
RC23116 (W0402-098) February 20, 2004
Computer Science

IBM Research Report

Programming-by-Demonstration for Behavior-based User
Interface Customization

Lawrence D. Bergman, Tessa A. Lau, Vittorio Castelli, Daniel Oblinger
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Programming-by-Demonstration for Behavior-based User
Interface Customization

Lawrence D. Bergman, Tessa A. Lau, Vittorio Castelli, Daniel Oblinger
IBM T.J. Watson Research Center

30 Sawmill River Rd.
Hawthorne, NY 10549 USA

+1 914 784 7946
bergman@watson.ibm.com

ABSTRACT
Programming by demonstration (PBD) is a powerful tool
for creating new user interface controls by capturing user
behavior. A programming by demonstration system
watches what the user does, infers the user’s intent, and on
request, performs actions on the user’s behalf. Personal
Wizards is a desktop programming by demonstration
system running on Windows platforms. We describe the
Personal Wizards PBD system, and speculate on several
ways in which existing user interfaces could be customized
with new controls.

Keywords
Programming by demonstration, user interface
customization, adaptive interfaces, machine learning

INTRODUCTION
In this paper we explore the use of programming by

demonstration (PBD) as a technique for behavior-based
user interface customization, and present Personal Wizards,
a system that implements programming by demonstration.

Programming by demonstration [Cypher93,
Lieberman01] creates a procedure by capturing a sequence
of user actions (e.g., key presses and mouse clicks) on an
interface. A procedure can be considered to be a sequence
of context-dependent actions that accomplish a particular
well-defined task. Examples include: filling out a travel
expense form, troubleshooting a network card, and
reserving a conference room using an online reservation
system.

Note that PBD only permits the creation of procedures
that invoke a sequence of already-defined interface
controls. One can think of PBD as creating new controls
from old – as new procedures are assembled and bound to
new controls, these new controls, in turn, become available
as components of future procedures. Creating a novel
action that cannot be composed from existing UI actions,
however, requires more traditional software development
techniques and tools.

 The rest of this paper will discuss programming by
demonstration in more detail, and describe Personal
Wizards, a desktop PBD system. We will conclude with a

discussion of how PBD-based actions could be used to
customize user interfaces.

PROGRAMMING BY DEMONSTRATION
There are three key components in implementing a

programming by demonstration system. The first is a
component that watches what the user does. The second is
a component that infers what the user is doing. The third is
a component that automatically performs actions on the
user’s behalf.

Watching what the user does involves instrumenting
the software platform on which the user is demonstrating
her procedure. The instrumentation must be capable of
detecting user-initiated actions. Depending on the API
provided by the software platform, such actions might be
low-level actions such as key presses and mouse clicks,
mid-level actions such as button presses or menu selections,
or high-level actions such as “launch an application”.

It is important to note that the level of information
returned by the instrumentation and the level required for
learning by the PBD system may not match; abstraction to
higher-level actions may be needed. If so, this will usually
impose additional requirements on the instrumentation. For
example, the system may need to translate low-level mouse
click events into higher-level button presses. This requires
a facility for querying and maintaining an internal
representation of the on-screen widget hierarchy, in order to
translate from geometric screen coordinates into widget
identifiers. Another example is abstraction from lower-
level actions to high-level actions such as “launch an
application.” To support this, the instrumentation must be
able to detect and report not only user-initiated actions, but
also system-initiated actions such as process creation.

Inferring what the user is doing is essential to creating
a general procedure that is not tied to the particular
demonstration(s) used to create it. One form of inference is
generalizing parameters to the procedure, a form we call
variablization. For example, if a reservation time of 10AM
is entered when demonstrating a procedure for reserving a
conference room, this should not necessarily be interpreted
to mean that all future uses of that procedure will reserve
for 10AM; the reservation time will typically become a

1

procedure parameter. We assume that behavior-based
customization can happen at many different levels –
individual customization, customization for groups or
organizations, customization for particular usage patterns.
Variablization is critical for all of these.

A different form of inference is learning how to make
decisions at choice points in the procedure. For example, a
procedure to diagnose a network card might take different
actions if the system is configured with a static IP address
as opposed to a dynamic one. The static vs. dynamic
determination can readily be made by opening a networking
dialog and examining the state of a radio button that selects
between the two. A user demonstrating this procedure will
actually open that dialog and examine the state. The PBD
system will readily learn to open the dialog, but must also
learn the relevant features to examine, and the decisions to
be made (i.e., the appropriate next-actions to take based on
feature values) at the choice point. In the Personal Wizards
system, described below, we handle choice point inference
through the use of multiple examples.

Performing actions on the user’ s behalf is the final
necessary component of any PBD system. When the end-
user requests execution of the procedure, the PBD system
must determine the sequence of actions to be taken, and
execute each. In general, this will take the form of
synthesizing a sequence of user actions on the existing
application (or applications if the procedure is cross-
application) user interface. In cases where the PBD
procedure is invoked through a new control added to an
existing application, this might seem to be a shortcoming –
we add new interface controls that don’ t operate
transparently. Instead, when the controls are invoked, the
user sees a sequence of activations of other application
controls. Although this makes the operation of the new
controls idiosyncratic, it is also a strength. The user of the
application can see what the new control is doing in terms
of existing and understood controls, which should increase
his understanding of the new control, as well as his trust
that it is performing its functions correctly.

An important consideration in designing a PBD system
is how to give the user a view of the generated procedure.
This is important not only to edit the procedure (assuming
that the PBD system supports that), but also to give users
the opportunity to develop trust in the generated procedure
by inspecting it. In addition, control over execution of the
generated procedure can be important, such as an ability to
see what the procedure will do next and to manually specify
whether or not the procedure will be allowed to continue.
Although procedures can often be automatic, this is not
universally true; many procedures require human judgment,
particularly before taking steps that are irreversible or have
other strong consequences.

In the next section, we discuss the Personal Wizards
system for programming by demonstration on the desktop.

PERSONAL WIZARDS
Personal Wizards is desktop programming by

demonstration system that runs on Microsoft Windows
platforms (note that Personal Wizards is a slightly enhanced
version of the Sheepdog system described in [Lau04]).
Personal Wizards differs from prior PBD systems in its
ability to learn from multiple demonstrations of the same
procedure. By utilizing a number of examples that follow
different branches in the procedure (e.g., running on
different versions of the operating system), we are able to
infer a rich procedure model containing choice points.

Based on a belief that procedures should not be black
boxes, and that many procedures cannot simply be
automated, Personal Wizards procedures are inspectable
and allow the end user to control their execution by
manually stepping through them. These features will be
described in more detail in the next section.

User Interface
There are three modes or roles in which a user may

interact with the Personal Wizards system. A single unified
interface (figure 1) supports all three modes. The first
mode is record mode. Pressing the record button in the
user interface causes Personal Wizards to begin capturing
user and system actions. All actions are captured and saved
to file with the exception of actions on the Personal
Wizards interface itself. As each user action is detected, it
is added to a list of actions in the Personal Wizards
interface. These are currently reported as low-level actions
with minimal abstraction to identify the target component
for the operation, for example, “ Double click on My
Computer” .

Once one or more demonstrations have been recorded,
the user may edit the procedure in authoring mode.
Authoring, which is an optional step, makes the procedure
more understandable by adding hierarchical structure, as
well as specifies which subprocedures are to be automated
and which are to require manual initiation.

The final interface mode is play mode. Here the
procedure is interactively executed, with manual control
over execution of steps or subprocedures. Personal
Wizards highlights each onscreen control (button, icon, etc)
prior to activating it, and advances an execution cursor
within the procedure display, highlighting the step about to
be executed. A play button is used to execute the current
step or subprocedure, and to advance to the next.

In addition to the automated execution, Personal
Wizards also supports a limited form of mixed initiative
[Wolfman01]. If the user manually performs operations in
the application interface (such as pressing a button or
selecting from a menu) that were seen during any of the
recording sessions, Personal Wizards will recognize the
action, predict a next step for the procedure, and highlight
in the interface the action associated with that step, as well

2

Figure 1. Personal Wizards user interface showing a networking procedure during playback

as highlighting the control onscreen associated with the
action. This allows Personal Wizards to function as a sort
of tutorial system – at each step that the user performs, if
Personal Wizards recognizes that place in the procedure,
it will inform the user of the probable next action,
allowing her to either continue on manually (accepting or
ignoring the recommendation), or press the play button to
resume automated execution. This facility also allows the
user to diverge from the procedure path, either to execute
alternative actions, or to engage in a different activity
(such as going off and reading email); when the user is
“ back on track” , Personal Wizards will recognize that, and
inform the user appropriately. In the future, we plan to
extend this mixed initiative processing to allow the user to
enter recording mode dynamically so that new pathways
through a procedure can be captured.

Usage Scenarios
We expect Personal Wizards to make its first impact

as a system administrator support tool, or for use in
deskside support. In these domains there are numerous
well-defined tasks – moving file systems, installing
software patches, correcting particular error conditions,
etc – that we believe amenable to programming by
demonstration. We envision well-trained experts creating
these procedures, either by recording activities while
troubleshooting in the field and latter assembling and
authoring the procedure, or by explicitly
recording/authoring a procedure for which wide use is
anticipated. Dissemination of the executable procedures
can be through websites, or email attachments. Note that

Personal Wizards currently requires a manual installation
on each client platform; we expect to have a web-based
install within the near future.

A second category of use for Personal Wizards will
be in automating business processes. We believe that
many business processes can be thought of as “ well worn
paths” through fairly complicated user interfaces, often
involving more than one software package. Personal
Wizards will allow the capture of “ best practices” in
performing these common operations, and allow an
organization to make them available on corporate
websites, or even as additional controls within particular
applications. This usage category can be thought of as
organizational customization.

A third category will be personal customization.
Currently we envision the end-user explicitly recording
procedures (and authoring when desirable) and explicitly
invoking them. Although we can imagine using inference
techniques to determine when Personal Wizards should
automatically record and/or suggest playback, this is an
open research area, and great care needs to exercised to
not repeat the well-known “ paperclip” debacle.

A key to enabling all of these usage scenarios will be
creating searchable procedure repositories. Although
keyword specification by the authors will go partway in
making procedure repositories useful, automated labeling
and search will be required to support large repositories.
This is an area for future research, which we will be
actively pursuing.

3

Customizing a User Interface using Personal Wizards
We have devised several ways in which Personal

Wizards might be used to customize existing user
interfaces. Although these are currently unimplemented,
we will give a brief overview of some of the possible
approaches.

The first possibility is to add controls to existing
applications. We call this scaffolding, since the existing
application is being used as a scaffold to contain a set of
new user-defined controls. There are two ways in which
scaffolding could be implemented.

The first is for individual applications to be extended
to permit the user to define new controls and bind PBD
procedures to them. A number of existing applications
allow the user to extend the control set. An excellent
example is the Eclipse platform [Eclipse04] which allows
a developer to define plugins, and through an XML
specification define new interface extensions such as
toolbar buttons and menu items. Although this is the most
reliable and easy-to-use mechanism, unless an API is
already provided, it requires alteration to the application
source for each application that is to have new controls
installed. Note also that such extensions would require
either an API for the application to communicate with the
Personal Wizards process, or repackaging Personal
Wizards as a component.

A more generic approach is to modify an
application’ s control set using operating system API calls.
For example, Windows provides API calls that allow a
program to add a button to a toolbar even within a
different process. A callback is registered with that
control. This would allow a Personal Wizards process to
install controls in a variety of application user interfaces,
with the appropriate Personal Wizards procedure being
executed when each is activated.

A related idea is one we call control skinning. This is
based on the commonly known notion of skinning, in
which an application provides an API that allows an end-
user to remap the visual appearance of individual elements
(such as buttons) within a user interface. We propose
extending the idea to remapping existing controls within
an interface to a new and different functionality.

As with scaffolding there are two possible approaches
to this. The first is to modify existing applications to
permit this remapping. A control, once remapped, would
invoke a PBD procedure, rather than the original function.

The other approach is to implement control skinning
through the operating system. This is a bit trickier than
scaffolding, since the Personal Wizards process will need
to intercept events that are intended for the application. If
the operating system allows insertion of a listener
(callback) prior to any application listeners, as well as
removal of the event from the event queue, we have the
necessary mechanisms to accomplish this. Although

Windows hooks allows registration of event listeners, we
do not yet know if it is possible to ensure that our listeners
are invoked prior to the application listeners.

An alternate operating system-based approach is to
physically layer controls on top of the existing controls.
Transparent windows can be placed directly on top of the
control to be remapped. We call such overlays appliqués.
Note that appliqués need not be transparent, they can be
used to alter the physical appearance of the application
controls (this is traditional skinning, except done outside
of the application) in addition to altering functionality.
Since the appliqué is above the application window in z-
ordering, it receives mouse events, rather than the
application. This begs the question of hotkey handling,
however, which must be implemented using the previously
described mechanism. An additional complication is how
to handle window move and resize events. We must be
able to register for these, and make the appropriate
changes to the appliqué size and position to keep it
registered with the application window.

Note that in the extreme case we can simply use
screen capture techniques to create a new window that
emulates the entire application window. Essentially we
have created an application proxy, which processes
remapped controls (by invoking the appropriate Personal
Wizards procedure), and passes events along to the
application process as appropriate. The original
application window is minimized, and as new application
windows are created, proxies are generated. We envision
applying the ideas of scaffolding and control skinning in
conjunction with PBD to develop a PBD-based user
interface customization toolkit. In addition to the
recording and authoring components currently within
Personal Wizards, the interface would provide the user
with the ability to add new controls to existing interfaces,
as well as binding new functionality, and optionally new
appearance to existing controls. We are currently
beginning to prototype such a customization toolkit.

REFERENCES
1. [Cypher93] Cypher, A., Ed. Watch What I Do --

Programming by Demonstration. The MIT Press,
Cambridge, MA 02142, 1993.

2. [Eclipse04] www.eclipse.org

3. [Lau04] Lau, T, Bergman, L., Castelli, V., Oblinger,
D., Sheepdog: Learning Procedures for Technical
Support, IUI 2004.

4. [Lieberman01] H. Lieberman, Ed. Your Wish is My
Command -- Programming by Example. Morgan
Kaufmann Publishers, 2001.

5. [Wolfman01] Wolfman, S. A., Lau, T. A., Domingos,
P., Weld, D. S., "Mixed initiative interfaces for
learning tasks: SMARTedit talks back", IUI2001, pp.
167-174.

4

