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Wireless LAN (WLAN) interfaces are responsible for a significant fraction of the total energy consumed by 
a large class of mobile client devices. WLAN interfaces have power saving features which enable 
substantial energy reductions during long idle intervals. However, during periods of activity, when data 
transfers occur, the nature of the network traffic is hard to predict and this prevents the network interface 
from fully utilizing the power-save features between packet receptions. 

This paper introduces a web proxy architecture designed to enable further reductions in the energy 
consumed by WLAN interfaces. The proxy modulates the traffic directed to the wireless client into 
alternating intervals of high and no communication. The modulation takes into account the semantics of the 
web traffic and the configuration of the client’s WLAN interface. As a result, the interface spends more time 
in power-save mode and less time in active mode. Initial experiments show energy reductions of 13% and 
higher on popular web sites such as CNN and NY Times, and up to 56% when downloading large objects. 
The architecture does not require any modifications of the client or server applications. 

KEYWORDS:  Power Management, WLAN, Proxies, Traffic Shaping

1. Introduction 

In 802.11 LANs, the wireless interface of the mobile device is responsible for a significant fraction of its 
power consumption. The relative power consumed by the WLAN interface depends on the mobile device 
and it varies from 5-10% in high-end laptop computers to more than 50% in PDAs. The actual amount of 
energy consumed for wireless communication depends on the client applications and their usage pattern. In 
particular, active web browsing and multimedia streaming are characterized by high energy consumption in 
the WLAN interface.  

The WLAN interface has one or more low-power states and the client device can be configured to take 
advantage of these features. In these states, the WLAN interface may consume 5 to 50 times less power 
than when active, according to measurements we have made on several WLAN cards. To reduce power 
consumption, WLAN interfaces are configured to switch to power-save mode during idle intervals, for 
example when there has been no network activity for a second or more. In this mode, the interface spends 
most of its time in one of the low-power states and periodically, it powers-up briefly to receive beacon 
frames. Upon detecting network activity, i.e., packets to be sent or received, the WLAN interface leaves the 
power-save mode.  The WLAN driver on the client device controls when the device enters and leaves the 
power-save mode.. Unfortunately, the hard-to-predict nature of incoming traffic prevents using the low-
power states on the WLAN interface during active periods without affecting application performance and 
interactivity.  

The optimal solution, which minimizes the energy used for wireless communication, requires perfect 
knowledge of the application traffic patterns, wired and wireless network conditions and user preferences. 
Furthermore, such a solution would be application-dependent.  

This paper proposes a practical but suboptimal solution to the above problem. Namely, we propose an 
HTTP proxy architecture, which takes advantage of the information available at the application level, to 
modulate the traffic directed to the wireless client into alternating intervals of high and no communication. 
In this process, the proxy takes into account the configuration of the client WLAN interface. Furthermore, 
the proxy attempts to mitigate any negative effects the traffic modulation might have on user-perceived 
latencies by parsing downloaded documents and optimistically prefetching any embedded objects.  Since 
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the prefetching is done by the proxy across the wired LAN, the wireless device does not pay any penalty 
for this. 

The power consumed by the client WLAN interface is reduced because the interface is configured to switch 
to power-save mode after a much shorter delay to take advantage of the idle intervals inserted by the proxy. 
When client and proxy communicate, data transfer rates are higher because the latencies and packet losses 
between the two are lower than in the no-proxy configurations. Overall, the same amount of data is 
transferred to the client device over approximately the same time interval but using a traffic pattern that 
allows the client WLAN interface to be power-off for a larger fraction of the download time.  

Our solution has applicability beyond web browsing because many client applications, such as media 
players or email clients, and Web Services use HTTP for communication to bypass firewalls. Finally, the 
architecture does not require any modifications of the applications on the client device or remote server. 

In this paper we describe the architecture of the HTTP proxy and its current implementation. We present 
experiments with popular web pages, such as CNN and NY Times, which are composed of tens of 
embedded objects, and with downloading large objects (upwards of 1MB). We evaluate our solution using 
client HTTP traces collected using IBM’s PageDetailer and measurements of the power consumed by the 
WLAN card using an oscilloscope, a Digital Multimeter and a PC application. Energy reductions vary 
between 13% and 56% and depend heavily on the structure of the downloaded page and on the state of the 
network. 

This paper describes an implementation of the HTTP proxy that is closer to a proof-of-concept than to a 
product, as we focused our implementation efforts only on the key elements of the architecture. In this 
paper, we only exercise the proxy with relatively few web sites, albeit we selected some of the most 
complex ones among the popular web destinations. In spite of all these limitations, our experiments 
demonstrate clearly that techniques previously applied only to long WLAN transfers, mostly multimedia 
streams, can be applied to more complex scenarios, such as downloading web pages consisting of 80+ 
objects, many of which are very small. To achieve these results, a novel architecture had to be defined, 
which takes advantage of information available only at the application level, i.e., at the HTTP protocol. 
Furthermore, it is our belief that extending the power-management component of the 802.11 specification 
could improve the efficacy of a proxy targeting the reduction of the energy consumed by the WLAN 
interface on client devices.  Namely, our architecture can exploit any information on the current power-
management status of the WLAN interfaces, provided that such information can be extracted from the 
WLAN base station in a timely manner. 

The paper is organized as follows: Section 2 provides an overview the power-management features 
available in 802.11 LANs. Sections 3 and 4 describe the architecture and the current implementation of the 
WLAN proxy. Section 5 discusses several experiments using the WLAN proxy. Section 6 is a brief survey 
of the related work. The last section describes several extensions of this work.  

2. Power Management in 802.11 LANs 

This section provides a brief overview of the power-management features of an 802.11 client interface or 
station in an infrastructure network. Only features relevant to LANs using only the distributed coordination 
function as access method are described. For a complete description of power management in 802.11 
networks, including ad hoc configurations and configurations using the optional point coordination 
function as access method, see [Part11]. In this section and the rest of the paper, we use the same 
terminology as [Part11]. 

The power management mode of a station can be either active mode or power save mode. The power state 
of a station can be either: Awake, when the station is fully powered, and Doze, when the station consumes 
very little power but it is not able to receive or transmit frames. In active mode, the station is in the Awake 
state. In power save mode, the station is typically in Doze state but it transitions to Awake state to listen for 
select beacons, which are broadcasted every 102.4 ms by the wireless access point. The station selects how 
often it wakes up to listen to beacons when it associates with the access point. The transition between 
modes is always initiated by the station and requires a successful frame exchange with the access point. 
Therefore, the access point is always aware of the power management mode and beacon periodicity of each 



 3 

station in the LAN. The access point uses this information when communicating with stations in the power 
save mode, as described next. 

The access point buffers all traffic pending for the stations known to be in power save mode and identifies 
these stations in the appropriate beacon frames. When a station detects that frames are pending in the 
access point, it sends a poll message to the access point. If the beacon frame shows that more than one 
station has pending traffic, the poll message is sent after a short random delay; otherwise it is sent 
immediately. The station remains in the Awake state until it receives the response to its poll, or a beacon 
which indicates that there is no pending traffic for the station1.  

The access point’s response to the poll is either an ACK or the next pending frame. By responding with an 
ACK frame, the access point delays the transmission of the pending frame and assumes the responsibility 
for initiating the delivery of the pending frame. The station must send an ACK for every received frame. If 
the More Data field of the frame indicates additional pending frames, the station may send another poll 
frame. If there are no pending frames, the interface returns to Doze power state. 

The driver of the client interface controls the power mode of the client station. The station may switch from 
power save mode to active mode after receiving the first data frame from the access point, or after sending 
a data frame to the access point. An example of this transition from power-save mode to active mode is 
shown in Figure 1. Once in the active mode, the station will switch back to power save mode after no 
frames are received or transmitted for a predetermined interval, shown as Ttimeout in Figure 1. Switching from 
active mode to power save mode transitions the station to Doze state (also shown in Figure 1) but delays 
receiving any incoming frames until after the next access point beacon is received.  

beacons

file transfer

Ttimeout

 

Figure 1.  Dynamic Power Consumption in a WLAN Interface 

Switching from power save mode to active mode to receive frames is very advantageous from a 
performance standpoint, because in the active mode the access point will forward data frames to the client 
as soon as they come in, while in the power save mode it must queue them up and wait for the client to 
wake up. Unfortunately, in order to absorb variations in packet delivery, the client must stay Awake while 
waiting for more data, which wastes energy. Thus, from an energy standpoint it is never advantageous to 
transition into the active mode except if it is known, or highly expected, that data will be coming in at a 
very high rate so that the client will only spend a relatively little time waiting for more data.  

Client-side solutions are restricted by the limitations in predicting the next frame arrival time and by the 
limitations imposed by the 802.11 specifications, namely by the fact that both the More Data field and the 
access point beacon field indicating pending frames are one bit long. This work overcomes these 

                                                 
1 The access point deletes frames buffered for excessive periods. 
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limitations by using a proxy to modulate incoming traffic for the WLAN in a manner that accounts for 
client-side configuration. 

3. Architecture 

The proposed proxy architecture is designed to capture all the WLAN HTTP traffic and to shape it into 
alternating bursts of high and no activity. The proxy buffers the downloaded content until there is enough 
data to justify the overhead of switching power modes on the client WLAN interface or until no additional 
data is expected. Once started, all the buffered data is forwarded at the maximum speed allowed by the 
WLAN conditions. In many situations, the client device initiates additional requests as a result of receiving 
data; therefore the shaping of incoming traffic extends to the outgoing traffic as well. The traffic 
modulation does not change the semantics of the content. In contrast to typical web proxies, which cache 
frequently accessed objects, this architecture discards the forwarded objects immediately.  

The primary objective of this architecture is to introduce a certain degree of predictability in the HTTP 
traffic from the proxy to the client that the client device can take advantage of. In network configurations 
where the WLAN device is connected directly to the Internet, TCP packets arrive at the client in an 
unpredictable pattern due to the large transmission delays between the client and the servers and their 
impact on the TCP packet flow. In contrast, the HTTP proxy shapes the WLAN traffic by turning TCP 
transfers between client and proxy on and off, using an extensive collection of HTTP-dependent rules. The 
proxy effectively indicates to the WLAN client that in most situations, a few tens of milliseconds of no 
incoming traffic signal a longer interval of network inactivity. Ideally, the HTTP proxy should be 
integrated with the WLAN Access Point (see Figure 2). As a result the client device can become more 
energy efficient by switching to power-save mode after much shorter delays than previously possible. 
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Figure 2.  Typical Usage Setting for the HTTP Proxy 

The HTTP proxy uses several techniques to offset the negative impact that traffic modulation can have on 
user-perceived latencies. Namely, in order to create traffic bursts, the HTTP proxy has to delay forwarding 
of downloaded content, which increases user-perceived latency. To partially offset this effect, the proxy 
parses downloaded HTML documents and aggressively prefetches all the embedded objects. As a result, 
many of the subsequent client requests are served immediately, without incurring the delay of accessing the 
origin server. In addition to prefetching, this proxy architecture benefits from splitting the TCP connections 
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between the WLAN client and servers. Object download times, measured as the time interval between the 
arrivals of the first and last data packets, are shorter as TCP transfer rates on WLAN are higher than in the 
original WLAN+WAN configuration. TCP rates are higher because the latencies and the loss rates between 
client and proxy are lower than between client and the remote web servers.  

The set of rules determining when data should be released to the client is complex and expected to evolve. 
These rules take into account client configuration and the status of the WLAN. They are expected to evolve 
with the HTTP-related standards and with our understanding of the complex interactions between 802.11, 
TCP and HTTP. As a result, we carefully isolated the decision component from the rest of the proxy in both 
the general architecture and the current implementation (see Figure 3).  
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Figure 3.  HTTP Proxy Architecture 

The resulting architecture has four major components: the client-side module, the server-side module, the 
decision module (the oracle and its rule database) and the global state module (the blackboard). The client-
side module processes HTTP requests from the WLAN clients. If the requested object was already 
prefetched (with the correct cookie), the client-side module builds the response immediately and it requests 
permission to send the object back to the client. Otherwise, the request is added to the global data structures 
in the blackboard module. The server side-module handles remote servers: establishes and manages the 
TCP connections, constructs HTTP requests, and adds HTTP responses to the blackboard. In addition, this 
module parses the responses that are html documents, generates prefetch requests for all the embedded 
objects, and adds them to the blackboard. Every time the client- or server-side modules change the state of 
the blackboard, the decision module is activated. The decision module determines when a client request is 
forwarded to the server, when a response can be returned to a client, when to reuse a TCP connection, etc. 
To perform its tasks, the decision module uses an extensible collection of rules. Effectively, this module 
controls the shaping of the WLAN traffic by determining the conditions user which the client module can 
return a response to the client device. 

The HTTP proxy has to address several problems. First, the proxy must correctly handle HTTP cookies. All 
client cookies are forwarded and Set-Cookie operations are recorded locally, for later use. Objects 
prefetched without the proper cookie information are discarded. To lower the likelihood of incorrect 
prefetches, the architecture should include a mechanism for downloading client cookies into the proxy and 
for sharing cookies between related proxy installations. Second, the proxy must be efficient in prefetching 
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the embedded objects. For instance, it should attempt to prefetch objects in the order they are expected to 
be requested by client. In addition, when the client device caches web objects, a large fraction of the client 
requests are “conditional GETs” and the proxy should use prefetched objects to handle them correctly. 
Because of client caches, some prefetched objects are never requested and they should be discarded after 
the page download completes. Third, the proxy must shape SSL traffic and multimedia streams. Fourth, the 
proxy must balance traffic shaping granularity and CPU overheads, by invoking the decision module upon 
receiving new data from remote servers, upon completion of an object download, periodically, or a 
combination of these. Typical configurations parameters aim at avoiding any increases in user-perceived 
latencies while shaping traffic for the maximum power savings in the WLAN interface. The next section 
describes the current implementation of the HTTP proxy. 

 

4. Implementation 

In this section, we describe the details of the current implementation of the proposed HTTP proxy. We 
focused our implementation effort on the traffic shaping capabilities of the proxy and on methods for 
lowering download latencies. For simplicity, this prototype requires the proxy to work in non-transparent 
mode, thus the client browser has to be appropriately configured. Also, the prototype does not support the 
downloading of user cookies into the proxy. Instead, the proxy builds a copy of the user’s cookie collection 
from scratch using the information in the HTTP header fields. In addition, we made extensive use of freely-
available code, mainly from the GNU wget project [GNU-wget]. 

The HTTP proxy can be either integrated with the WLAN access point, as shown in Figure 2, or running on 
a separate server, preferably on the same wired LAN with the WLAN access point(s). Integrating the proxy 
with the WLAN access point eliminates communication latencies between them but it can be expensive, as 
it requires upgrading the access point hardware with faster CPU(s) and more memory. The prototype 
described in this paper runs on a separate server, which is on the same wired LAN with the access point.  

The implementation is heavily multithreaded, and it is built on top of LinuxThreads, which is the standard 
POSIX thread library in RedHat Linux 9.0. As the implementation uses only a few of the most common 
pthread calls, it can be easily ported to other operating systems and POSIX-compliant thread libraries. We 
carefully avoided performing any blocking I/O operations, such as connect, read or write, while in one of 
the critical regions. As a result, exceptional network events with large timeouts affect only the performance 
of the related client request and have little or no impact on other requests.  

The client and server modules (see Figure 3) are multi-threaded while the decision module is single-
threaded; the blackboard is a global data structure optimized for concurrent access. 

The client module handles the connections to WLAN clients, processing requests and constructing 
responses. Each client connection is assigned a separate thread and connections are assigned to clients 
using on the remote IP address. The client thread exits when the connection is closed by the client or by the 
proxy. The proxy closes client connections when the HTTP semantics requires it or upon receiving a 
malformed client request.  

Upon receiving a valid request, a client thread searches the blackboard for the requested objects. If the 
object is not found and a prefetch request was already issued for the object, the client thread blocks waiting 
for the prefetch to complete. If neither the object nor a prefetch request for the object is found, the client 
request is added to the blackboard and the thread blocks. If the object is found or after a request for the 
object is completed, the client thread constructs the response and attempts to send it back to the client. No 
data is sent back to the client and no client connections are closed without permission from the decision 
module. 

The server module handles connections to remote web and proxy servers. For each request placed on the 
blackboard a new fetching thread is created. First, the thread attempts to reuse an existing TCP connection, 
if any available, or create a new one, if allowed. For prefetch requests, the proxy uses HTTP 1.1; therefore, 
the proxy opens at most two connections to each server on behalf of each client. For forwarded requests, 
the proxy uses the HTTP version specified by the mobile client; there the HTTP version is checked before 
establishing any new TCP connections. Just before the request is sent to the server, the local copy of the 
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user cookies is searched and the request is changed to incorporate the new cookie, if necessary. Responses 
are added to the blackboard and the decision module is signaled. Cookie-related information found in the 
HTTP response headers is used to update or extend the local copy of the user cookies. The decision module 
is informed about the new response only after the object download is completed. In future implementations, 
we plan to experiment with policies that allow pipelining of responses, which will require invoking the 
decision module before the download is completed. 

Responses containing html documents are parsed and pre-fetch requests for all the identified embedded 
objects are added to the blackboard. Parsing is performed as the document is downloaded, as main pages 
are typically large (several tens of Kbytes) and hosted on busy servers. In contrast, many of the embedded 
objects have much lower download times because they are small or hosted by CDN providers, such as 
Akamai. As a result, some embedded objects are retrieved before the download of the main page finishes. 
In order to efficiently parse on-the-fly, we made extensive changes to the wget parser, which expects the 
entire html document stored in a linear byte array.  

The decision module consists of a single thread, called oracle, which controls the actions of the client and 
server modules. The oracle decisions are based on the information stored in the blackboard by the two 
modules. The oracle uses request and response descriptors, and the timestamp of the last request received 
from and of the last response sent to each client; both timestamps are collected by the client module. Figure 
4 shows a simplified diagram of the oracle: only the component controlling the client module is shown. 
The only restrictions imposed on the operations of the server module are related to the maximum number of 
TCP connections that the proxy can open to a remote server. 

Oracle

CurrentTime – TimeOfLastRequest
< Ttimeout

CurrentTime – TimeOfLastSend
< MaxDelay

ObjectsReceived >= MinObjects

TotalBytesReceived >= MinBytes

Delay Data Release

Authorize Data Release

Authorize Data Release

Authorize Data Release

Authorize Data Release

N

N

N

N

Y

Y

Y
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Figure 4.  Releasing Data to Client 

As presented in Figure 4, data is released to the client if it is available before the WLAN NIC switches to 
power-save mode, which is computed by the proxy as the moment the last client request was received plus 
Ttimeout. Next, no object is delayed for more than a maximum amount of time, called MaxDelay in Figure 4. 
Whenever more than MinObjects that were previously requested are ready to be sent, they are forwarded to 
the client. MinObjects is always smaller or equal to the maximum number of outstanding requests of the 
client device. Finally, if enough data is buffered to justify the overhead of switching between modes, it will 
be forwarded even when the other conditions are not satisfied. 
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The blackboard module consists of a global data structure and code to access it; both are optimized for 
shared access. To lower lock contention, a versioning system is used. The blackboard is organized into 
information per request and information per client. The request information is collected from the request 
and response headers. The client information consists of static information, such as IP address, and of 
information that changes permanently, such as number of requests outstanding, number of connections 
open to remote servers, cookie set, etc. 

The current implementation lacks several features. Most importantly, the proxy does not pipeline requests. 
We expect request pipelining to be important in experiments with a large number of clients and plan to add 
it to future versions together with a more elaborate resource management to ensure fair allocation of proxy 
CPU and memory among clients. The goal of the current prototype is to demonstrate the feasibility of 
shaping the incoming HTTP traffic for a wireless device at a finer granularity than previously done and for 
a different workload and to evaluate the savings in the energy consumed by the client WLAN interface. 
The next section describes several experiments and the results of our measurements. 

5. Experimental Results 

This section presents the results of some of our experiments with the HTTP proxy. First, we describe the 
experimental testbed and the tools used for measurements. Next, we describe several experiments with a 
few popular web sites and one simple experiment downloading a large object.  

The client device is an IBM ThinkPad A30, with a Pentium III CPU running at 729MHz and 256 MB of 
memory, running Windows XP. The WLAN NIC is an Intersil PRISM3 PCMCIA card. The HTTP proxy 
runs on a IBM NetVista desktop, with a Pentium 4 running at 1.8 GHz and 512 MB of memory, running 
RedHat Linux 9. The WLAN access point is Intel PRO/Wireless 2011B connected to the same wired LAN 
as the desktop running the HTTP proxy. The latency between the desktop and the access point is under 100 
microseconds. The proxy connects directly to the Internet, i.e., the optional caching proxy in Figure 2 does 
not exist in our test bed. 

The client device is configured to switch the WLAN interface to power save mode after 10 ms of inactivity 
(Ttimeout) and to listen to every beacon sent by the access point, every 102.4 ms. The PRISM 3 interface 
consumes 848 mW in the Awake state and 66 mW in the Doze state. The HTTP proxy releases data 
immediately in the first 10 ms after receiving a request and does not delay any object for more than 100 ms 
(MaxDelay). In addition, the proxy releases data if two or more objects are waiting to be sent to the client 
or if the cumulative size of the waiting objects exceeds 1KB.  

We collect two types of data. First, we collect HTTP protocol traces on the client device using IBM’s 
PageDetailer [PageDetailer]. Second, we collect power measurements using the experimental setup shown 
in Figure 5.  

PageDetailer displays information on each web page that has been opened since it was started. This 
information includes the amount of time it took to open the page, the total size of the page, the number of 
items comprising the page, and detailed information on each of these items. For each of them, PageDetailer 
lists the type (e.g., text, picture, java script, etc.), the amount of time it took to retrieve and display the item, 
the size of the item and the HTTP headers of the request and response message.  

Most important for our work, PageDetailer displays the download time of each item as a horizontal bar, 
scaled and proportional to the time it has taken to load the complete page, working from left to right. 
Furthermore, the horizontal bar is divided into separate activities, which are displayed in different colors: 
yellow for the connection setup time, blue for the response time, i.e., the time between the HTTP request is 
sent until the first segment of the response is received, and green for the time needed to receive all the 
additional data needed to fulfill the request2.  

Figure 5 shows a PageDetailer screenshot documenting the download of the CNN main page, starting with 
an empty browser cache3. In this experiment, the client device connects directly to the Internet, i.e., it does 

                                                 
2 PageDetailer display more information than it is described here. See the PageDetailer User Guide for 
additional information. 
3 In a B&W image, yellow, blue and green translate into light gray, black and dark gray. 
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not use the HTTP proxy. The connection setup times (yellow) and the object download times (green) 
represent a large fraction of the total download time.  

In contrast, in the experiments with the HTTP proxy, connection setup times are negligible because of the 
small latency between client and proxy. Similarly, object download times are small due to the high 
bandwidth transfers between client and proxy. As a result, the total download time is dominated by the 
response times (blue). In contrast to the other two components, the response time is under the control of the 
proxy and increasing it is the main mechanism for shaping the WLAN traffic. 

 

Figure 5.  PageDetailer Screenshot 

Figure 6 shows the power measurement testbed. The oscilloscope is used to sample the instantaneous 
power consumption of the WLAN interface. The sampled data are then sent to the PC which runs an 
oscilloscope application, thus enabling us to analyze the dynamic power consumption of the WLAN 
interface. The PC also collects data from the programmable Digital Multimeter for calculation of the 
average power consumption. 
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Figure 6.  Testbed for Dynamic Power Measurements 

Table 1 summarizes the results of experimenting with several popular web sites. For each site, the total size 
of the page and the total number of objects, which include main page, embedded objects and pop-up adds, 
are given, as listed by PageDetailer. 

 

Website  Download 

Energy [J] 

Download 

Time [s] 

Application-level 

Throughput [kBps] 

cnn.com 

• 234 kB 

• 83 objects 

Direct 

Proxy 

2.95 

2.58 (-13%) 

5.16 

7.49 

45.3 

31.2 

nytimes.com 

• 238 kB 

• 62 objects 

Direct 

Proxy 

1.64 

1.43 (-13%) 

2.23 

3.24 

107 

73.4 

atomfilms.com 

• 330 kB 

• 66 objects 

Direct 

Proxy 

4.09 

2.95 (-28%) 

6.04 

10.3 

54.6 

32.0 

ACPIspec_2.0b.pdf 

• 1.6 MB 

• 1 object 

Direct 

Proxy 

10.4 

4.57 (-56%) 

14.1 

14.9 

113 

107 

Table 1.  Summary of Experimental Results 

In the ‘Proxy’ experiments, the WLAN interface and HTTP proxy are configured as previously described. 
In the ‘Direct’ experiments, the WLAN interface is configured to received beacons from the access point 
every 102.4 ms (as in the ‘Proxy’ experiments) but the timeout parameter (Ttimeout) is increased 10 times to  
100 ms, which is the typical value seen in commercial WLAN cards.  Obviously, the HTTP proxy is not 
used in the ‘Direct’ experiments.  

The results are computed as the average of five experiments. The experiments were run in the evening, and 
all the experiments using the same site were run in batches shorter than 15 mins to minimize the effect of 
changing loads on web servers or in the Internet.  
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In addition to the two sets of downloads summarized in Table 1, we run experiments with the WLAN 
interface configured as in the ‘Proxy’ experiments but with the client device configured for direct access to 
the Internet. In these experiments, download times were significantly higher than in the ‘Proxy’ 
experiments while the energy reductions were negligible. This demonstrates that reducing the timeout of 
the WLAN interface alone, without shaping the traffic, does not yield any practical energy benefits.  

Figure 7 shows two dynamic power traces collected with the oscilloscope application. The traces were 
collected while downloading the ACPI specification in ‘Direct’ and ‘Proxy’ experiments, respectively. We 
selected to include the power traces for the ACPI experiments because the contrast between the traffic 
shapes in the two experiments is much higher. In the ‘Direct’ experiment, the WLAN interface remains in 
the Awake state for a long period, as packets inter-arrival times are less than 100 ms. In the ‘Proxy’ 
experiment, the WLAN interface switches to power save mode until the proxy downloads the entire object; 
after the download is completed, the object is forwarded to the client across the WLAN in a very short 
period of time. Traces for the other three web sites show different traffic patterns but the differences are 
less obvious. 

Direct

Proxy

 

Figure 7.  Dynamic Power Traces 

Our results show that a simple prototype can reduce the energy consumption of the WLAN interface by 
13% and higher. We are working on improving the HTTP proxy implementation to reduce its negative 
impact on download latencies. 

6. Related Work 

We believe that our work is the first to take advantage of the application level knowledge at the proxy 
server to reduce the energy consumption of the WLAN interface by modulating the traffic directed to the 
wireless client.  Two categories of existing work are related to ours: research on proxy servers to reduce 
web latency; and research on reducing the energy consumption of WLAN interfaces.   

Proxy servers have been developed for many purposes.  A good survey of the types of proxy servers and 
how they function can be found in [O’Reilly].  The most well known types of proxy servers are the web 
cache proxy server and the security firewall proxy server.  Proxies are also used for transcoding content to 
better suit the capabilities of a certain device (such as a Personal Digital Assistant).  The idea of pre-
fetching web pages is commonly used to reduce web latency.  The authors of [KLM97] found that local 



 12 

proxy pre-fetching could reduce web latency by up to 41% based on locally available information, and up 
to 57% if server-hints are added.  They also stated that pre-fetch lead-time is an important factor in the 
performance of pre-fetching.  In [Duchamp99], it is recognized that accurate web pre-fetching is possible 
based on following HREFs in recently fetched pages, based on that the HREFs within a page are strongly 
skewed to “hot” and “cold”.  By having clients pass record of their references up to the relevant server, 
which then distributes them to all clients, one client can learn from the usage patterns of others.  A survey 
of 14 related studies on web pre-fetching can be found in [Duchamp99].  There are, however, no proxy 
servers that optimize the power consumption of wireless clients.       

Many techniques that reduce the energy consumed by the WLAN interface can be found in literature.  The 
power saving mode of IEEE 802.11b is based on the work of Stemm and Katz, which shows that leaving 
the WLAN card in sleep mode whenever possible can dramatically reduce the power consumption of the 
device [SK1997].  The authors of [KB2002] present the “Bounded Slowdown protocol”, a power saving 
mode that dynamically adapts to network activity and guarantees that a connection’s round trip time (RTT) 
does not increase by more than a factor p.  At the MAC level, Qiao, et. al. propose to combine IEEE 802.11 
Transmit Power Control and physical layer rate adaptation and pre-establish an optimal rate-power 
combination table for a wireless station to determine at run time [QCJS2003].  In [GLDWC2003] (not 
published yet), a scheduling policy at the transport-level (UDP/TCP) is implemented in a transparent proxy 
between the server and the wireless access point to burst packets to clients.  This approach is similar to ours 
to the extent that it also enables periodical releasing of data.  However, our approach employs HTTP level 
information thus is enable to better optimize the data delivery to the client.  Our approach is capable of 
handling more complex situations, such as web pages with a lot of embedded objects while theirs cannot.   

At the system level, Shih, et al. introduced a technique in [SBS2002] to reduce the idle power, the power 
that a wireless LAN-enabled PDA phone consumes in a “standby” mode.  Their approach is to shutdown 
the device and its wireless network card when the device is not being used.  A secondary low-power 
wakeup mechanism is used to power the device only when an incoming call is received.  Simunic et al. also 
describe system-level power management strategies that turn the network interface off completely during 
idle periods to reduce its power consumption [SBGM2000].  At the application level, Barr and Asanovic 
explore in [BA2003] the energy efficiency of different compression and decompression algorithms and 
show overall energy reduction to send compressive web data over wireless networks when energy-aware 
data compression strategy is applied.  The STPM algorithm proposed in [ANF2003] adaptively manages 
wireless NIC power consumption based on knowledge from application, network interface, and mobile 
platform.   

The work presented in [PS2003] employs similar idea as ours to manage hard disk power consumption by 
suggesting the use of aggressive pre-fetching and the postponement of non-urgent requests in order to 
increase the average length of disk idle phases.  Chandra, et al [Chandra2002, CV2002] investigate an 
application-specific protocol for reducing the network interface power consumption for streaming media 
applications, such as Microsoft media.  They propose a server-side or local proxy and a client-side proxy 
are combined to transmit network packets at predictable intervals and to schedule the WNIC to enter sleep 
state in between.  This approach is limited to streaming media applications and requires efforts at both the 
server/local proxy side and the client side, while our approach can be applied to any application that uses 
HTTP traffic without any modification at the client side.       

7. Future Work and Conclusions 
In this paper we first described why existing approaches and work on 802.11 power management do not 
sufficiently address power management when network activity is present.   We then presented an http proxy 
that can modulate network traffic so that the wireless interface can be turned off for longer periods of time 
while the proxy is prefetching and buffering data on behalf of the wireless client.  The proxy was 
implemented and a test bench for making power measurements was created.  Our implementation and 
experiments validate the concept of an http proxy for power management. Results on popular web pages 
showed reduction in power consumption higher than 13% for the WLAN interface. Our experiments show 
that simply switching to power save more after shorter timeouts, without proxy support, does not yield any 
practical benefits. Implementing a power management proxy at the HTTP level rather than the TCP level 
allowed us to exploit traffic information that is available in the application layer. Given the trend around 
growing number of applications and middleware based on HTTP we believe that application-dependent 
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HTTP proxies for power management will be attractive.  Over time, such proxies may even be incorporated 
into the wireless access points. 

At present our reduction in power consumption comes with a penalty in perceived user latency.  Some 
things we plan to pursue in the future to mitigate this effect by including the request pipelining.  One can 
expect the internet backbone to become faster and that latencies will reduce in general.  When that happens, 
an increase in latency from say 500 to 1000 ms, may be traded off for increased energy efficiency even 
more readily. 

We also plan to interleave disparate http applications and study the impact of simultaneous applications on 
the client.  Our proxy is designed to handle multiple clients.   Over time we will study the how the 
requirements on the power saving proxy scale to typical enterprises where several stations connect to a 
single access point.   Another aspect to pursue will be the efficiency of the technique for faster wireless 
networks such as 802.11g and ultrawide band. 
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