C.
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In the classic newsvendor model, the supplier fills the retailers’ orders by building to order,

i.e., the supplier always produces QNV
i units for each retailer i (note that retailers then bear all risk

associated with demand uncertainty). The supplier’s profit from retailer i is then (W −M)QNV
i .

The challenge in determining the optimal production quantity using Proposition 2 is in finding

the distribution function of Z given distributions of {D1, D2, . . . , DN}. Note that the number of

units of product required for retailer i, zi = Q∗
i +min [q∗i , (Di −Q∗

i )
+], is the truncation of random

variable Di with range [Q∗
i , Q

∗
i + q∗i ] and density function:

fzi
(x) =




fDi
(x)

[FDi
(Qi+qi)−FDi

(Qi)]
, if Q∗

i ≤ x ≤ Q∗
i + q∗i

0, otherwise
(13)

The following algorithm can be used to compute the supplier’s optimal production quantity.

Algorithm to Determine Optimal Production Quantity Y ∗

Input. A set of feasible parameters R, W , X , C, S, and P , and distribution functions of {D1, D2, . . . , DN}.

Output. Optimal production quantity, Y ∗.

Step 1. Calculate retailers’ optimal order quantities using expression (6) and (7) for each retailer i, i = 1, 2, . . . , N .

Step 2. Determine the distribution of the number of units of product zi required by each retailer i, i = 1, 2, . . . , N , using
expression (13).

Step 3. Find the distribution of the total number of units of product Z required over all retailers by solving the

convolution problem Z =
N∑

i=1

zi for the distribution of Z.

Step 4. Find the optimal production quantity Y ∗ using Proposition 2.

3. The Impact of Options on Supplier-Retailer Interaction

Options provide retailers with an alternative mechanism for obtaining product from the sup-

plier. For the special case where there is a single retailer, i.e., N = 1, we discuss in this section

the impact of options on the interactions between supplier and retailer, focusing on replenishment

flexibility, coordination of the channel, and risk and information sharing.
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3.1. Replenishment Flexibility

Options provide retailers with the flexibility to replenish product during the selling season.

In markets where product life cycles are short and demand volatilities are high, this flexibility allows

retailers to respond quickly to changes in demand. Barnes-Schuster et al. (2002) described replen-

ishment practices in three industries (toys, apparel and electronics), and concluded that flexibility

benefits the retailer while perhaps costing the supplier. As shown in Section 3.3, the flexibility

afforded by options can improve performance for both retailers and the supplier.

The impact of flexibility on competitiveness is widely recognized (see, e.g., Shi and Daniels

2003), and the value of flexibility for in-season replenishment can be substantial. In the apparel

industry for example, because retailers must place firm, SKU-specific orders far in advance of the

start of a selling season (see, e.g., Nuttle et al. 1991), the cost of markdowns is on the order of

billions of dollars annually (see, e.g., Fisher et al. 1994). Hunter et al. (1996) estimated that the

potential savings to retailers are so large that they should be willing to pay a 30-50% premium to

any supplier who can provide in-season replenishment.

3.2. Channel Coordination

The supply chain considered in this paper consists of parties with different objectives and

asymmetric information concerning demand. All parties seek to maximize their own profits, but none

exercises control over the entire supply chain nor has an incentive to globally optimize performance.

This dual decision-making with conflicting objectives often degrades the efficiency of the entire

supply chain. Several solution have been proposed for this problem (see e.g., Anupindi et al.

1999, Lariviere 1999, and Taylor 2001, 2002), typically involving some modification of the payment

structure between the supplier and retailers beyond a simple singleton price W . These modifications

provide incentive for all partners to behave in a manner that optimizes the efficiency of the entire

supply chain. As shown in this section, options can also be used to coordinate the supply chain.
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When supplier and retailers make up a single entity (e.g., for a vertically integrated firm),

conflicting objectives are less of a confounding issue. However, double marginality leads to sub-

optimal solutions in a non-integrated supply chain (see, e.g., Spengler 1950). If the entire chain

produces Q units of product, total profit for the supply chain is (R − M)Q; however, this profit

must be divided between the retailers and the supplier. In addition, the retailers’ order quantities

influence the supplier’s production decision. Each retailer i chooses an order quantity Qi based on

wholesale price W , which must be larger than manufacturing cost M to guarantee all parties positive

profit margins. Double marginality induces a quantity QNV
i = F−1

{
(R−W )
(R−S)

}
as in expression (9). On

the other hand, in an integrated supply chain partners coordinate their activities to maximize the

total profits of the chain. Since M replaces W in the integrated supply chain, QI
i = F−1

{
(R−M)
(R−S)

}
.

Since M < W , QNV
i < QI

i , and the total profit for the entire supply chain is greater in the integrated

case.

In addition to the wholesale price W , options contracts provide three more degrees of freedom

(X , C and P ) when negotiating contract terms. This additional flexibility enables options to be used

to coordinate partners’ behaviors, inducing channel coordination and ensuring that a decentralized

supply chain performs as well as an integrated supply chain. To induce each retailer i to order total

quantity Ti up to QI
i , expression (6) indicates that X and C must be set such that:

(R−X − C)
(R−X)

=
(R−M)
(R− S)

. (14)

Condition (14) ensures that the total order T ∗
i from each retailer i will be as large as the

order quantity in an integrated supply chain. Moreover, we must also set unit penalty P so that

Y ∗
i = T ∗

i for each retailer i, where Y ∗
I denotes the production quantity allocated to retailer i. This,

along with expression (15) and Proposition 2 (applied to the special case where N = 1), yields a

condition under which the supplier is motivated to coordinate:

(P −M)
(P − S)

≥ (R −X − C)
(R −X)

. (15)
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Expressions (14) and (15) together provide sufficient conditions for channel coordination. Note that

(15) and (16) imply that P ≥ R , making optimal channel coordination feasible only when P ≥ R.

3.3. Risk Sharing

Demand uncertainty exposes both the supplier and retailers to risks associated with mis-

matches between supply and demand. Specifically, if supply exceeds demand, the excess must be

salvaged at a loss; and if demand exceeds supply, the unmet demand is lost. We refer to these

costs as overage and underage, respectively. Overage costs include price markdowns and inventory

holding costs. Underage costs capture lost sales, expediting costs, and/or customer ill will.

Options provide a mechanism for sharing these risks between the supplier and retailers. Each

retailer can use options to hedge against both underage and overage costs by using firm orders to

cover demand levels that are relatively more likely to occur, and options for demand levels that

are less likely to occur. However, the retailers pay a premium for the reduction in risk, since the

cost of procuring units with options, X + C, is higher than the cost W of buying product directly.

The supplier earns this premium in compensation for sharing the retailers’ risk. By specifying the

order quantities Qi and qi, each retailer i decides how much risk to bear, and how much to pay for

the benefit of risk reduction. By sharing risk, the supplier induces each retailer i to order a larger

number of total units Qi + qi, thus increasing sales. However, in so doing the supplier creates an

obligation to fulfill demand for units of product needed when the retailers exercise options. As a

consequence, the supplier must hold inventories for options that may not be exercised, exposing the

supplier to overage costs.

Two issues need to be considered for risk sharing: (i) setting transaction terms to improve

the combined profits of the supplier and retailers, and (ii) allocating total profit equitably among

the parties. Section 3.2 details the conditions under which total profits are maximized as in the

integrated supply chain. Since there are larger total profits to distribute, options may benefit both

the supplier and retailers.
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Figure 1 plots the contribution of options to the profit of both the supplier and a single

retailer. In this example, R=100, W=70, S=5, M=40, C=15, X=60, and P=80. Demand is normally

distributed with mean 3000, and the standard deviation of the demand is varied from 50 to 2000

in increments of 50. The Profit Gain (%)
(EΠS −EΠNV

S )
EΠNV

S

for the supplier and
(EΠR1 −EΠNV

R1
)

EΠNV
R1

for

the retailer. These quantities are multiplied by 100 and reported as a percentage. The results yield

several observations: (i) the profit gains for both the supplier and the retailer are always positive,

highlighting that options can be advantageous for both supply chain partners, (ii) the contribution

of options to supply chain profit is substantial, e.g., when σ = 2000, the profit improvements are

11.6% and 85.7% for the supplier and the retailer, respectively, and (iii) the gains realized by both

parties increase as the demand variance increases, but the retailer’s gain increases at a faster rate.

3.4. Information Sharing

Being closer to end consumers, retailers often have better information about the distribution

of demand faced by the supply chain. Focusing on the mean µ and variance σ2 of demand, we now

consider how options help transfer demand information from retailers to suppliers. Let φ(ξi) and

Φ(ξi) denote the density and cumulative distribution functions of the normalized distribution with

µi = 0 and σ2
i = 1. We assume that all contractual parameters (R, W , X , C, P , S, and M) are

known. This implies that the right hand sides of the expressions for T ∗
i , Q

∗
i and Y ∗

i are all constants

– these we will denote by CT ∗
i
, CQ∗

i
and CY ∗

i
, respectively.

Proposition 3. The orders of each retailer i and the supplier’s production quantity satisfy the

following:

1. Γ = µi + σiΦ−1(CZ), for Γ = Q∗
i , T

∗
i , or Y ∗

i .

2.
q∗i
T ∗

i

=

[
Φ−1(CT ∗

i
)−Φ−1(CQ∗

i
)
]

[
µi/σi + Φ−1(CT ∗

i
)
] .

3. The implied θ in Y ∗
i = Q∗

i + θq∗i is constant with respect to µi and σ2
i .
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The first result shows that both the orders from each retailer i and the supplier’s production

quantity increase linearly with respect to demand mean µi and standard deviation σi. The second

result demonstrates that the percentage q∗
i

T ∗
i

is inversely dependent on µi

σi
. The final result identifies an

invariant in the supplier’s decisions, which can simplify the decision-making process. Upon receiving

the order quantities from retailer i, (Qi, qi), the supplier responds first by checking the penalty cost

P . If P is relatively high (low), then the supplier produces T ∗
i (Q∗

i ) units; otherwise, the supplier

always produces Q∗
i + θq∗i for a fixed percentage θ regardless of demand mean µi and variance σ2

i .

Like product flows and financial flows, information flows are important for supply chain

management. Designing incentives to foster information sharing between suppliers and retailers

remains a distinct challenge (see, e.g., Lee et al. 1997, and Cachon and Lariviere 2001). The third

result shows that options can enhance information flows from retailers to suppliers. The order

quantities (Qi, qi) completely disclose a retailer’s mean and variance of demand to the supplier, and

the supplier does not need to know µi and σi explicitly to determine an appropriate production

quantity, so long as ordering quantities Qi and qi are undistorted.

4. Trading Options Among Retailers

We now consider options trading among retailers, and investigate the value of a market where

such trading occurs. To reduce problem complexity, we assume that trading is allowed only at a

single point in time t (where 0 < t < τ). Since a market for supply chain options would likely allow

almost continuous trading, the value associated with options trading should be considerably higher

than estimated in this paper. We also assume independent and identically-distributed demands

across retailers, though the results derived hold for cases where demands are not i.i.d.

The trading time t divides the selling season [0, τ ] into two periods [0, t] and [t, τ ]. Let D1

be the random variable representing the demand faced by retailer i in the first period, and D2
i the

random variable representing demand in the second period (note that subscript i is dropped for D1,

since retailers are assumed to be identical). Let d1
i denote the actual demand realized by retailer
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i in the first period. Note that though the random variables, D1 are i.i.d., the actual demands

in the first period {d1
i : i = 1, 2, . . . , N} are different across retailers. This difference in realized

demands results in varying inventory and options positions among retailers, motivating options

trading. Define DC
i = D2

i |d1
i be the conditional distribution of demand in the second period (given

the realized demand d1
i in the first period), and let f

2|1
i and F

2|1
i denote the density function and

CDF of the random variable DC
i , respectively. The distribution functions of D1, D2

i , and DC
i are all

assumed to be known.

Since demands are i.i.d. across retailers, by Proposition 1 each retailer begins the season

with identical inventory level Q∗ and options position q∗ = T ∗ − Q∗ (again we drop subscript i

because we assume identical retailers). After observing the realized demand in the first period,

each retailer updates the information about the distribution of demand in the second period. Since

the conditional distributions {F 2|1
i : i = 1, 2, . . . , N} are no longer identical, the number of options

that each retailer should hold at time t will vary across retailers. Retailers optimize their options

positions at time t by trading with one another.

4.1. Trading Options at Time t > 0

At time t > 0, retailers can no longer place firm orders with the supplier. If additional units of

product are required, retailers can exercise options that they either already own, or secure through

options trading. This section derives the optimal number of options each retailer should hold after

trading, and the impact of trading on retailers’ profits.

Let Ct be the average market price of an option when trading occurs at time t. Note that

retailers may pay different prices for options, depending on the mechanism used to settle bids and

asks in the market. However, the average price allows us to focus on the long-ran average impact of

options trading on retailers’ profits. Average options price Ct creates a balance between supply and

demand in the market in which retailers trade options with each other, and is assumed known. This
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market price is different from the option price in Section 2, where C is determined and announced

by the supplier.

Given realized demand d1
i in the first period, the number of units of product retailer i holds

in inventory at time t is Q̃i = (Q∗ − d1
i )+ , and its options position before trading is the number of

unexercised options, ui = [q∗ − (d1
i −Q∗)+]+. Let q̃i denote the options position held by retailer i

after trading, and T̃i = Q̃i + q̃i the total position (inventory + options) after trading. Note that the

unit cost of the ui options is the supplier’s announced price C at time zero, while the unit cost of

(q̃i−ui) options bought or sold to change the options position is the market price Ct (note that when

(q̃i − ui) is negative, retailer i actually sells options and thus realizes new revenue). The expected

profit realized by retailer i in the second period (i.e., after options trading) is then:

ΠOT
Ri

(q̃i) = EDC
i

[
Rmin(DC

i , T̃i) + S(Q̃i −DC
i )+ −WQ̃i − Cui − Ct(q̃i − ui)−Xmin

(
q̃i, (DC

i − Q̃i)+
)]

. (16)

Similar to the expected profit in expression (4), the first term represents the total revenue realized

from product sales in the second period. The second term captures the salvage value of any leftover

product. The third term is the cost of purchasing product directly from the supplier. The fourth

term is the cost of purchasing options from the supplier at time zero, while the fifth term is the cost

(or revenue) of acquiring (selling) options from (to) other retailers at time t. The last term is the

cost of exercising options to satisfy demand in the second period as required.

Since X − R < 0, the expected profit function ΠOT
Ri

(q̃i) is concave with respect to q̃i. This

leads to the following result.

Proposition 4. There is a unique optimal solution q̃∗i to ΠOT
Ri

(q̃i) such that:

F
2|1
i (Q̃i + q̃∗i ) =

(R−X − Ct)
(R−X)

. (17)

Note that expressions (17) and (6) are similar, with market price Ct replacing the supplier’s

announced price C, and conditional distribution function F
2|1
i replacing distribution function F .

Given the market price Ct, the right hand side of expression (17) is identical for all retailers.
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Retailers can be partitioned into three disjoint sets based on their participation in options

trading. B = {i : q̃i > ui, i = 1, 2, . . . , N} represents the set of retailers who buy options, S =

{i : q̃i < ui, i = 1, 2, . . . , N} the set of retailers who sell options, and I = {i : q̃i = ui, i = 1, 2, . . . , N}
the set of retailers who neither buy nor sell options.

Since cumulative distribution functions F 2|1
i (x) are non-decreasing with respect to x, and the

optimal options position q̃∗i in expression (17) satisfies
dΠOT

Ri
(q̃i = q̃∗i )
dq̃i

= 0, we obtain the following

result.

Lemma 1. The disjoint sets B, S, and I satisfy:

B = arg
{
dΠOT

Ri
(q̃i = ui)
dq̃i

> 0
}
, S = arg

{
dΠOT

Ri
(q̃i = ui)
dq̃i

< 0
}
, and I = arg

{
dΠOT

Ri
(q̃i = ui)
dq̃i

= 0
}
.

Based on updated information concerning demand in the second period, a rational retailer

would trade options at time t only to increase expected profit in the second period. This insight is

formally stated and verified in the following result.

Theorem 1. The net effect of options trading on the expected profit in the second period is positive

for both buyers (B) and sellers (S), and zero for those who are inactive (I) in the options market.

This result indicates that options trading has a positive or non-negative effect on the total

profits of all participants in the market, leading to improved overall performance for supply chain as

a whole. Numerical results in Section 5 provide further insight into the magnitude of this effect, and

how environmental parameters affect the impact of options trading on supply chain performance.

4.2. The Market Price of Options

We now analyze the average market price for options, Ct. At time t = 0, all retailers face

the same demand distributions, and thus all enter the selling season with the same inventories, Q∗
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and the same access to product T ∗ (inventory plus options). As time advances to t, retailer i sells

d1
i units of product, reducing access to product to T ′

i = (T ∗ − d1
i )

+. Note that this is the supply

position of retailer i prior to options trading (thus T ′
i is distinct from T̃i).

The marginal benefit to any retailer of fulfilling one unit of demand using options is (R−X),

since the cost of the option is a sunk cost when the option is exercised. Therefore, the marginal

value of an option to retailer i (i.e., the payout function if retailer i can secure an additional option)

is given by:

vi = (R −X)Pr(DC
i > T ′

i ) = (R−X)
[
1− F

2|1
i (T ′

i )
]
. (18)

Thus, retailer i is willing to pay up to vi in order to obtain an additional option at time t. By

definition, the average market price Ct is the average of the prices that all retailers in the market

are willing to pay, or:

Ct =
∑N

i=1 vi

N
. (19)

Ct can be interpreted as follows. Options prices may fluctuate across buyers (or over time if

continuous trading is allowed), but the fluctuation will center around Ct, i.e., the price will move

toward Ct in the long ran. Knowledge about Ct has significant value to market participants. For

example, a retailer who wants to buy options when the current ask price is higher than Ct should

wait for the price to drop; conversely, if the current ask price is lower than Ct, the retailer should

buy immediately and take advantage of the discount.

Unfortunately, determining market price Ct using expression (19) requires information about

the demand realized by each retailer i in the first period. Since this proprietary information need not

be shared among retailers, it is unlikely that any individual retailer would have enough information to

directly compute Ct using (19). However, the market price for options can be determined indirectly

by assuming an infinite number of retailers and using information about an average retailer. Let:

C̄ = lim
N→∞

N∑
i=1

vi

N
. (20)
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The demand realized in the first period by the average retailer, as well as the associated total

holdings at time t (before trading) are simply the average of all market participants:

d1
AVG = lim

N→∞

N∑
i=1

d1
i

N
, (21)

T ′
AVG = lim

N→∞

N∑
i=1

T ′
i

N
. (22)

Note that the demands realized by every retailer i in the first period, {d1
i : i = 1, 2, . . . , N}, are

samples from the same distribution, D1 (note that the subscript i is omitted because this distribution

is assumed to be the same across retailers). Direct application of the strong law of large numbers

yields:

d1
AVG = E[D1], (23)

T ′
AVG = ED1

[
T ∗ −D1

]+
=

∫ T ∗

−∞
(T ∗ − x)d[F 1(x)] +

∫ ∞

T ∗
0d[F 1(x)] =

∫ T ∗

−∞
F 1(x)dx. (24)

Since each retailer has the same information on random variable D1 and its cumulative distribution

function F 1(x), the average demand realized in the first period, as well as the average access to

product at time t, are known. The average retailer can then update estimates of the demand faced

in the second period to yield conditional distribution F 2|1, given that the demand realized in the

first period is d1
AVG. Note that all retailers update the second period demand the same way, so the

function F 2|1 is also known.

Whenever a retailer sells an option in the market, there must be a corresponding retailer to

buy it. The total number of options taken over all retailers thus will not change with options trading,

which implies
N∑

i=1

T ′
i =

N∑
i=1

T̃i. Therefore T ′
AVG remains the same before and after options trading,

and this must represent the optimal supply position for the average retailer at time t. Applying

Proposition 4 to the average retailer, we obtain the implied market price:

CAVG = (R −X)[1− F 2|1(T ′
AVG)]. (25)
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Because the right hand sides of (18) and (25) have the same functional form, we can apply the

strong law of large numbers to yield the following result:

Theorem 2. The average market price is C̄ = CAVG.

Using CAVG as the market average options price, the numerical experiments in the next section

provide further insight into the value of options trading.

5. Numerical Experiments

This section reports the results of a series of numerical experiments. The experiments are

designed to test the validity of the theoretical framework for options trading detailed in Section 4,

and to explore how the benefits of supply chain options trading are affected by various environmental

parameters. Specifically, we test the impact of market size, demand volatility, demand correlation,

and trading time on the value of options trading, as well as on the option price.

Default values are set at R = 100, W = 70, S = 5, M = 40, C = 15, X = 60, P = 80, and

N = 40. The time horizon is finite and normalized to one, and the default trading time is t = 0.5.

The entire selling season is divided by t into two periods, [0, t] and [t, 1].

The demands faced by all retailers are independent and identically distributed with the

following characteristics. At time zero, the forecasted demands for the first period [0, t] and the

second period [t, 1] are correlated and normally distributed with parameters (µ1, σ1) and (µ2, σ2),

respectively. Let ρ denote the correlation between the demands for the two periods. The demand

for the entire selling season is also a normally-distributed random variable with mean µ = µ1 + µ2

and standard deviation σ =
√
σ2

1 + σ2
2 + 2ρσ1σ2. The mean demand for any given time period is

assumed to be proportional to the length of that time period, i.e., µ1 = αt and µ2 = α(1 − t),

where α is the proportionality constant. The default values for the distribution parameters are set

at µ1 = µ2 = 2500, σ1 = σ2 = 500, and ρ = 0.5. To prevent negative demand, we only consider

values of σ less than µ/2. Following the model used in Barnes-Schuster et al. (2002), given the
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realized demand d1 in the first period [0, t], at time t the conditional distribution of demand for the

second period is normally distributed with mean and standard deviation given as follows:

µD2
i |d1

i
= µ2 + ρ

σ2

σ1
(d1

i − µ1), and σD2
i |d1

i
= σ2

√
1− ρ2. (26)

The MATLAB programming environment was used to develop the numerical simulation. All re-

ported results are averaged over 10,000 realizations of the simulation.

Figure 1 in Section 3.3 showed how options can benefit both parties by providing a mechanism

for sharing risk between supplier and retailers. Trading options among retailers at time t creates

a new opportunity for risk sharing among retailers. Figure 2 plots the improvement in retailers’

expected profits attributable to options, where profit gain for the retailers (%) is defined as in

Section 3.3 for the case where no trading occurs. In Figure 2, the profit without trading is given

by EΠRi
for the entire selling season, and the profit with trading is found by taking EΠRi

for the

first period only and adding to it ΠOT
Ri

(for the second period). While N = 1 in Figure 1, the results

reported in Figure 2 represent an average of N = 40 retailers.

Figure 2 clearly shows that the value to retailers of tradable options can be decomposed into

two parts: (i) from sharing risk with the supplier as reflected in the positive profit improvement

observed without trading, and (ii) from sharing risk with other retailers as measured by the dif-

ference between profit improvement realized with and without options trading. Figure 2 thus not

only numerically supports the intuition developed in Theorem 1, but also highlights the additional

benefits tradable options offer over embedded options (which are tied to the supply contract, and

can thus not be traded).

The difference in Figure 2 between the profit gain realized with and without trading is a

measure of the net value of options trading. We define VOT = (ΠOT
R −EΠR)

ΠR
, where ΠR and ΠOT

R

are computed using expressions (4) and (16), respectively (note that the subscript i is dropped in

expressions (4) and (16) because all retailers are identical). The ratio VOT is then multiplied by
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100 and reported as a percentage. Since ΠOT
R is defined for the second period only, let ΠR in the

calculation of VOT be the corresponding profit realized in the second period. The average VOT

taken over N retailers is reported in the upcoming sections. We also compute the market average

price (MAP) to gain insight into how option prices are affected by environmental parameters.

5.1. The Impact of Market Size

The number of participants in an options market affects both VOT and MAP. In Section 4,

we assumed that the number of participants is sufficiently large to ensure that every options seller

can be matched with a buyer. According to expression (19), the average price is a function of the

number of retailers in the market, which we denote here by MAP(N). Theorem 2 shows that the

average price converges to CAVG as N goes to infinity.

Figure 3, which plots MAP versus the number of retailers N , shows clearly how MAP(N)

converges to CAVG as defined by expression (25). Henceforth, we use CAVG to approximate MAP(N)

in the remaining numerical experiments.

Figure 4 plots VOT as a function of the number of retailers N . We see that VOT varies only

slightly from 12.2% to 12.4% as N varies from 2 to 100. Note that the assumption that every retailer

can always buy (or sell) options at price CAVG may not hold when N is small. However, our com-

putational experience indicates that the benefits shown in Figure 4 apply as a close approximation

for N ≥ 20.

5.2. The Impact of Demand Volitility

Demand uncertainty typically has an adverse effect on retailer operations. In this section,

we use the standard deviations σ1 and σ2 to represent demand volatility in the first and second

periods, repectively, and explore the effectiveness of options trading in reducing the impact of

demand volatility on retailers’ profit.
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Let σ1 = σ2 = σ. Figure 5 shows how VOT changes as a function of σ. We observe that

VOT is uniformly positive and increases with respect to the demand volatility as measured by the

standard deviation of the demand.

As discussed previously, one benefit attributable to options trading is the ability to share the

risks associated with demand uncertainty with other retailers. The next set of experiments attempt

to determine how much this risk is reduced through options trading. Figure 6 plots the cumulative

distribution functions, with and without options trading, constructed from 100,000 realizations of

profits with σ1 = σ2 = 500. This provides information on the likelihood that retailers will miss

a given target profit level if they engage (Pr(ΠR ≤ x)), for a given profit target x) or do not

engage (Pr(ΠOT
R ≤ x), for a given profit level x) in options trading. From Figure 6, we see that

Pr(ΠR ≤ x) ≥ Pr(ΠOT
R ≤ x), for all x, which implies that the likelihood of missing a target profit

level is always lower with options trading than without. In addition to VOT, this reduction in risk

illustrates another advantage of options trading over embedded options that are tied to a particular

supply contract.

5.3. The Impact of Demand Correlation

In this section the impact of demand correlation on VOT and MAP is examined. The

correlation parameter ρ controls the impact of demand in the first period on the mean and standard

deviation of demand in the second period, as given by expression (26). When 0 < ρ < 1, the mean

demand in the second period increases beyond µ2 whenever the actual demand in the first period

demand is larger than the associated mean, i.e., d1
i > µ1. Analogously, when −1 < ρ < 0, if the

actual demand in the first period d1
i is larger than the average demand µ1, then the demand in the

second period on average will be smaller than the associated mean µ2.

For the special cases where |ρ| = 1, demand in the second period is deterministic (because

σD2
i |d1

i
= 0), and takes on the value µD2

i |d1
i
= µ2+ σ2

σ1
(d1

i −µ1) when ρ = 1, and µD2
i |d1

i
= µ2+ σ2

σ1
(µ1−d1

i )
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when ρ = −1. Since σ1 = σ2 and µ1 = µ2 by design, µD2
i |d1

i
= d1

i for ρ = 1 and µD2
i |d1

i
= 2µ1 − d1

i

for ρ = −1. Note that the actual demand in the first period takes on values larger than 2µ1 with

probability 1−F 1(2µ1) ≈ 2.3%. The demand in the second period may be negative with a small but

positive probability when ρ = −1. To avoid this situation, we restrict ρ to take on values between

−0.75 and 0.75 in this set of experiments.

Figures 7 and 8 show how demand correlation affects MAP and VOT, respectively. In Figure

7, the shape of the relationship between MAP and ρ indicates that higher option prices are observed

as |ρ| increases. For example, as ρ increases from 0 to 1, the mean demand in the second period

becomes more sensitive to the difference µ1−d1
i , creating additional incentive to buy or sell options.

Moreover, as ρ approaches 1, the standard deviation σD2
i |d1

i
approaches 0, which allows retailers to

more accurately estimate how many options should be bought or sold. Similar reasoning holds as

ρ decreases from 0 to −1, explaining the U-shaped relationship between MAP and ρ in Figure 7.

In contrast, in Figure 8 we see that VOT generally increases with increasing demand correlation.

This is because with negative demand correlation, options needed in period 1 become unnecessary

in period 2, and options not needed in period 1 tend to be required in period 2. This results in less

options trading, and thus lower value associated with options trading. On the other hand, when

demands are highly correlated, an incorrect options position in period 1 becomes magnified in period

2, motivating options trading and increasing its value.

5.4. The Impact of Trading Time

The model presented in this paper assumes that options trading occurs at a single point in

time that is known to all retailers. In this section, we explore the relationship between the trading

time t and both MAP and VOT. Trading close to the end of the selling season (i.e., t close to 1)

provides retailers with good information about how much product is needed for the entire selling

season, but does not allow much time to compensate (through options trading) from any deviations

between expected and actual demand. Similarly, trading early in the selling season (i.e., t close to
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0) provides retailers with a large amount of flexibility to adjust their supply position, but not a lot

of information on which to base any modification.

Just as the mean demand in the first and second periods depends linearly on the length of

those periods, we assume that the standard deviation of demand in periods 1 and 2 is also a function

of the length of the period. Specifically, we assume that σ1 = µ1

3
= αt

3
and σ2 = µ2

3
= α(1−t)

3
.

Figure 9 shows that MAP decreases monotonically as a function of t. This is because holding

options becomes more risky as trading time increases, since the likelihood that an options holder

can recover the premium paid for an option decreases as t approaches 1. Thus, as trading time

increases retailers are less inclined to hold options, reducing average market price.

Figure 10 plots VOT as a function of trading time t. We see that profits attributable to

options trading are maximized at a point in time interior to [0,1]. As discussed above, if the trading

time is close to zero, the demand forecast closely resembles the original forecast at time t = 0, and

thus the optimal number of options to hold is approximately equal to the number without trading.

Similarly, if the trading time to too close to the end of the period, then the additional profit realized

by trading options is limited. For this set of experiments the optimal trading time is approximately

t = 0.8.

6. Conclusion and Suggestions for Further Research

Recent research has established that under certain conditions the introduction of options or

option-like contract arrangements can increase the expected profits of both suppliers and retailers.

This paper extended this notion by considering how options trading among retailers at one prede-

termined point in time can further improve supply chain performance. The main contribution of

this paper is in demonstrating benefits of options trading in managing supply chain risk. We showed

that options trading increases the expected profits of all participants. We also derived the average

market price of options to guide market participants in trading options.
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The existence of a supply chain options market would create several secondary benefits. For

example, a market for supply chain options would generate invaluable information flows. Suppliers

could monitor options trading data from retailers to hone estimates of demand. Trading volumes

and market prices could also serve as economic indicators of the vitality of the industry as a whole.

Additional insights on the trading of supply chain options were developed through numerical

experimentation. We observed that the value of trading options increases as demand becomes more

volatile, and the consequent reduction in risk was quantified using simulation. The results also

suggested that the value of trading increases as the correlation between the first and second period

demand grows. Finally, we showed that there exists a unique time at which to allow options trading

in order to maximize the value of trading.

We hope that this paper stimulates further research on supply chain options and options

trading. Additional work can be directed toward developing techniques to determine price parame-

ters (X,C,W, P ) to facilitate risk reduction and sharing, understanding how market structure and

trading infrastructure can motivate or hinder options trading, and the impact of supply chain op-

tions markets on operational decision making, e.g., on inventory and capacity management policies

for both suppliers and retailers.
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Appendix A. Expressions for Expected Profit

1. Retailer’s Expected Profit for the Entire Selling Season

According to expression (4), the expected profit for retailer i with options (but without options trading) is given by:

EΠRi
(Qi, qi) = EDi

[
Rmin(Di, Ti) + S(Qi −Di)+ −WQi − Cqi −Xmin

(
qi, (Di −Qi)+

)]
.

Substituting qi = Ti −Qi, the expected profit can be expressed as:

EΠRi
(Qi, qi) = R

[∫ Ti

0
Dif(Di)dDi + Ti

∫ ∞

Ti

f(Di)dDi

]
+ S

∫ Qi

0
(Qi −Di)f(Di)dDi

−WQi − Cqi −X

[∫ Ti

Qi

(Di −Qi)f(Di)dDi + qi

∫ ∞

Ti

f(Di)dDi

]
.

Since Pr(Di ≤ Qi) = F (Qi), Pr(Qi < Di ≤ Ti) = F (Ti) − F (Qi), Pr(Ti < Di) = 1 − F (Ti), and dF (Di) = f(Di)dDi,
we can integrate the expected profit function by parts to yield the following simplified form:

EΠRi
(Qi, Ti) = (X + C −W )Qi − (R− S)

∫ Qi

0
F (Di)dDi + (R−X − C)Ti − (R−X)

∫ Ti

Qi

F (Di)dDi. (A1)

2. Suppler’s Expected Profit as a Function of Production Quantity

Given retailers’ demands {D1, D2, . . . , DN} and optimal order quantities {(Q∗
i , q

∗
i ) : i = 1, 2, . . . , i}, the supplier must

deliver Z =
N∑

i=1

zi =
N∑

i=1

{
Q∗

i +min
[
q∗i , (Di −Q∗

i )
+]}

units of product. The supplier’s expected profit is then given by:

EΠS(Y ) = ED1,...,DN

{
N∑

i=1

[
WQ∗

i + Cq∗i +Xmin
(
q∗i , (Di −Q∗

i )
+)]

+ S[Y − Z]+ − P [Z − Y ]+ −MY

}
.

The first four terms in the expression above reflect the revenues realized by the supplier from (i) the sale of product,
(ii) the sale of options, (iii) options that are exercised, and (iv) salvaging unsold product, respectively. The fifth term
captures the total penalty incurred when options are exercised but can’t be fulfilled, and the final term is the total
manufacturing cost. Manipulation of this expression yields:

EΠS(Y ) =
N∑

i=1

{
WQ∗

i + Cq∗i +X

∫ Q∗
i +q∗

i

Q∗
i

(Di −Q∗
i )f(Di)dDi +Xq∗i [1− F (Q∗

i + q∗i )]
}

+ S

∫ Y

−∞
(Y − z)fZ(z)dz − P

∫ ∞

Y
(z − Y )fZ(z)dz −MY

= Con1 + S

∫ Y

−∞
(Y − z)fZ(z)dz − P

∫ ∞

Y
(z − Y )fZ(z)dz −MY

= Con2 + (P −M)Y + S

∫ Y

−∞
FZ(z)dz + P

∫ ∞

Y
FZ(z)dz (A2)

where Con1 and Con2 are constants with respect to Y .
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3. Expected Profit for Retailer i After Options Trading

The expected profit for retailer i in the second period after options trading can be expressed as:

ΠOT
Ri

(q̃i) = EDC
i

[
Rmin(DC

i , T̃i) + S(Q̃i −DC
i )+ −WQ̃i − Cui − Ct(q̃i − ui)−Xmin

(
q̃i, (DC

i − Q̃i)+
)]

. (A3)

The first term represents the total revenue realized from product sales in the second period. The second term captures
the salvage value of any leftover product. The third term is the cost of purchasing product directly from the supplier.
The fourth term is the cost of purchasing options from the supplier at time zero, while the fifth term is the cost (or
revenue) of acquiring (selling) options from (to) other retailers at time t. The last term is the cost of exercising options
to satisfy demand in the second period as required. Expression (A3) can be partitioned into four terms.

I = E
[
Rmin(DC

i , Q̃i)
]
= R

[∫ T̃i

−∞
xdF

2|1
i (x) + T̃iPr(DC

i > T̃i)

]

= RT̃iF
2|1(T̃i)−R

∫ T̃i

−∞
F

2|1
i (x)dx +RT̃ − I[1− F

2|1
i (T̃i)] = RT̃i −R

∫ T̃i

−∞
F

2|1
i (x)dx

II = E
[
S(Q̃i −DC

i )+
]
= S

[∫ Q̃i

−∞
(T̃i − x)dF 2|1

i (x) +
∫ ∞

Q̃i

0dF 2|1
i (x)

]

= ST̃iF
2|1
i (T̃i)− S

[
T̃iF

2|1
i (T̃i)−

∫ Q̃i

−∞
F

2|1
i (x)dx

]
+ 0 = S

∫ Q̃i

−∞
F

2|1
i (x)dx

III = E
[
−WQ̃i − Cui − Ct(q̃i − ui)

]
= (Ct − C)ui − Ctq̃i −WT̃i

IV = E
[
−Xmin

(
q̃i, (DC

i − Q̃i)+
)]

= −X

∫ Q̃i

−∞
0dF 2|1

i (x) +
∫ T̃i

Q̃i

(x− Q̃i)dF
2|1
i (x) +

∫ ∞

T̃i

q̃idF
2|1
i (x)

= −X

{
0 + T̃iF

2|1
i (T̃i)− Q̃iF

2|1
i (Q̃i)−

∫ T̃i

Q̃i

F
2|1
i (x)dx − Q̃i

[
F

2|1
i (T̃i)− F

2|1
i (Q̃i)

]
+ q̃i

[
1− F

2|1
i (T̃i)

]}

= −Xq̃i +X

∫ T̃i

Q̃i

F
2|1
i (x)dx.

Therefore, we obtain the following:

ΠOT
Ri

(q̃i) = I + II + III + IV

= RT̃i −R

∫ T̃i

−∞
F

2|1
i (x)dx + S

∫ Q̃i

−∞
F

2|1
i (x)dx + (Ct − C)ui − Ctq̃i −WT̃i +X

∫ T̃i

Q̃i

F
2|1
i (x)dx

= (R−W )Q̃i + (Ct − C)ui + (R −X − Ct)q̃i + (X −R)
∫ Q̃i+q̃i

−infty
F

2|1
i (x)dx

+ (S −X)
∫ Q̃i

−∞
F

2|1
i (x)dx.

(A4)

– 31 –



Appendix B. Proofs

Proof of Proposition 1.

Using Leibniz’s rule for differentiating integrals, we obtain the partial derivatives of the expected profit function
ΠRi

(Qi, Ti) in expression (A1) with respect to Qi and Ti:

δEΠRi
(Qi, Ti)

δQi
= X + C −W − (X − S)F (Qi)

δEΠRi
(Qi, Ti)

δTi
= R−X − C − (R−X)F (Ti)

Differentiating the right-hand sides of these expressions again, since both (S-X) and (X-R) are negative, it follows that
the Hessian matrix for EΠRi

(Qi, Ti) is always negative. The expected profit function is thus concave with a unique
maximum. Setting the partial derivatives above to zero, we have the sufficient and necessary conditions for the optimal
quantities Q∗

i and T ∗
i :

F (T ∗
i ) = Pr(Di ≤ T ∗

i ) =
(R−X − C)
(R −X)

F (Q∗
i ) = Pr(Di ≤ Q∗

i ) =
(X + C −W )

(X − S)

Substituting Q∗
i and T ∗

i back into expression (A1) yields:

EΠRi
(Q∗

i , T
∗
i ) = (X + C −W )Q∗

i − (R− S)
∫ Q∗

i

0
F (Di)dDi + (R−X − C)T ∗

i − (R −X)
∫ T ∗

i

Q∗
i

F (Di)dDi.

Proof of Proposition 2.

Given a set of prices (W,C,X), differentiating the supplier’s expected profit function yields:

dΠS(Y )
dY

= (P −M) + (S − P )FZ(Y ).

Since (S − P ) is negative, the expected profit function is strictly concave, and thus has a unique maximum. Setting
the right hand side of the expression above equal to 0, we obtain the necessary and sufficient conditions for optimal
production quantity Y ∗∗:

FZ(Y
∗∗) = Pr(Z ≤ Y ∗∗) = (P −M)

(P − S)
. (B1)

In expression (B1) Y ∗∗ was derived without considering the constraint
N∑

i=1

Q∗
i ≤ Y ≤

N∑
i=1

(Q∗
i + q∗i ). Because the

expected profit function is strictly concave, combining expression (B1) and
N∑

i=1

Q∗
i ≤ Y ≤

N∑
i=1

(Q∗
i + q∗i ) yields the

following optimal production volume Y ∗:
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Y ∗ =




N∑
i=1

Q∗
i , if Y ∗∗ ≤

N∑
i=1

Q∗
i

Y ∗∗, if
N∑

i=1

Q∗
i ≤ Y ∗∗ ≤

N∑
i=1

(Q∗
i + q∗i )

N∑
i=1

(Q∗
i + q∗i ), if

N∑
i=1

(Q∗
i + q∗i ) ≤ Y ∗∗,

(B2)

which is precisely the value of Y ∗ given in Proposition 2.

Expression (B2) can be validated by marginal analysis. If Y <

N∑
i=1

Q∗
i , then the profit associated with one more unit of

product is (W −M) > 0. The expected profit is thus larger when Y =
N∑

i=1

Q∗
i . If Y >

N∑
i=1

(Q∗
i + q∗i ), then an additional

unit of product contributes a profit of S − M < 0; thus, a production quantity greater than
N∑

i=1

(Q∗
i + q∗i ) cannot be

optimal.

Proof of Proposition 3

Note that when N = 1, F (Y ∗∗
i ) = Pr(Di ≤ Y ∗∗

i ) by Proposition 2. By change of variable Γ = µi + σiξ, we can show

that F (Γ) = Φ
[

(Γ−µi)
σi

]
, which yields the first result. By applying result 1, we can derive result 2 since q∗

i

T ∗
i
= (T ∗

i −Q∗
i )

T ∗
i

.

Applying result 1 also yields result 3 because θ = (Y ∗
i −Q∗

i )
(T ∗

i −Q∗
i )
, which is 0 when Y ∗

i = Q∗
i , 1 when Y ∗

i = T ∗
i , and[

Φ−1(CY ∗∗
i

)−Φ−1(CQ∗
i
)
][

Φ−1(CT∗
i
)−Φ−1(CQ∗

i
)
] when Y ∗

i = Y ∗∗
i . All are constants with respect to the mean and variance of demand.

Proof of Proposition 4

Differentiating ΠOT
Ri

(q̃i) in expression (A3) with respect to q̃i yields:

dΠOT
Ri

(q̃i)
dq̃i

= (R−X − Ct) + (X −R)F 2|1
i (Q̃i + q̃i). (B3)

Because X − R is negative, the expected profit function ΠOT
Ri

(q̃i) is strictly concave with respect to q̃i, and thus has a

unique maximum. Setting the right hand side of (B3) to zero yields expression (17).

Proof of Theorem 1

We assume that the expected profit function in expression (A3) is differentiable with respect to q̃i, and that its derivative

is uniformly continuous. The Taylor expansion of ΠOT
Ri

(q̃i) at q̃i = µi yields:

ΠOT
Ri

(q̃i) = ΠOT
Ri

(µi) +
dΠOT

Ri
(q̃i = µi)
dq̃i

(q̃i − µi) +O(q̃i − µi)2.
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Therefore, the net effect of options trading to the retailer i is given by:

∆i = ΠOT
Ri

(q̃i)−ΠOT
Ri

(µi) =
dΠOT

Ri
(q̃i = µi)

dq̃i
(q̃i − µi) +O(q̃i − µi)2.

By the Lemma 1 and the definition of the sets B, S, and I, ∆i is positive for i ∈ B or S, but zero for i ∈ I as
long as q̃i ≈ µi. We then use the uniformly continuous assumption to expand this local statement to a global statement
to obtain Theorem 1.

– 34 –



 35

Appendix C. Figures 
 

 Figure 1: Net Profit Improvement from Supply Chain Options
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Figure 2: Net Profit Improvement to Retailers from Options
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Figure 3: Convergence of MAP(N) to CAVG
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Figure 4: VOT as A Function of N
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Figure 5: VOT as A Function of Demand 
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Figure 6: Empirical Probability of Retailers Missing 
Profit Targets
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 Figure 7: The Impact of Correlation on MAP
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Figure 8: The Impact of Correlation on VOT
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Figure 9: Impact of Trading Time t on MAP
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Figure 10: Impact of Trading Time t on VOT
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