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Abstract

This paper aims to improve statistical pars-
ing by making use of partially-labelled data
from a different domain. The labeled part
of a parse tree is regarded as “observation”
and the unlabelled part as missing informa-
tion. The expectation-maximization (EM) al-
gorithm is employed to infer missing informa-
tion. Nested parser states are used to imple-
ment the E-step efficiently. We train a series of
model on the UPenn Chinese treebank, and use
a POS-tagged corpus from Peking University
(PKU) as the EM learning data. We observe a
parsing error (measured by equal-weighted la-
bel F-measure) reduction by as much as about
one-third when the seed model is under-trained.
The usefulness of PKU data, as expected, de-
creases as the seed model is trained with more
labeled data.

1 Introduction

Statistical approaches (Jelinek et al., 1994; Ratnaparkhi,
1997; Collins, 1997; Charniak, 2000) have been very suc-
cessful in parsing natural language. The success, how-
ever, relies on the availability of a large corpus with hu-
man annotation – the Wall Street Journal (WSJ) Penn
treebank (Marcus et al., 1993). For most other languages
or tasks, it is difficult to get a corpus in WSJ’s size. On
the other hand, we can often find similar genre of text that
are labeled in different styles, for different purposes, or
by different institutions. Costliness of acquiring labeled
data makes it desirable to either reduce the amount of la-
beled data needed to train a model, or make better use of
existing data. One example of the former scheme is ac-
tive learning (Thompson et al., 1999; Hwa, 2000; Tang
et al., 2002), which selects the most “useful” sentences
for annotation. The paper explores an orthogonal venue,

namely, use of partially-labeled data to improve statisti-
cal parsing. In particular, we study a class of problems
where a limited amount of labeled data (i.e., in-domain)
is available, and we want to benefit from labeled data in
one or more different corpora (i.e., cross-domain).

The very first question is: can we find similar and la-
beled text? The answer is often yes. For example, En-
glish Penn treebank is a corpus of one million word Wall
Street Journal articles that are fully parsed by human. We
also have access to an AP news wire corpus that are fully
parsed by human, albeit in a different style than WSJ.
Both the WSJ Penn treebank and AP corpus are general
news articles. UPenn also released a similar Chinese tree-
bank (CTB) (Xia et al., 2000), and Beijing University
provides a POS-tagged Chinese corpus1, part of which is
publicly available (PKU corpus hereafter). Both UPenn
Chinese treebank (CTB) and PKU are general news ar-
ticles. Presumably, the use of cross-domain data will be
most beneficial when the amount of training data is small,
as is the case of CTB.

More often than not, human labeling for a different cor-
pus/domain can not be used directly in the domain we are
interested in, as some information may be missing, or an-
notation style may be different, or a totally different label
set may be used. The goal of this study is to take ad-
vantage of partial information provided in cross-domain
annotation. We formulate it as a missing-data problem
where partial information contained in cross-domain an-
notation is treated as “observation” while structure not
annotated as “missing” information. The general set-up is
that a seed model is learned from in-domain labeled data.
Expectation-maximization (EM) (Dempster et al., 1977)
is employed to infer missing structures for cross-domain
with partial labels, which, together with in-domain data,
is used to retrain the model.

The proposed algorithm is implemented in the frame-
work of maximum entropy parser (Ratnaparkhi, 1997).

1See http://icl.pku.edu.cn/Introduction/corpustagging.htm



For the sake of completeness, a quick review is included
in Section 2.1. A few examples of parse trees with miss-
ing structures are shown in this section too. In Section 2,
an instance of EM algorithm is developed to handle miss-
ing information from cross-domain data. Nested parser
states are used to implement the algorithm efficiently,
which is covered in Section 3. Experimental results are
reported in Section 4. Related work is discussed in Sec-
tion 5.

2 EM algorithm for History-based Parsers

2.1 Derivation and Missing Information

A history-based statistical parser computes ������� �	� , the
conditional probability of a parse tree � given a sen-
tence � . A history-based parser typically converts �
into a unique sequence of parse actions, i.e., � 
������������������������ , where ��� is the number of actions
needed to derive � . Conversely, a valid parse sequence
reconstructs a unique parse tree. Therefore, a parse tree
� and its sequential representation are equivalent. The
order by which a parse tree � is converted into the equiv-
alent representation ��
 � � ��� � ����������� � � is dubbed as
derivation.

Since

������� �	� 
!��� ��������������"�#� � �	� (1)
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the problem reduces to computing ��� � % � � �-� ( %�*
�.+� � . In the

maximum entropy parser (Ratnaparkhi, 1997), a parse �
is decomposed deterministically into a sequence of tag,
chunk, extend and reduce (i.e., checking whether
to close a constituent) actions. an exponential model is
adopted to model ��� � % � � �-� ( %�*

�.+� � . Description of train-
ing algorithm of the exponential model is beyond the
scope of the paper. Interested readers are referred to (Rat-
naparkhi, 1997; Berger et al., 1996). Instead, to put our
work in perspective, we will show by an example how a
parse tree is decomposed as a sequential parse actions and
how an unspecified tree structure corresponds to missing
parse actions.

Figure 1 is a parse tree with its numbered parse actions/ � %,0 � �%'& � . There are four types of actions: tag (action 1
to 2 ), chunk (action 3 to 4 ), extend (action 5 � 161 � 187
and 183 ) and reduce (action 1�9 � 18: � 1�2 and 18; ). Each
type has its own vocabulary of actions and probabilistic
model. Thus the model ��� � % � � �-�<( %�*

�.+� � is one of the four
models: tag model �>=?� � � � � , chunk model ��@8� � � � � , extend
model ��AB� � � � � and reduce model �#C6� � � � � . A more precise
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Figure 1: Parse actions (cf. Table 1): 1-4 – tag actions;
5-8 – chunk actions; 11-16 – extend and reduce actions.
An extend action is always followed by a reduce action.

equation of (2) is:

������� �	� 
!��� �D�B���������-�"��� � �E� (3)
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F�G6H�I � = ��J�� �

��K F � $L�G6H8M � @ ��N�� �
�OK L �

$
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where W = � W @ � W A and W C are the set of tagging, chunk-
ing, extending and reduce actions, respectively, andK F ��K L ��K P and K T are short-hands for actions proceeding
to J � N � R and V , respectively. The order of these actions
is: tagging is done first from left to right; then chunking
from left to right too; extending action starts from left too
and it alternates with a reduce action, that is, immediately
after an extending action, a reduce action is taken to see
if a constituent resulted from the extending action should
be closed or not. Table 1 summarizes parse actions corre-
sponding to the parse tree in Figure 1, where action 1-4,
5-8, 9,11,13,15 and 10,12,14,16 are W = � W @ � W A and W C , re-
spectively.

It is worth pointing out that the history of a model com-
ponent can include a parse action of the other component.
For example, while chunking the first word I (the fifth
action in Table 1), the first tag action – I tagged as PRP
– is part of the history K L in (4). When a sentence is
long, this type of dependency between two parse actions
is common. Therefore, it is inappropriate to make Marko-
vian assumption while building conditional models in (4).
We will see shortly that this has implication for the EM
algorithm implementation.

Since a parse tree can be decomposed as a sequen-
tial parse actions, unspecified parse tree structure corre-
sponds to missing parse actions. For example, in sub-
figure (a) of 2, only POS tags are specified while con-
stituent labels and high-level structures are not available
– the dashed-lines and boxes indicate a possible comple-
tion of the POS-tagged subtrees. When represented by
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Order action type value
1 TAG PRP
2 TAG VBD
3 TAG DET
4 TAG NN
5 CHUNK startNP
6 CHUNK other
7 CHUNK startNP
8 CHUNK join
9 EXTEND extS

10 REDUCE NO
11 EXTEND extVP
12 REDUCE NO
13 EXTEND join
14 REDUCE YES
15 EXTEND join
16 REDUCE YES

Table 1: Parse actions of the parser tree in Figure 1. The
first column contains action indices in Figure 1.

parse actions, missing part of the parse tree are parse ac-
tions from 3 to 1�; in Table 1.

Partially-labeled data imposes constraints, and con-
straints can come in many forms. Sometimes only cer-
tain constituent boundaries are given while their inter-
nal structures may be left unspecified. Sometimes con-
stituent labels are given together with boundaries. Some-
times there can be mixed tag and constituent label con-
straints. Subfigure (b) of 2 is such an example, where
saw the dog is marked as VP, and the first tag PRP
is specified, but other POS tags and the VP’s internal
structure are missing.Subfigure (b) shows one of possible
completions that are consistent with given constraints. In
general, a constraint reduces parse actions. For instance,
the word saw can not end a phrase which includes the
word I because this would cause crossing brackets in the
subfigure (b) of Figure2.

We intend to develop a learning algorithm that can ac-
commodate arbitrarily partial labeling in the context of
history-based parsing. To that end, we treat given struc-
tures or corresponding parse actions as “observation”,
and missing structures, or corresponding parse action as
“hidden”, and employ the EM algorithm to tackle this
problem.

2.2 EM Algorithm for Partially-labeled Data

Formally, let � 
 ��� � � ��� � be a parse tree for a sentence
� , where � � is the annotated part, and ��� the missing
part. The set of parse trees for the sentence � is denoted
as

W � �	�E
 / ��� � � � � � � � � compatible with � � 0�� (5)
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Figure 2: Solid line and tag/label are constraints. The dotted-
line shows a possible completion of given constraints. Missing
tag/labels are indicated by enclosed ’?’s. (a) POS tags are given.
(b) The 1st tag and VP are constraints. The internal structure of
VP is missing.

We can also define the set of missing structures to be

W�� � �	�	
 / ��� � ��� � � ��� � is a tree of � 0�� (6)

��� being compatible with � � in (5) means that � � and
��� together form a valid parse tree for � . In subfigure
(a) of Figure 2, for example, � � is the four tags and ���
represents any structure on top of the four tags that form
a tree.

Let
	

be the set of model parameters. We will write
the model ������� �E� as ��
������ �E� from now on to highlight
parameter values. Our goal is to maximize the probability
of “observation”, or given annotation � � :
����
 ��
6��� � � �E�	
 ����


�
��� G6H � (�� +

��
���� � � � � � �	� � (7)

Maximizing directly (7) is difficult. However, if we
regard � � as observation and � � as missing data, the
EM (Dempster et al., 1977) algorithm can be utilized to
derive an iterative procedure as follows. Recall that the
EM auxiliary function is

� � 	�� � 	 �E
����  "!�# ��
%$.����� �	��� � � � � � 	�& � (8)

which is the conditional expectation of the complete data
given the “observation” � � and � . A simple expansion
leads to
� � 	 � � 	 �	
����  �!�#E��
 $ ����� �	��� � � � � � 	�&


 �
� G6H ('� +

��
������ � � � �	�( �!�#E��
)$,����� �	� (9)


 �
� G6H ('� +

��
������ �	�
��
���� � � �	�  "!�#E� 
)$ ����� �	� (10)


 1
� 
 ��� � � �	�

�
� G6H (�� +

�*
6����� �	�( �!�#	��
 $ ����� �E�
(11)

(9) to (10) is due to the fact that ����� � � � � �	� 
 ������� �	�
and ������� � � � �	� 
,+ ( �*- � ++ ( ��.�- � + . The denominator ��
6��� � � �E�
is just / ��� �10���� � � � � ��� �32 .
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It is straightforward to show that
� � 	 � � 	 ��� � � 	 � 	 �

implies ��
)$,��� � � �	��� ��
���� � � �	� . Therefore, instead of
maximizing (7), we can maximize iteratively (11).

Two special cases of (11) are intuitively easy to under-
stand: when all training data is fully labeled, W consists
of only � 
 � � and (11) degenerates into the familiar
training likelihood:  "!�#E��
 $ ����� �	� ; On the other hand, if
no supervision information is available, iteratively max-
imizing (11) is nothing but minimizing the training en-
tropy.

(11) is obtained for a single training sentence � . Exten-
sion to multiple sentences is trivial. We need only to sum
(11) over � , assuming that each sentence � gets equal
weight.

(11) provides us with the familiar EM procedure to
train the model: we start with a seed model with the pa-
rameter

	
, then for each sentence � , find all parse trees

W � � �	� compatible with � � , normalize the probability
��
������ �E� by their sum, ��
���� � � �	� (E-step), and use them
as “counts” to get the next optimal

	 �
(M-step). The pro-

cedure is repeated until the change of training likelihood
falls below a threshold. However, naive implementation
of the procedure is very costly: the set W � can be pro-
hibitive large if � � does not contain many constraints and
� is reasonably long. Thus, a more efficient algorithm is
needed.

In the framework of probabilistic context-free gram-
mar (PCFG), the inside-outside (Baker, 1979) algorithm
has been developed to estimate parameters efficiently,
inspired by the forward-backward algorithm in training
hidden Markov models (HMM) (Baker, 1975). History-
based statistical parsers (e.g., (Magerman, 1995) and
(Ratnaparkhi, 1997)) do not use explicit rules, and, the
Markov assumption between parse actions, as discussed
in Section 2.1, is violated. Violation of Markov assump-
tion makes it impossible to construct a trellis as used in
the forward-backward algorithm.

Nevertheless, nested parser states can be organized as
a tree to represent compactly the hypothesized parses.

3 Efficient Implementation Via Nested
Parser State

The key quantity needed for optimizing (11) is
��
���� � � � � � �	� . Once we have ��
6��� � � � � � �	� , the denom-
inator ��
���� � � �	� is just a sum of ��
���� � � � � � �	� over � � .
After the posterior probability +�� ( ��.�� � � - � ++�� ( ��.�- � + is computed,	 �

can be optimized by the same algorithm used in train-
ing the parser with fully-annotated data: in the case of
maximum entropy model, the empirical expectation is the
accumulated score +�� ( ��.�� ��� - � ++�� ( � . - � + for each feature, and the
same iterative scaling algorithm (Berger et al., 1996) can
be applied with these fractional “empirical” counts.

It has been pointed out that the set of missing struc-

ture W � can be large, and it is essential to compute	 + � ( � . � � � - � ++�� ( ��.�- � + efficiently. Nested parser state is used to
serve this purpose.
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Figure 3: Each solid box represents a state. Arrows show
evolution of parser states corresponding to two possible
parses in the two bottom boxes. Active subtree is indi-
cated by red *. Note that after all words are tagged, the
first tagged subtree becomes active for the next chunk-
ing action. Subtrees enclosed in blue dashed lines are
shared from parent states. Chunking, extending/reducing
actions are omitted due to space limit. The number on the
up right corner is the cumulative score of a parser state.

Before we discuss the nested parser state, we need to
talk about briefly how search is done in a history-based
parser. The initial state consists of a forest of � � � degen-
erated trees, each of which is just a single node containing
a word. The score of the initial state is 1 . The first sub-
tree (i.e., the first word) is tagged and for each possible
tag, a new parser state is created, and the hypothesized
tag along with its score is stored. In constrained decod-
ing, only tags compatible with constraints are retained.
For each newly-created parser state, the parser moves on
and tags the second subtree (the second word). Again,
a new parser state is created for each hypothesized tag.
The process is repeated until all words are tagged. Then
control is passed to chunking, which operates in the same
manner. The parsing process ends when all subtrees are
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joined under a single root node.
Figure 3 shows the evolution of parser states for the

input sentence I saw the dog. For the convenience
of drawing, the picture is made under the assumption that
the existing model only allows an alternative POS tag for
the word saw and all other parse action has probability
1 . From the picture, we know that a parser state consists
of a forest of trees, the current score and what the next
parse action is. A new parser state is evolved from an old
one, or its parent state � � �-� ( %�*

�.+� � , together with a future

action � % and its associated probability ��� � % � � ���<( %�*
�,+� � .

Note that a parser state shares a significant amount of in-
formation with its parent state. The common subtrees are
shared across parser states. This is highlighted by dashed
blue lines.

Observe that each parser state in Figure 3 corresponds
to a parse event that will appear in one of the possible
parse outcomes. Therefore, we can first construct a tree
of parser states as shown in Figure 3. A leaf node of
this tree corresponds to a complete parse. We then back
track, starting from each leaf, and dump a parse event at
each state as we traverse back to the root. Note that each
parse state needs to be visited once.

Compared with the straightforward implementation of
E-step of (11), an evolution tree of parser states like Fig-
ure 3 keeps track of all parse actions2, and is effectively a
compact representation of top-N parse trees. The benefit
of using this nested parser state tree is obvious: we do not
need to count an event twice, as one would have to if first
top-N parses are dumped, and the model is retrained.

4 Experimental Results

The EM algorithm developed in Section 2 can be applied
to a class of problems that training data is only partially
annotated. Since partial annotation can often be more
efficiently obtained, statistical parsers can thus achieve
better performance with less demanding of labeling ef-
forts. We consider this scenario as in-domain learning.
A related but more interesting scenario is cross-domain
learning, that is, to take advantage of corpora from other
domains, e.g. POS tagging. Partial annotations are de-
rived through some automated processes and annotations
in other domains are recycled.

4.1 In-Domain EM Learning on WSJ and CTB

The very first question for semi-supervised learning is:
how much supervision information is needed? Are POS
tags and constituent labels equally important? To answer
these questions, we conduct two groups of in-domain ex-
periments: 1) strip all POS tags and vary the amount of

2In practice, pruning is done: locally when adding an action,
and globally when the cumulative score falls below a threshold
relative to the best hypothesis.

labels in the training data; 2) strip all labels and keep POS
tags only in the training data. Partially-labeled data cre-
ated this way are used to simulate the EM learning pro-
cess.

Experiments are carried out on both the WSJ Penn tree-
bank and the Chinese Penn treebank. CTB is used to
build a Chinese character parser. To train the Chinese
character parser, we convert the word-based Chinese tree-
bank into character-based. For WSJ, we start with an ini-
tial model trained on Section 2 and 3. The rest of the
training data, namely Section 4 to 21 are reserved for the
EM learning experiments. Section 23 is used as the test
set. For CTB, we start with the official LDC treebank
with about 1�969�� words, and use another 18: 9�� words of
unofficial data as the EM set. The last 400 sentences of
the official LDC release is used as the test set. Table 2
shows the performance of the initial model, as well as the
full models’ performance. The average sentence length
in Table 2 is in characters under the column “Chinese”.

WSJ Chinese
Train Full Set Train Full Set

Size 83.8k 950k 100k 220k
F-measure 0.788 0.850 0.748 0.827

Avg. Length 24 40

Table 2: Label F-measures for WSJ and CTB

4.1.1 Results with Partial Labels

In this set of experiments, we remove all POS tags and
vary the amount of labels in the EM data. One EM itera-
tion is carried out. Fig 4 shows the percent changes (rela-
tive to the full model) of F-measure versus the percentage
of labels used in the EM learning. As can be seen, the
changes of F-measure are roughly linear to the amount
of labels we keep in the EM learning. While raw data
can not benefit the EM process, it takes only a small frac-
tion of the total labels (6% for WSJ, and 16% for CTB)
for the EM algorithm to learn helpful information, even
when POS tags are absent.

Note that the learning rate of the EM algorithm with
the Chinese parser is much slower. This is because the
amount of EM data in the Chinese experiment is only
about one-seventh of the WSJ EM data. Another reason
is that the WSJ baseline model is better.

4.1.2 Results with POS Tags

In this set of experiments, only POS tags of the EM
data are kept and all labels are stripped. For the Chinese
character parser, character POS tags are inherited from
word-level POS tags, plus a letter indicating the position
of a character.

It turns out that POS tags are very helpful to the parser:
For CTB, Fig 5 shows that POS tags contributes to about
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Figure 4: In-domain EM learning with labels. POS tags are
removed in these experiments. It shows that percent changes of
F-measures are roughly linear to the amount of labels. With the
Chinese character parser, the learning rate is much slower. Raw
data hurts performance.

one-half of the gain. For WSJ, a 1�2 � 3�� relative gain
is obtained. This is not very surprising, as Chinese
character-level POS tags encode word segmentation in-
formation; and word segmentation and word sense dis-
ambiguation are extremely important for character-based
parsing. Also the average length of a Chinese sentence is
40 characters, two-thirds longer than the average length
of a WSJ sentence, as measured in modeling units (al-
though similar in word count). Pruning errors pose a
more severe problem for longer sentences. The presence
of POS tags reduces more pruning errors, as POS tagging
is done first in the parser.

Figure 5: In-domain EM learning with POS tags.

4.2 Cross-Domain EM Learning

Our ultimate goal of this study is to make use of labeled
data from a cross-domain to help the Chinese character
parser. In-domain simulation results indicate that POS
tags are more useful than constituent labels. Therefore,

we consciously select the PKU POS-tagged corpus as the
EM data.

PKU corpus uses a different and larger POS set. So
the PKU-style tags are first mapped to the CTB-style.
For the most part, the mapping is a table look-up, al-
though not always 1-to-1 or m-to-1. For example, the
particle “De (Bai2-Shao2)” in CTB can be tagged as ei-
ther DEC,DEG,AS, or SP, depending on the context it is
used; but in the PKU corpus, a single tag u is used for
this character. When a POS cannot be mapped without
context, the target (Penn-style) POS will be left unspec-
ified. After doing this, we are able to map about 93%
characters of PKU data into the Penn-style.

We train the seed models with various amounts of
UPenn CTB data, and use 189�9�� words of PKU data for
EM learning. Results are tabulated in Table 3. The PKU
data with POS tags is most useful when the seed model is
trained with insufficient data. As high as 767 � 1�� error re-
duction is observed when the seed model is trained with
269�� words of UPenn CTB. The improvement decreases
when the seed model is trained with more data. If we start
with a seed model trained with 1�969�� words, only 3 � 5��
reduction is got.

Compared with in-domain CTB experiments, the gain
from cross-domain is much smaller. Two reasons con-
tribute to this difference: first, EM data from in-domain
data are in the same style, while mapping from cross-
domain tags will introduce noises; Second, we find
sometimes PKU and Penn treebank have different word-
segmentations. No attempt is made to recover from this
error. Furthermore, we lose about 7% tags after the map-
ping.

Train(K wds) baseline +PKU Err. Reduction(%)
20 0.585 0.699 27.5
40 0.637 0.757 33.1
80 0.730 0.764 12.7

100 0.748 0.763 5.9

Table 3: Label F-measures on UPenn CTB: the 1st col-
umn is training set size (in K words), and the 2nd and
3rd columns are F-measure before and after using 1�969�� -
word PKU data. The last column is the relative reduction
of errors.

In summary, the in-domain analysis provides details
of the type and amount of supervision information and
their relative importance to a history-based parser. When
training data is limited, which is often the case with a
new domain or task, such information can point us to
the right cross-domain corpus whose annotation can be
re-used. Our experiments show that cross-domain data
can be very helpful. Moreover, by utilizing cross-domain
data, we can improve a parser without labeling extra data.
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5 Related Work

As supervision information is costly to obtain, unsu-
pervised and semi-supervised methods have been stud-
ied in many areas of natural language processing such
POS tagging (Merialdo, 1994), word sense disambigua-
tion (Yarowsky, 1995) and document classification (Mc-
Callum and Nigam, 1998). Mitchell (1999) has a general
discussion of use of unlabeled data in supervised learn-
ing. Banko and Brill (2001) includes a result of using
large amount of unlabeled data in a task of disambiguat-
ing English confusable words.

In the area of natural language parsing,
Pereira and Schabes (1992) extended the inside-outside
algorithm to incorporate partially-bracketed training
data. That is, when carrying out the inside-outside
algorithm, only constructs consistent with bracket con-
straints are used. The proposed algorithm is tested on the
ATIS (Hemphill et al., 1990) task and significant better
results are obtained, compared with a PCFG trained
with raw text. The same technique was later applied to
the WSJ Corpus (Schabes et al., 1993). Independently,
Black et al. (1992) used the same technique in training a
statistical grammar of computer manuals. Both (Pereira
and Schabes, 1992) and our work are about taking
advantage of partially-labeled data, however, CFG
(and its probabilistic variation) is very different from
the formalism of history-based statistical parsers (e.g.,
(Ratnaparkhi, 1997) and (Jelinek et al., 1994; Mager-
man, 1995)). In particular, neither (Jelinek et al., 1994;
Magerman, 1995) nor (Ratnaparkhi, 1997) maintains
an explicit list of CFG rules. This difference leads to
different training algorithms: inside-outside re-estimates
probabilities of CFG rules, while an improved iterative
scaling (Berger et al., 1996) algorithm is used to estimate
parameters in maximum entropy model. Therefore,
while (Pereira and Schabes, 1992) and our work share
the same aim, the actual problem is quite different. Lack
of inside-outside-type of algorithm is a major hurdle
in implementing the EM algorithm in history-based
statistical parser, and, to the best of our knowledge, this
work is a first attempt of solving the problem.

Another related work is (Charniak, 1997). In one of
the experimental results in (Charniak, 1997), 7�9 million
raw text was parsed with a seed model and then the best
parses were added to training data. The same training
scheme can be implemented in our work. That is, taking
the best parsing result is a special case of the E-step in
that the best parse is used to approximate the summation
of (11) (or Viterbi training).

In the 2002 Johns Hopkins Summer Workshop, a group
worked on semi-supervised training for natural language
parsing (Steedman et al., 2003). Their focus is using co-
training (Blum and Mitchell, 1998; Sarkar, 2001) to im-

prove statistical parsing. The co-training paradigm uses
multiple statistical models (Collins, 1997; Sarkar, 2001)
built on a (small) amount of labeled data, and then one
model “generates” labels for another model. A selection
step, based on various utility measures, is used to pick
up “useful” training sentences. The co-training is shown
useful when the seed model is insufficiently trained, but
the gain disappears if the amount of initially labeled data
is reasonably large (Steedman et al., 2002). While de-
veloping the EM algorithm for history-based statistical
parsers, our focus is semi-supervised learning, with the
aim of re-using labeled data from another domain.

6 Conclusions and Future Work

We have proposed an instance of the EM algorithm to in-
corporate partially-labeled data in statistical natural lan-
guage parsing. An efficient implementation of the E-step
is proposed using nested parser states. The proposed al-
gorithm is useful in taking advantage of multiple corpora
with different labeling. We observe that significant im-
provement can be obtained if an under-trained seed model
is enhanced with partially-labeled data.

When making use of cross-domain data, it is often nec-
essary to map one style of labeling into another. This re-
quires domain knowledge. It would be nice if we can take
cross-domain data as it is, and use it as an extra source of
knowledge when training statistical models. Maximum
entropy modeling provides us with a flexible framework
to incorporate multiple sources of information. We will
investigate this possibility in our future work.
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