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AN ALGORITHM FOR FINDING INVARIANT ALGEBRAIC CURVES OF A
GIVEN DEGREE FOR POLYNOMIAL PLANAR SYSTEMS

GRZEGORZ ŚWIRSZCZ

Abstract. Given a system of two autonomous ordinary differential equations whose right–hand
sides are polynomials it is very hard to tell if any nonsingular trajectories of the system are contained
in algebraic curves. We present an effective method of deciding, if a given system has an invariant
algebraic curve of a given degree. The method also allows the construction of examples of polynomial
systems with invariant algebraic curves of a given degree. We present the first known example of
degree 6 algebraic saddle–loop for polynomial system of degree 2 which has been found using the
described method. We also present some new examples of invariant algebraic curves of degrees 4
and 5 with an interesting geometry.

1. Preliminary definitions and introduction.

Since Darboux [7] has found in 1878 connections between algebraic geometry and the existence of
first integrals of polynomial systems, algebraic invariant curves are a central object in the theory of
integrability of polynomial systems in IR2. Today, after more than a century of investigations the
theory of invariant algebraic curves is still full of open questions. One of the reason for that is the
fact that the examples of polynomial systems with invariant algebraic curves are extremely hard to
find. Even with the help of computers it is far from obvious how to look for such examples. In the
present paper we propose an approach, which turned out to be very effective for low–degree polynomial
systems. Before we proceed with the introduction we give some definitions.

A polynomial system of a degree k in IR2 is a system of two autonomous differential equations

(1.1) ẋ = p(x, y),
ẏ = q(x, y),

where p, q are coprime polynomials of a given degree k

p(x, y) =
k∑

i,j=0

pi,jx
iyj , q(x, y) =

k∑
i,j=0

qi,jx
iyj .

We say that the algebraic curve is an invariant algebraic curve of degree n if it is contained in the
union of trajectories of (1.1) and it is given by zeroes of a polynomial ϕ of a degree n.

ϕ(x, y) =
n∑

i,j=0

= ϕi,jx
iyj .

From basic properties of polynomials follows the fundamental fact that the algebraic curve ϕ(x, y) =
0 is an invariant algebraic curve of system (1.1) if and only if there exists a polynomial κ = κ(x, y)
satisfying

(1.2) p
∂ϕ

∂x
+ q

∂ϕ

∂y
− κϕ = 0.
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2 GRZEGORZ ŚWIRSZCZ

The polynomial κ is called a cofactor of the curve ϕ = 0. Of course, the degree of the cofactor can be
at most k − 1, so

(1.3) κ(x, y) =
k−1∑

i,j=0

ki,jx
iyj .

An invariant algebraic curve ϕ = 0 is called irreducible if the polynomial ϕ is irreducible. In the rest
of the paper all the invariant algebraic curves are assumed to be irreducible unless stated otherwise.

A trajectory γ of system (1.1) is a limit cycle if it is nonconstant periodic and there are no other
periodic trajectories in some neighborhood of γ. The orbit γ is an algebraic limit cycle of system (1.1)
if it is a limit cycle of and if it is contained in some irreducible algebraic invariant curve ϕ = 0 of
system (1.1). Algebraic saddle–loop is defined analogously.

A polynomial system which has enough invariant algebraic curves must be integrable. For example,
the classical result of Darboux is

Theorem 1.1. (Darboux) If a polynomial system of degree k has more than k(k+1)
2 irreducible invari-

ant algebraic curves ϕi, then it has a first integral in the form of Darboux
k(k+1

2∏

i=1

ϕαi
i ,

where αi are some constants. When the number of invariant algebraic curves is equal to k(k+1)
2 , the

system has an integrating factor in the form of Darboux.

Nevertheless, the above conditions are in general too strong. This motivates the following problem:

Problem 1. What are the connections between the possible degrees and number of invariant algebraic
curves of a polynomial system of degree k and the existence and type of its first integral.

Understanding the significance of invariant algebraic curves Poincaré [13] has formulated slightly
different question: Estimate the greatest possible degree n = n(k) of an invariant algebraic curve for
polynomial system of degree k. In this formulation the question has a trivial answer, the system

(1.4) ẋ = nx,
ẏ = y

has the invariant algebraic curve x − yn = 0, therefore even n(1) is unbounded. Nevertheless, the
system (1.4) has a rational first integral xy−n, so each of it’s trajectories is contained in some algebraic
curve. Therefore the Problem 1 is often referred to as the ”Poincaré’s problem”. Another approach
is to look for ”nontrivial” examples of invariant algebraic curves of high degrees, like algebraic limit
cycles or algebraic saddle–loops.

One of the main problems in the development of the theory of invariant algebraic curves is the fact,
that there are not many examples known. Even for systems of degree 2 the structure of invariant
algebraic curves turned out to be much more complex then it has been expected. For example it has
been conjectured that

Conjecture (Lins–Neto). There exists a number N(2) such that if a quadratic system has an in-
variant algebraic curve of a degree n > N(2), then the system has a rational first integral.

It has been proved to be false by Christopher and Llibre [5], who have found a class of quadratic
systems which can have an invariant algebraic curve of any degree, and not have a rational first
integral. Their example has a rational integrating factor. Later Chavarriga and Grau [3] have found a
family of quadratic systems which can have an invariant algebraic curve of any degree and without a
rational integrating factor. It has an integrating factor in the form of Darboux and it is still an open
question if the following conjecture is true
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Conjecture (Weakened Lins–Neto). There exists a number N(2) such that if a quadratic system
has an invariant algebraic curve of a degree n‘ > N(2), then the system has an integrating factor in
the form of Darboux.

The problem classification of algebraic limit cycles for quadratic system is also open, for almost 30
years there have been only 3 examples known, one of degree 2 [14] and two of degree 4, [15], [11]. It
was also known ([8], [9], [10]) that there are no quadratic systems with algebraic limit cycles of degree
3. Then in the year 2000 two more families of quadratic systems with algebraic limit cycles of degree
4 have been found, see [2]. It has also been proved in [4] that there are no other families of quadratic
systems with algebraic limit cycles of degree 4. The question if there exist quadratic systems with
algebraic limit cycles of degree greater then 4 remained open till recently two new examples, one of
degree 5 and one of degree 6 have been found [6]. Also in [6] is presented the first example of algebraic
saddle–loop of degree 5. In subsection 4.3 we give the first example of algebraic saddle–loop of degree
6.

Another simple and interesting class of polynomial systems for which one may ask a question about
existence of algebraic limit cycles are the Liénard systems ẋ = y, ẏ = −Fk(x)y − Gm(x) (Fk, Gm–
polynomials of degrees n, m respectively). In this case the question has been answered by ŻoÃla̧dek
[16] for all the values of k, m except for k = 1, m = 3, for which the question still remains open.

These, and many more similar questions motivate the need for an efficient algorithm which would
enable to find efficiently examples of families of polynomial systems with invariant algebraic curves.
Till now most of the attempts were based on looking for the algebraic curves in some special form
(usually hyperelliptic) for the sake of simplifying the calculations. However successful this simple
approach was in many cases, it is far form being general and fails completely when one tries to look
for the invariant curves of a high degree. This is the reason while there have been practically no
known examples of invariant algebraic curves of degrees higher then 4. For quadratic systems even
the invariant algebraic curves of degree 4 are not well investigated. As one of the examples of the
application of the presented algorithm we give in Section 4 two examples of invariant algebraic curves
of degree 4 with an interesting geometry, which to our knowledge has not been known before.

With the method described in the present paper we have been able to successfully investigate some
families of quadratic systems with invariant algebraic curves of degrees as high as 14.

2. The problem of invariant algebraic curves from the point of view of linear
algebra.

The method we present is based on the observation, that the problem of existence and finding a
solution to the equation (1.2) is a purely linear problem. To be more precise, we look for a polynomial
ϕ(n) of a degree less or equal to n. Such polynomials form a linear space Vn of dimension (n+1)(n+2)

2 .
Given a polynomial system (1.1) of degree k and a polynomial κ(x, y) of degree k − 1 we define an
operator Ξ : Vn → Vn+k−1 as

Ξ[ϕ] = p
∂ϕ

∂x
+ q

∂ϕ

∂y
− κϕ.

Obviously Ξ is a linear operator. An obvious consequence of the definition is:

Proposition 2.1. Polynomial system (1.1) has an invariant algebraic curve ϕ of degree less or equal
to n with cofactor κ if and only if the operator Ξ has nontrivial kernel.

To investigate the kernel of Ξ we shall use the language of matrices. We introduce the following
basis B in Vn:

xiyj = eµ(i,j),

where µ(i, j) = (i+j)(i+j+1)
2 + i. This comes from linear ordering of the homogenous monomials in the

following way: xiyj > xkyl if and only if i + j > k + l or i + j = k + l and i > k.
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Remark 2.2. Note that the function µ is a bijection from N × N → N, so it has an inverse function.
Therefore it makes sense both to say µ = µ(i, j) and i = i(µ), j = j(µ).

Every polynomial ϕ ∈ Vn has a unique representation as a vector in the basis B–its coordinates
are simply the coefficients of the polynomial ϕ. Now the operator Ξ is represented in the basis B by
a (n+k)(n+k+1)

2 × (n+1)(n+2)
2 matrix A = (aIJ). The terms aIJ satisfy

(2.1) aIJ = i(J)pi(I)−i(J)+1,j(I)−j(J) + j(J)qi(I)−i(J),j(I)−j(J)+1 − ki(I)−i(J),j(I)−j(J),

where i(I), j(I), i(J), j(J) are the unique numbers satisfying µ(i(I), j(I)) = I, and µ(i(J), j(J)) = J
(see Remark 2.2). We apply the convention that we put pij , qij kij equal to 0 if (i, j) is out of range of
the definition, i.e. one of them is negative, or their sum is greater then the degree of the polynomial
who’s coefficient they are.

Matrix A has the following block–multi–diagonal form

A =

Bn+k−1
n

Bn+k−2
n Bn+k−2

n−1

.

.

.
.
.
.

. . .

Bn
n Bn

n−1 · · · Bn
n−k+1

Bn−1
n Bn−1

n−1 · · · Bn−1
n−k+1 Bn−1

n−k

Bn−2
n−1 · · · Bn−2

n−2 Bn−2
n−3 Bn−2

n−4

. . .
.
.
.

.

.

.
.
.
.

. . .

.

.

.

. . .
.
.
.

.

.

.
.
.
.

. . .

Bk+1
k+2 Bk+1

k+1 Bk+1
k · · · Bk+1

2

Bk
k+1 Bk

k · · · Bk
2 Bk

1

Bk−1
k · · · Bk−1

2 Bk−1
1 Bk−1

0

. . .
.
.
.

.

.

.
.
.
.

B1
2 B1

1 B1
0

B0
1 B0

0

where each of the blocks Bj
i is a (i + 1)× (j + 1) matrix.

Let M0 denote the set of all the minors of maximum dimension (determinants of (n+1)(n+2)
2 ×

(n+1)(n+2)
2 submatrices) of the matrix A. M0 is a set of polynomials in the variables pij , qij and kij .

The number of polynomials in the set M0 is equal to

#M0 =

(
(n+k)(n+k+1)

2
(n+1)(n+2)

2

)

and each of its elements depends in general on (n+1)(3n+4)
2 variables. From fundamental facts of linear

algebra there follows

Theorem 2.3. Polynomial system (1.1) has an invariant algebraic curve ϕ of degree less or equal to
n with cofactor κ if and only if all the polynomials in M0 vanish simultaneously.

Theorem 2.3 suggests the following algorithm. If we want to find a polynomial system of a given
degree k with an invariant algebraic curve of degree less or equal to n, we calculate the corresponding
matrix A for the system 1.1, and the corresponding set M0. Next we try to solve the equation M0 = 0.
(In the language of algebraic geometry this means that we look for a simple description of the algebraic
set V (M0)). The methods of solving of systems of polynomial equations are very well developed, there
is a whole theory of Gröbner Basis and multi–variable resultants. Nevertheless, one can immediately
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see, that if we try to use this straightforward approach, we end up with an enormous number of
equations in many variables.

Fortunately, when we look for the examples of polynomial systems with invariant algebraic curves,
we usually consider certain families, depending only on a few parameters. Therefore the number of
variables is usually not a problem.

The key to reducing the number of equations is a standard linear–algebra approach. First we note,
that if there is a row i in the matrix A containing only a single nonzero constant term ai,j , A, then
each of the vectors in the kernel of A must have 0 at the j–th coordinate. Therefore we can remove
the column j from the matrix A, limiting our considerations to a certain subspace of the space Vn.
Moreover, after the removal there can appear more rows with only one nonzero constant term in them,
so sometimes the size of the matrix A can be reduced significantly in that way. We also can remove
all the rows containing only zeroes. We obtain the reduced matrix B.

Once we have found the matrix B we apply the Gauss–Jordan elimination. When the polynomial
system is expressed in a normal form, one may expect the matrix B to have a lot of terms which
are constants–not dependent on the parameters of the system and the coefficients of the cofactor.
Therefore we get the following algorithm:

3. The algorithm

Given a family of polynomial systems

(3.1)
ẋ =

k∑
i,j=0

pi,jx
iyj

ẏ =
k∑

i,j=0

qi,jx
iyj

whose coefficients pi,j , qi,j depend on some parameters p1, . . . , ps and an integer n we want to find
those values of the parameters for which the system has an invariant algebraic curve of degree n.
The procedure

(1) We use changes of variables to transform simultaneously the system (3.1) and the potential

cofactor κ(x, y) =
k−1∑
i,j=0

ki,jx
iyj to the simplest form. Usually we strive to make as many as

possible of the coefficients pi,j , qi,j , ki,j zeroes or constants and the other ones we treat as the
parameters of the family. We shall call the family obtained in this way the simplified family.

(2) We find the matrix A for the simplified family.
(3) We generate a vector W̃ ∈ K[x, y]

(n+1)(n+2)
2 , whose i–th coordinate is a monomial eµ(i), i.e.

W̃ = (xn, xn−1y, xn−2y2, . . . , yn, xn−1, xn−2y, . . . , x, y, 1). We create an extended matrix Ã

obtained by adding the vector W̃ as the last row to the matrix A. This is done only for
the reason to make the transformation of the obtained vector–solution into a corresponding
polynomial more convenient.

(4) We perform the preliminary simplification of the extended matrix Ã: if there is any row i in
the matrix Ã containing only a single nonzero constant term ai,j , we remove the j–th column
from the matrix Ã. We keep repeating this process till there are no more rows with only one
nonzero constant terms. Then from the obtained matrix we remove all the rows with only
zeroes in them. We denote the extended reduced matrix matrix we have obtained by B̃.

(5) We denote the last row of the matrix B̃ by W . We remove it. The matrix we obtain is the
reduced matrix B for the simplified family.

(6) We apply the process of Gauss–Jordan elimination to the matrix B using only nonzero constant
terms. Namely, starting from the leftmost column we pick a nonzero constant term and use
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row reduction to make all the other terms in that column equal to zero. Then we proceed to
the next column. If there is a column with all the terms in it depending on the parameters,
we skip it in the process. We denote the obtained matrix by C

(7) We apply the process described in the step 4 to the matrix C. In other words this means that
we remove all the columns with precisely only constant term in them, and then we remove all
the rows with only zeroes in them. The matrix we obtain we denote by D.

(8) We calculate the set M1 of minors of maximum dimension of the matrix D. From the standard
facts from linear algebra it follows that M0 vanishes if and only if M1 vanishes.

(9) We try to solve the system of equations M1 = 0. We find a set of solutions {S1, S2, . . . , Sd}.
(10) For each Si we substitute it to the matrix B, obtaining a matrix Bi = B|Si

. Next, we solve
the linear system of equations Bi ·X = 0. Of course each of the matrices Bi is a degenerate
matrix, so for each i we have a nonempty set of li solutions {X l

i}li
l=1, li ≥ 1. Note that in most

of the cases Bi is a family of matrices–after the substitution of the solution Si, B usually still
depends on some parameters, and so does each of the corresponding vectors X l

i . Therefore
we shall refer to each of X l

i as to a family of solutions, although in some cases it can be a
constant family.

(11) For each l the family of polynomials ϕl
i(x, y) = W ·X l

i defines a family of invariant algebraic
curves for the subfamily of the simplified family (3.1) defined by the conditions Si. Note that
Si usually contains some equations that must be satisfied by the coefficients of the cofactor,
as well as the coefficients of the system.

Remark 3.1. One may notice that steps 3–5 of our algorithm seem unnecessary. Indeed, one could
apply Gauss–Jordan elimination immediately to the matrix A. Nevertheless, the form of the vector
W and the simplified matrix B contain some information about the structure of invariant algebraic
curve we are trying to find. This is particularly helpful, when we try to determine if the family of
systems we are investigating is a good candidate. Sometimes it can suggest how to change the family.
Another advantage is, that performing this preliminary reduction makes the elimination process run
faster.

Remark 3.2. In most of the cases, the system of linear equations Bi ·X = 0 in step of our algorithm
has only one solution X1

i . In case li > 1 the polynomial system corresponding to Si has a rational
first integral. Indeed, invariant algebraic curves ϕ1

i and ϕ2
i have the same cofactor κ, so

(
ϕ1

i

ϕ2
i

)·
=

κϕ1
i ϕ

2
i − ϕ1

i κϕ2
i

(ϕ2
i )2

= 0

4. Examples

4.1. Degree 4 invariant algebraic curves for a certain family of quadratic systems. We look
for invariant algebraic curves of degree 4 within the family of quadratic systems

ẋ = x + y + xy,
ẏ = Kx + Ly + αx2 + βxy + 2y2
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with cofactor 4y. This family depends on 4 parameters {K, L, α, β}. We perform steps 1–3 of our
algorithm. The extended matrix Ã for the system is




0 α 0 0 0 0 0 0 0 0 0 0 0 0 0
0 β 2α 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2β 3α 0 0 0 0 0 0 0 0 0 0 0
0 0 2 3β 4α 0 0 0 0 0 0 0 0 0 0
0 0 0 3 4β 0 0 0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
4 K 0 0 0 0 α 0 0 0 0 0 0 0 0
4 3 + L 2K 0 0 −1 β 2α 0 0 0 0 0 0 0
0 3 2 + 2L 3K 0 0 0 2β 3α 0 0 0 0 0 0
0 0 2 1 + 3L 4K 0 0 1 3β 0 0 0 0 0 0
0 0 0 1 4L 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 3 K 0 0 0 α 0 0 0 0
0 0 0 0 0 3 2 + L 2K 0 −2 β 2α 0 0 0
0 0 0 0 0 0 2 1 + 2L 3K 0 −1 2β 0 0 0
0 0 0 0 0 0 0 1 3L 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 K 0 0 α 0
0 0 0 0 0 0 0 0 0 2 1 + L 2K −3 β 0
0 0 0 0 0 0 0 0 0 0 1 2L 0 −2 0
0 0 0 0 0 0 0 0 0 0 0 0 1 K 0
0 0 0 0 0 0 0 0 0 0 0 0 1 L −4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x4 x3y x2y2 xy3 y4 x3 x2y xy2 y3 x2 xy y2 x y 1




The reduced matrix

B =




4 0 α 0 0 0 0 0 0
4 −1 β 0 0 0 0 0 0
0 3 K 0 α 0 0 0 0
0 3 2 + L −2 β 2α 0 0 0
0 0 2 0 −1 2β 0 0 0
0 0 0 2 K 0 0 α 0
0 0 0 2 1 + L 2K −3 β 0
0 0 0 0 1 2L 0 −2 0
0 0 0 0 0 0 1 K 0
0 0 0 0 0 0 1 L −4




and the monomial vector

W = (x4, x3, x2y, x2, xy, y2, x, y, 1).

We proceed to the step 7 of our algorithm and we get

D =




2α− 2β + 3αβ − 3β2 − 2L + 3αL− 6βL− 2KL− L2 2− 2α + 5β + 2K + L
3αβ − 3β2 − βK + αL− 3βL−KL −α + 3β + K

2α− 2β + 3αβ − 3β2 + 2K − 4L + 3αL− 6βL− 3L2 4− 3α + 6β + 3K + 3L




Now we are ready to calculate M1. It consists of three terms, which after multiplication by a constant
are equal to

(α− β −K)
(−2α + 3αβ − 6β2 − 2βK − αL

)
,

(α− β −K)
(−4 + 2α− 8β + 3αβ − 3β2 − 4K − 8L + 3αL− 12βL− 6KL− 3L2

)
,

(α− β −K)
(−2α− 6β + 6αβ − 9β2 − 2K − 3βK − 9βL− 3KL

)
.
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The set of equations M1 = 0 can be solved explicitly, and we have the following solutions

S1 = {α = β + K}
S2 = {K = −1 ∧ L = −1 ∧ α = −2 ∧ β = −1}
S3 = {K = −1 ∧ L = −1 ∧ β =

1
3
}

S4 = {β = −1 ∧K = 2α + 3 ∧K 6= −1 ∧ L = −1}
S5 = {

(
3β + 2

√
−2− 3L = 2 + 3L ∨ 2 + 2

√
−2− 3L + 3L = 3β

)
∧

L 6= −1 ∧ 2α +
(1 + β) (1 + K)

1 + L
= 5 + 3β + 3K + 3L}

The kernel of B1 = B|S1 is generated by the vector X1
1 = ((β+K)2, 4K(β+K),−4(β+K), 2K(β+

3K)−2(β+K)L,−8K, 4, 4K(K−L),−4K+4L, (K−L)2)T . Therefore to S1 corresponds an invariant
algebraic curve W ·X1

1 = (L− βx2 −K(1 + x)2 + 2y)2, which is reducible.
Similarly, to S2 corresponds the reducible invariant algebraic curve (x + x2 + y)2 = 0
To S3 corresponds the invariant curve 18x2 +4x3−12αx3−3αx4 +36xy +12x2y +18y2 = 0, which

for α < 2/3 has a form of a cuspidal loop containing all three singular points of the system.

-4 -3 -2 -1

-2

-1

1

2

Figure 1: The curve corresponding to K = −1, L = −1, α = − 4
3 , β = 1

3 .

To S4 corresponds the invariant curve
(
x2 + 2y

)
(x (4 + 3x) + 2y)−Kx2(2 + x)2 = 0.

The solution S5 corresponds in fact to several families of algebraic invariant curves. Here we present
only one example, belonging to a 2–parameter family

α =
K

(
2−√−2− 3L + 3L

)
+ (2 + 3L)

(
4 +

√−2− 3L + 3L
)

3(1 + L)
, β =

2
3

(
1 +

√
−2− 3L

)
+ L

with an invariant algebraic curve

ϕ0,0 + ϕ1,0x + ϕ2,0x
2 + ϕ3,0x

3 + ϕ4,0x
4 + ϕ0,1y + ϕ1,1xy + ϕ2,1x

2y + ϕ0,2y
2 = 0
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ϕ0,0 = 27 (K − L) (1 + L)3

ϕ1,0 = 108K(1 + L)3

ϕ2,0 = 18 (1 + L)
((

4 +
√
−2− 3L + 3L

) (
2 + 5L + 3L2

)
+ K

(
8−

√
−2− 3L + 18L + 9L2

))

ϕ3,0 = 4 (2 + 3L)
(
6

(
4 +

√
−2− 3L

)
+ 17

(
4 +

√
−2− 3L

)
L +

(
60 + 9

√
−2− 3L

)
L2+

18L3 + K
(
10− 2

√
−2− 3L + 21L + 9L2

))

ϕ4,0 = (2 + 3L) K
(
10− 2

√
−2− 3L + 21L + 9L2

)
+

(2 + 3L)2
(
14 + 8

√
−2− 3L + 3

(
7 + 2

√
−2− 3L

)
L + 9L2

)

ϕ0,1 = −108(1 + L)3

ϕ1,1 = −36 (1 + L)
(
6 +

(
13 +

√
−2− 3L

)
L + 6L2

)

ϕ2,1 = −12
(
4 +

√
−2− 3L + 3L

) (
2 + 5L + 3L2

)

ϕ0,2 = 18
(
1 +

√
−2− 3L

)
(1 + L)

-4 -3 -2 -1

-6

-4

-2

2

4

6

Figure 2: The curve corresponding to K = − 17
3 , L = − 8

5 , α = − 1
135 (1358+43

√
70), β = 2

15 (
√

70−7).

4.2. Degree 5 invariant algebraic curves for quadratic systems. We present two examples of
degree 5 invariant algebraic curves for quadratic systems. They are isolated examples, not belonging
to any families of quadratic systems with invariant algebraic curve of degree 5.

The system

ẋ = x + y + xy,

ẏ = 375(8836
√

21−1828897)
722131963 x + 46875(748

√
21−2331)

2888527852 x2 + 5(170
√

21−41951)
219961 y + 375(9

√
21+182)

439922 xy + 5
4y2

has the invariant algebraic curve

−3.1973 · 1057 + 2.06748 · 1060x− 3.7594 · 1062x2 + 1.32337 · 1064x3 − 1.46055 · 1064x4 + 2.21 · 1062x5+
2.22619 · 1060y − 8.09555 · 1062xy + 4.27331 · 1064x2y − 6.20874 · 1064x3y − 4.36964 · 1062y2+
4.63717 · 1064xy2 − 1.09432 · 1065x2y2 + 1.69051 · 1064y3 − 9.20718 · 1064xy3 − 3.02394 · 1064y4 = 0
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with cofactor 5y. We present the coefficients in numerical form because the exact formula is over 2
pages long.

-0.25 0.25 0.5 0.75 1 1.25

-0.8

-0.6

-0.4

-0.2

0.2

0.4

Figure 3: Invariant algebraic curve of degree 5.

The system
ẋ = x + y + xy,
ẏ = 189x + 405

4 x2 − 11y − 27
2 xy + 5

4y2

has the invariant algebraic curve

25600000 + 120960000x + 224272800x2 + 203163552x3 + 89367381x4 + 15116544x5 − 640000y − 2030400xy−
2137104x2y − 746496x3y + 16800y2 + 35136xy2 + 18306x2y2 − 208y3 − 216xy3 + y4 = 0

with cofactor 5y.

-2.2 -1.8 -1.6 -1.4 -1.2 -1 -0.8

-10

-5

5

10

Figure 4: Another invariant algebraic curve of degre 5.



AN ALGORITHM FOR FINDING INVARIANT ALGEBRAIC CURVES OF A GIVEN DEGREE. 11

4.3. Degree 6 invariant algebraic curve containing a saddle-loop for a certain family of
quadratic systems. Application of our algorithm to the family of systems

ẋ = 1 + x + xy,
ẏ = (K − α) + Kx + Ly + αx2 + βxy + 2y2

with cofactor 6y and n = 6 leads to the discovery of degree 6 algebraic saddle–loop. As far as we
know this is the first known example of an algebraic saddle–loop of degree greater than 5 for quadratic
systems.

Theorem 4.1. The system

ẋ = 1 + x + xy,

ẏ = −22−47L−21L2

10 − 34+87L+60L2+9L3

10 x + Ly − (3+L)(2+3L)2

10 x2 + (3+L)(2+3L)
10 xy + 2y2

has an invariant algebraic curve defined by

ϕ0,0 + ϕ1,0x + ϕ2,0x
2 + ϕ3,0x

3 + ϕ4,0x
4 + ϕ5,0x

5 + ϕ6,0x
6 + ϕ0,1y + ϕ1,1xy+

ϕ2,1x
2y + ϕ3,1x

3y + ϕ4,1x
4y + ϕ0,2y

2 + ϕ1,2xy2 + ϕ2,2x
2y2 + ϕ0,3y

3 = 0

where

ϕ0,0 = −200
(
192 + 1104L + 2184L2 + 1732L3 + 463L4

)

ϕ1,0 = −2400
(
88 + 474L + 937L2 + 834L3 + 325L4 + 42L5

)

ϕ2,0 = −60(2 + 3L)2
(
1296 + 3160L + 2506L2 + 701L3 + 47L4

)

ϕ3,0 = 20(2 + 3L)3
(−884− 1496L− 615L2 + 4L3 + 19L4

)

ϕ4,0 = 12(2 + 3L)4
(−138− 109L + 33L2 + 24L3 + 2L4

)

ϕ5,0 = 6(L− 2)(3 + L)3(2 + 3L)5

ϕ6,0 = (L− 2)(3 + L)3(2 + 3L)6

ϕ0,1 = −8000
(
12 + 29L + 33L2 + 6L3

)

ϕ1,1 = −1200
(
192 + 584L + 544L2 + 152L3 + 3L4

)

ϕ2,1 = −600(2 + 3L)2
(
28 + 20L− 11L2 − 3L3

)

ϕ3,1 = −120(L− 2)2 (3 + L) (2 + 3L)3

ϕ4,1 = 60(L− 2)(3 + L)2(2 + 3L)4

ϕ0,2 = 120000L (1 + L)

ϕ1,2 = 24000
(
6 + 17L + 14L2 + 3L3

)

ϕ2,2 = −600
(
4 + 4L− 3L2

)2

ϕ0,3 = 80000

with cofactor 6y. For 1 < L < 2 this curve contains a saddle–loop.
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-1.5-1.25 -1 -0.75-0.5-0.25 0.25 0.5

-4

-3

-2

-1

1

2

Figure 5: Degree 6 algebraic saddle loop for L = 11
7

Remark 4.2. Most of the examples presented in the paper belong to a very special class of quadratic
systems. There are certain conditions that must be satisfied for a quadratic system to have an
invariant algebraic curve of a high degree. They have been studied in [12] and all the quadratic
systems admitting high–degree limit cycles have been classified. In particular the family

ẋ = x + y + xy,
ẏ = Kx + Ly + αx2 + βxy + γy2

with cofactor ny (denoted by Sn
n in [12]) is a very promising class of systems. Many other examples of

quadratic systems with invariant algebraic curves have been found using the described algorithm, but
they usually do not have such interesting geometry. Similar conditions to some of the ones presented
in [12] has been found for polynomial systems (not necessarily quadratic) in the paper [1].
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