
RC23115 (W0402-097) February 20, 2004
Computer Science

IBM Research Report

Learning Procedures for Autonomic Computing

Tessa Lau, Daniel Oblinger, Lawrence Bergman, Vittorio Castelli
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Corin Anderson
Google

2400 Bayshore Parkway
Mountain View, CA 94043

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Learning Procedures for Autonomic Computing

Tessa Lau, Daniel Oblinger, Lawrence Bergman, and
Vittorio Castelli

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598
tessalau@us.ibm.com

Corin Anderson
Google

2400 Bayshore Parkway
Mountain View, CA 94043

1 Introduction

Today’s skilled IT professionals bring to bear an enormous
amount of knowledge about how systems are configured, how
they function on a day-to-day basis, and how to repair them
when they break. However, there are not enough skilled IT
professionals to meet the ever-growing demand. Autonomic
computing offers a way out of this dilemma: offload the re-
sponsibility of managing complex systems onto the systems
themselves, rather than relying on limited human resources.

This problem raises a large challenge: how will we transfer
the knowledge about systems management and configuration
from the human experts to the software managing the sys-
tems? We believe this problem is fundamentally a knowledge
acquisition problem. Our approach to solving this problem
draws on machine learning and knowledge representation.
Our core idea is based on programming by demonstration: by
observing several human experts each solve a similar prob-
lem on different systems, we generalize from traces of their
activity to create a robust procedure that is capable of auto-
matically performing the same task in the future. Our solution
is based on the observation that solutions to similar problems
share similar sub-procedures. By capturing these nuggets of
problem-solving knowledge from multiple experts, we form a
robust procedure that encapsulates the important parts of the
procedures executed by all of the experts.

We are currently employing this approach to acquire desk-
side technical support procedures, such as upgrading a net-
work card, troubleshooting email problems, and installing a
new printer. Our system captures traces of multiple desk-side
support representatives as they perform one task, such as di-
agnosing a dysfunctional network adapter, under a variety of
operational conditions. From these traces, our system gen-
eralizes and aligns the traces into a single general procedure
for repairing network adapters. An important feature of our
approach is that it works across applications, via instrumen-
tation of the Windows operating system.

This paper describes our formulation of this problem as
a machine learning problem. First we define the problem
and describe how various problem characteristics affect the
difficulty of the learning problem. We then outline the sub-
problems we have identified, and describe our approach to
each. Finally, we conclude with a summary of current results
and directions for future work.

2 Procedural knowledge acquisition

We formulate the problem of procedural knowledge acquisi-
tion as follows.

Given as input one or more traces of an expert’s
keyboard and mouse actions as she demonstrates
a procedure, output a procedure model that, when
executed on a new system, performs the same task.

Our approach to this problem is based on machine learning:
given traces of a procedure’s execution behavior, induce the
procedure. Other research challenges include knowledge rep-
resentation (how to represent a procedure, a procedure step,
and the state of the world) and procedure execution (taking a
generalized procedure model and mapping it into the concrete
actions required to perform the procedure on a new system).

Clearly, the type of procedure as well as the quality of the
traces determines how difficult it will be to construct the pro-
cedure model. We have identified a number of problem char-
acteristics that affect problem difficulty:

• Procedure structure complexity: A straight-line pro-
cedure with no deviations from the main path will be
easier to learn than a procedure that has many condi-
tional actions or alternative paths.

• Trace noisiness: Execution traces in which the ex-
pert performs extraneous steps, or in which unexpected
events happen asynchronously, will increase learning
difficulty.

• Incremental or batch learning: The choice of learning
algorithm depends on how it is going to be used. In-
cremental learning, where a procedure model is updated
dynamically as traces are created rather than overnight
in a batch process, places different constraints on the al-
gorithms that may be used to learn procedures.

• State observability: The choice of action to perform at
each step of the procedure depends on how much infor-
mation is available to the system in making that deci-
sion. If the choice can be made based on some infor-
mation displayed on the user’s screen, the problem is
easier than if the choice is made based on some hidden
variable, such as remembered state stored in the expert’s
mind.

1

In the next section, we describe some of the research chal-
lenges we have identified while working on this problem, and
outline the approaches we have taken on each challenge.

3 Research challenges
Given a trace of low-level events, the first challenge is toseg-
mentthe trace in order to identify procedure steps, procedure
components, and boundaries between one procedure and the
next. Next wegeneralizetraces, mapping from the concrete
actions performed on specific windows to a more generalized
representation that will work across systems. With several
traces, a further challenge is to simultaneouslyalign portions
of the traces such that subsequences of similar functionality
are grouped together. Finally, anexecutionprocess takes the
generalized procedure and runs it on the target system, select-
ing the correct action to perform at each step.

3.1 Segmentation
Our system captures expert behavior by using low-level Win-
dows operating system instrumentation. This low level in-
strumentation is necessary to achieve our goal of learning
cross-application procedures, and thus does not rely on in-
strumentation of every application used in the procedure. Our
instrumentation provides information about the windows dis-
played on screen (window titles, button labels, field contents,
etc.), mouse and keyboard actions along with the target win-
dow of each action, and notification when windows are cre-
ated, modified, or destroyed. For example, suppose the user
launches an application by double-clicking on an icon on the
desktop. Our instrumentation reports that the user depressed
and released the mouse button twice at location (5, 8) in win-
dow with id 10060, then reports a large number of window-
creation events, one for each widget in the application being
started.

Unlike simple macro recorders, which simply record a
user’s actions and play them back verbatim, our system mod-
els the interaction between the user and the system as a con-
versation in which user and system take turns participating.
Modelling the conversation at this level enables an autonomic
procedure to monitor and react to unexpected effects of user
actions. For example, if an application failed to appear af-
ter the user double-clicked on its icon, then the next steps in
the procedure should not be taken until this problem has been
resolved.

We use the termsegmentationto refer to the translation of
a low-level event stream into a stream of high-level, semanti-
cally meaningful events. This is a challenging problem since
events from different high-level actions can be interleaved in
the low-level stream. For example, suppose our user double-
clicks to launch an application, and then an instant message
pops up on her screen, and finally the application appears.
The challenge of segmentation is to infer semantics from the
low-level stream that describe what actually happened, and to
model the cause and effect of a user’s actions.

Our approach to segmentation employs grammar parsing
techniques. We have defined a number of grammar rules ex-
pressing high-level actions in terms of sequences of low-level
events. For instance, the sequence of pressing and releasing

key “A”, then pressing and releasing key “B”, is parsed into
the high-level action “type string AB”.

This approach fails when the high-level actions are inter-
leaved in the event stream. For instance, if a user double-
clicks on an icon to launch an application and then performs
a different action before the application appears on screen, a
grammar-based approach will have difficulty making sense of
the sequence. Our solution to this problem will be to main-
tain multiple candidate parses of the event stream, and select
the best parse only after more data has been seen (e.g., more
traces from different experts in which the application appears
immediately after double-clicking on its icon).

In addition, we wish to segment high-level action streams
into procedures and sub-procedures. For example, the event
stream described above may be part of a single “launch ap-
plication” step, which may be in turn be part of the “find
out whether Service Pack 3 is installed” subtask, which may
be part of the “diagnose network adapter” procedure. Pre-
vious systems required the user to identify the start and end
of each procedure (by pressing a button on a GUI, for exam-
ple). However, this may prove to be too much of a burden as
procedures become more complex and are logically broken
down into sub-tasks, some of which may be common across
multiple procedures. For example, a procedure for diagnos-
ing email problems may include a sub-procedure for check-
ing whether the workstation is able to connect to the network.
Manually indicating the boundaries of each of these subtasks
is certainly going to require too much user effort. One re-
search goal in our work is to consider automated approaches
to the segmentation problem.

3.2 Generalization

A segmented trace is a sequence of high-level actions that ref-
erence specific windows in the system used for the demon-
stration. Generalization is the process of identifying salient
features in the trace that uniquely describe the actions at a
level of detail that enable the trace to be run in a different
environment. For instance, when the user double-clicked at
location (5, 8) in window with id 10060, a generalized ver-
sion of this action (that is portable to more systems) could be
“double-click on the icon on the desktop named ‘My Com-
puter”’.

In some cases, there may be more than one generalization
of a particular user action. For instance, if a user types the
string “tomato” into a text field, she may be entering her user-
name, her password, or a constant string. If the wrong gener-
alization is selected, the procedure could fail when run by a
user with a different username and password.

Our approach to action generalization is based on a ma-
chine learning technique called version space algebra[6],
a framework for efficiently enumerating the space of possi-
ble generalizations for concrete actions, and maintaining the
set of consistent generalizations given one or more exam-
ples of the target action. For example, if one user enters the
string “tomato” and the next enters the string “cabbage”, the
learning algorithm discards the hypothesis “type the constant
string tomato”, although the hypothesis “type the user’s pass-
word” is still plausible.

2

A more advanced form of generalization is needed to rec-
ognize procedures that differ based on the version of the oper-
ating system being run. For instance, the organization of the
network control panels differs across versions of Windows.
A procedure to adjust one setting on Windows 98 requires
different steps than a procedure to adjust the same setting
on Windows XP. Automatically recognizing and generalizing
procedures that differ at this level remains an area for future
work.

3.3 Alignment

Our goal is to learn robust procedures from traces generated
by different experts, under a variety of conditions. Traces
may contain steps in different order, or may contain new
subprocedures in which a whole sequence of steps has been
added (perhaps to recover from a previous failure). A robust
model of the procedure must capture both the well-worn path
through the procedure (the common case, in which all the
steps succeed) as well as less common paths in which one or
more of the procedure steps results in an unexpected error.

Thealignmentproblem is to recognize and align together
subsequences of similar functionality across multiple traces,
so that multiple examples of the same step in different traces
can be used to generalize the step. For example, suppose one
expert performed an extra set of actions at one point during
the trace (for instance, if a command produced an unexpected
outcome) before returning to the main procedure. When the
expert returns to the main path, alignment is necessary to both
detect the deviation as well as line up future actions in this
trace with the main path demonstrated by other experts for
this procedure.

Our approach to the alignment problem is inspired by pre-
vious work in DNA sequence alignment. However, unlike
aligning DNA sequences, alignment of procedure traces is in-
timately tied to the generalization process. Two experts per-
forming steps (e.g., typing a string into a text field) might
both be entering their password into a login dialog. Alter-
natively, one of them might be changing the host name of
this computer while the other is typing the subject line of an
email message. The alignment of these steps in the proce-
dure model depends on how well they generalize, while the
generalizations depend on which steps are aligned together.

Our solution to the combined alignment/generalization
problem is based on Input/Output Hidden Markov Mod-
els [1]. IOHMMs provide a mechanism for considering all
possible alignments and iteratively selecting the locally best
alignment. The output of an IOHMM is a probabilistic fi-
nite state machine with classifiers at each node that predict
both the next action and the next node, given the current state,
which includes features that are visible on the user’s screen.
The classifiers capture the generalization of actions, while the
probabilistic finite state machine captures the different possi-
ble paths through the procedure.

3.4 Execution

A learned procedure must beexecutedon a new machine to
accomplish the task modeled in the procedure. Execution is
more than simply a matter of replaying a sequence of actions

one by one, however. First, the procedure may contain condi-
tional steps that should only be executed under certain condi-
tions, such as steps that depend on the installed version of the
operating system or specific drivers. Second, the system must
monitor the result of each action to detect unexpected results,
by matching the observed result of the action against the ex-
pected result contained within the procedure. For example,
one type of unexpected result takes the form of asynchronous
events, such as new mail notification or instant message pop-
ups. These events could grab the keyboard focus or other-
wise interfere with procedure playback. Third, the procedure
may be run on a system with different characteristics than the
training systems (such as a production server rather than a
test server, or an upgraded version of the operating system, or
simply one with more users and hence more load). A reliable
execution system must take all these factors into account in
order to ensure that a procedure can be executed reliably on
any system.

Our use of an IOHMM to model procedures addresses
these challenges by incorporating a classification mechanism
into the procedure representation. At each step, our system
examines what is visible on screen and uses that information
to inform its decision of how to proceed in the task. For exam-
ple, if an asynchronous event occurs, the system recognizes
that an unexpected window has appeared, and outputs a dif-
ferent probability distribution over the space of possible next
actions.

One of our future goals is to interleave learning with exe-
cution. As a user is executing a procedure on a new system,
she may reach a point where an unexpected failure occurs that
is not represented in the procedure. If the user knows how to
recover from this failure, she can demonstrate the recovery
procedure as she goes, and these steps become part of a more
robust procedure. Dynamically updating procedure models
during execution will enable autonomic procedures to stay
up-to-date even as conditions change over time.

4 Related work
Previous programming by demonstration systems[3; 7] relied
on instrumenting a single application in order to track user
and system actions at a very high level. For autonomic com-
puting, however, we cannot assume that all the necessary ap-
plications will be instrumented, thus forcing us to work with
the lower-level event stream available from the operating sys-
tem. In addition, no previous programming by demonstration
system has attempted to automatically learn complex condi-
tional procedures from multiple traces.

Our approach is related to planning, specifically contin-
gent planning[8]. Contingent planners formulate a plan (a
sequence of actions) that will achieve a goal, even in the pres-
ence of uncertainty about the state of the world. The gen-
erated plans employ sensing actions to determine the world
state before proceeding to the next action. The goal of our
research is also to produce contingent plans. However, in-
stead of reasoning about the desired state of the world and
using an action model to synthesize a sequence of actions to
achieve the goal state, our system uses demonstrated traces to
bias the search for plans. Rather than having an expert define

3

the desired state of the system, we learn from a sequence of
demonstrated actions.

Programming by demonstration is also similar to previous
work in plan recognition[2; 4; 5]. Instead of defining a plan
library and matching an agent’s actions against a set of known
plans, however, our approach allows an agent to define a new
plan by demonstration. Our approach also supports plan re-
finement by incorporating new demonstrations of the same
plan. In addition, unlike most plan recognition systems, our
system generalizes individual steps in the plan from the con-
crete actions performed by the agent to a higher-level action
description.

The segmentation problem is similar to previous work on
learning plan operators from traces. Wang[9] makes the
assumption that each plan operator results in a single state
change, and relies on the expert identifying correct and com-
plete descriptions of the state before and after each action.
In our case, however, each plan operator (such as launching
an application) results in a potentially large number of state
changes (where each is reflected by a low-level event, such
as a widget in a window being created). In addition, asyn-
chronous events (such as occur in the real world, unlike a
simulator) make our problem more challenging.

5 Summary and implications for autonomic
computing

We have outlined a research agenda for automatically acquir-
ing procedural knowledge for use in autonomic systems. Our
research is based on learning procedures by observing experts
perform these procedures on live systems, and dynamically
building a procedure model that can be executed on a new
system to repeat the same task. As traces of a procedure are
accumulated over time, the procedure model is updated. This
dynamic learning process enables the procedure to adapt to
changing conditions.

The success of autonomic computing relies on the ability of
systems to manage themselves and react to changing condi-
tions. Currently, knowledge about how to maintain and con-
figure systems is locked within the minds of skilled experts.
Our research goal is to facilitate knowledge acquisition from
these experts, simply by watching them do what they do best,
and to produce intelligent systems that embody this knowl-
edge.

References
[1] Y Bengio and P Frasconi. Input-output HMMs for se-

quence processing.IEEE Transactions on Neural Net-
works, 7:1231 – 1249, (1996).

[2] E. Charniak and R. Goldman. A probablistic model of
plan recognition. InProceedings of the Ninth National
Conference on Artificial Intelligence, volume 1, pages
160–5, July 1991.

[3] Allen Cypher, editor.Watch what I do: Programming by
demonstration. MIT Press, Cambridge, MA, 1993.

[4] B. Goodman and D. Litman. On the interaction between
plan recognition and intelligent interfaces. InUser Mod-

eling and User Adapted Interaction, volume 2, pages 83–
115, 1992.

[5] H. Kautz. A Formal Theory Of Plan Recognition. PhD
thesis, University of Rochester, 1987.

[6] Tessa Lau, Pedro Domingos, and Daniel S. Weld. Pro-
gramming by demonstration using version space algebra.
Machine Learning, 2003. To appear.

[7] H. Lieberman, editor.Your Wish is My Command: Giv-
ing Users the Power to Instruct their Software. Morgan
Kaufmann, 2001.

[8] L. Pryor and G. Collins. Planning for contingencies: A
decision-based approach.J. Artificial Intelligence Re-
search, 1996.

[9] Xuemei Wang. Learning by observation and practice: An
incremental approach for planning operator acquisition.
In Proceedings of the 12th International Conference on
Machine Learning, 1995.

4

