
RC23125 (W0402-138) February 26, 2004
Computer Science

IBM Research Report

Policy-Based Management for Dynamic Surge Protection

Seraphin Calo, Steven Froehlich, Maheswaran Surendra, Dinesh Verma,
Xiping Wang

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Policy-Based Management for Dynamic Surge Protection

Seraphin Calo, Steven Froehlich, Maheswaran Surendra, Dinesh Verma and Xiping Wang
IBM T. J. Watson Research Center

P.O.Box 704, Yorktown Heights, NY 10598
scalo, stevefro, suren, dverma and xiping@us.ibm.com

Abstract

Policies are increasingly being used to manage

complex systems. This paper presents our work on
policy enablement of a dynamic surge protection
system, which predicts the traffic changes in an IT
environment and then balances an application’s
resources based on a set of pre-defined policies. We
aggregate the controller settings of the system into
classes of service that can be more intuitively
determined through administrative policies. The
detailed settings of the elements of each class are
defined and maintained by the use of a policy
management tool. The controller automatically
allocates or de-allocates application server resources
in order to satisfy time varying workloads based on the
input service level objectives. This not only
externalizes the controller parameter settings but also
allows the modification of the policies to change the
behavior and strategy of the dynamic surge protection
system without recoding the controller. As a result, the
administrator’s tasks can be dramatically simplified,
as the system adapts to changing environments.

1. Introduction

Today’s IT systems have widely varying demands
for resources due to unexpected surges in subscriber
accesses. New applications are deployed, but their
resource demands are unknown. The typical approach
for dealing with these problems is to over-provision
and/or manually re-allocate resources. Unfortunately,
both approaches are undesirable due to cost factors
(equipment, licenses, etc) and the need for expert
operators. In addition, resource actions often involve
lead times, such as server warm-up or cool-down
periods, resulting in delays between action initiation
and effect.

As part of IBM’s thrust in autonomic computing
[1][2][3], a previous work introduces a system to
adaptively and efficiently manage resource deployment

to handle unexpected workload variability [4]. This
dynamic surge protection system is designed to
proactively satisfy Service Level Objectives (SLO) in
the face of workload surges by automatically adding
the appropriate number of resources to handle a surge
and then removing them when they are no longer
needed.

Briefly, the dynamic surge protection system
(described in more detail in [4]) employs three
technologies: adaptive short-term forecasting, on-line
capacity planning, and configuration management. The
forecasting approach is designed to be responsive to
rapid changes, yet robust towards occasional spurious
predictions (an undesirable side-effect of highly
responsive predictors). On-line capacity planning
determines the appropriate number of resources needed
to satisfy service levels for any given workload
intensity. Lastly, configuration management allows for
resource adjustments, e.g., application provisioning.

The optimal setting of the parameters of operation
of the dynamic surge protection system requires a
detailed understanding of the controller, and hence is
best suited to administrators with expert knowledge. In
addition, several of the important control settings are
hard-coded as static values which are a compromise
over a range of operating conditions and performance
expectations.

Policy-based technologies are increasingly being
used in the management of networks and distributed
systems [5]. Policies are rules governing the choices in
the behavior of a system. Explicitly separating policies
from the system components that interpret them allows
the modification of the policies to change the behavior
and strategy of the management system without
changing the management software itself. The
management components can then adapt to changing
requirements by disabling policies or updating policies
without shutting down the system. This is obviously
very desirable for the dynamic surge protection
system, since it is meant to provide continuous
adjustment of resources to meet service level

 1

objectives. The policy-enablement of its operation
avoids potential downtime when external conditions
change, and significantly simplifies its management.
To this end, we have therefore extended the system
controller to accept pre-defined policies, and have
incorporated policy management tools into the overall
system for the editing, storage, and deployment of
policy information.

Figure 2 shows the control and data flow for
dynamic surge protection. Workload data from
monitoring are input to the forecaster, which predicts
future workload. The capacity planner uses the
predicted workload and SLO to determine the
appropriate number of application servers needed. The

This paper describes our work on the policy
enablement of the dynamic surge protection system,
including a policy framework and its implementation.
The paper is organized as follows: Section 2 presents a
description of the dynamic surge protection system;
Section 3 describes the extensions to that system for
policy enablement; Section 4 presents experimental
results obtained on our research testbed; and, Section 5
presents conclusions and future work.

2. Dynamic surge protection

Since the dynamic surge protection system is
presented in detail elsewhere [4], we provide a brief
description of the research testbed which also
highlights elements pertinent to policy enablement.

The system is organized into three layers as shown
in Figure 1. The Application layer provides the
business function. In this work, a two-tier web
application with one or more application servers
(IBM’s Websphere Application Server 5.0) and a
database server (IBM’s DB2 v8.1 database) is used.
The application deployed on this testbed simulates the
supply chain management of a manufacturing
company.

A key feature of the system is that the application
tier can scale horizontally without requiring system
shutdown. The testbed also includes a workload driver,
controller and deployment manager on another
machine. Both Controller and Deployment Manager
code are lightweight and incur minimal CPU load.

The Deployment Manager interfaces with the
application layer, and has the appropriate hooks for
monitoring and configuring the application layer.
Transaction rates (business operations per sec) and
response times are monitored, while configuration
management (provisioner) is focused on the addition
or removal of application servers.

The Controller monitors the application layer state
and initiates appropriate actions if an SLO (e.g.,
response time) violation is anticipated or if the SLO
can be satisfied in a more cost-effective way.

Controller

Service level objective

 Capacity A A
Decision Logic Planner Forecaster

P

Transaction
Rate Deployment Manager

 Configuration
Monitoring ManagementM E

3Model workload:
supply chain

s e

s s e
s e 2

Response Time DB2 WAS #WAS v8.1 5.0 1

Application

Figure 1. Architecture for dynamic surge
protection.

decision logic manages the information flow and
determines the resource adjustments (by comparison to
the deployment state data). These adjustments are
effected by the provisioner.

 Monitoring

 Forecaster

 Capacity SLOs Planner

Decision Logic

 Provisioner

Figure 2. Control and data flow.

Key technologies employed by the dynamic surge

protection system are adaptive forecasting, on-line
capacity planning and rapid configuration
management. The adaptive forecaster employed is
based on a non-seasonal autoregressive predictor with
variable order (for robustness) and uses very short
history (hence it is able to learn quickly). The on-line
capacity planner is queuing-model based and is not
computationally intensive. Rapid application server

 2

provisioning leverages WAS 5.0’s cellular cluster
capability and uses the WAS startServer/stopServer
commands.

As reasoned in the previous work [4], a prediction
horizon H which is approximately equal to P + S,
where P is the control interval, and S is the resource
addition lead time, is expected to be sufficient to
proactively avoid SLO violations. Here, as before, P =
10 sec, S ~ 40 sec, and H = 60 sec. Implicit in this
reasoning is that once an application server is added, it
can take load as effectively as the other active servers.
However, in practice this is not always the case, as
there is some period (about 20 – 30 sec) where it
services the load quite poorly (due to class loading,
etc). Hence, response times can be temporarily worse,
especially with the simple round-robin scheduling
option used with the application server’s workload
manager. Another observation is that the stopping time
for an application server can sometimes be quite long
(3 min – which corresponds to a preconfigured
timeout).

Figure 3. Typical performance from the

In Figure 3, typical testbed performance is shown.

Th

 the dynamic surge protection system is
the

rules are at a low level in terms of their
sp

ad

t away the complexity of internal
co

dynamic surge protection testbed.

e top panel shows the response time, while the
middle panel shows the actual and 60 sec ahead
predicted transaction rates (business ops per sec) and
the bottom panel shows the application servers in their
different states as they go from idle to active (i.e.
starting) and the converse (i.e. stopping). The key
features in Figure 3 are that once a transaction rate
surge starts, the predicted rate, while lagging at first,
quickly adapts and provides useful leading information
about the surge. Additional application servers are
made active to handle the additional work, hence
keeping the response time low (mostly < 1 sec), and

are removed when the surge subsides. Note that these
surges occur randomly, and the short-term forecaster
does not retain any “memory” of the preceding surge.
3. Policy enablement for dynamic surge
protection

The core of
 controller. The goal of the controller is to maintain

service level objectives in the face of time varying
workload. In order to achieve this goal, a set of
internal rules/parameters is used to govern controller
decisions. These rules/parameters determine how to
dampen controller actions, how aggressively to
respond to a workload upswing or how to handle
insufficient guidance from the forecaster and capacity
planner.

These
ecificity to the controller software, and programmed

into the control logic in the first prototype [4]. As such,
they can only be modified by expert programmers,
since it requires a deep understanding of the system
control logic to make any modifications. Therefore,
coding the controller settings into the control logic
results in an inflexible system design and makes it very
difficult to administer the system. It is possible to
externalize controller settings through a configuration
file, but this is not the best solution as the administrator
would still need to understand the controller in detail.

The more appealing alternative is for the
ministrator of the dynamic surge protection system

to use a policy-based management tool that allows
configuration of dynamic surge protection at a higher
level of abstraction, instead of having to set individual
internal low-level configuration. This way, it not only
simplifies the system administration but also ensures
that the system always performs at its best by using the
expert fine-tuned configuration parameters guided by a
set of policies. More importantly, the use of policies
makes it possible to dynamically change the behavior
of the dynamic surge protection system without
changing its code. These characteristics reduce system
complexity, while permitting an efficient control of
service level objectives. Furthermore, policy can be
dynamically modified to be adaptive to system
requirements.

To abstrac
nfiguration parameters, we aggregate internal

settings of dynamic surge protection into classes of
service, so that the controller configuration can be
determined more intuitively through pre-specified
administration policy decisions. For example, the
system administrator only needs to decide how cost

 3

sensitive the controller should be or how responsive
the controller should be, while the detailed individual
internal configuration parameters are obtained through
policy transformations that map the higher level
service objectives to lower level configuration settings.

Figure 4 shows a joint architecture designed for
int

Figure 4. Policy-enabled dynamic surge

.1. Policy specification

ML documents associated
wit

ontroller using the “4-
tup

ntroller

itivity == high &&

Actio
ssOfService = Bronze

rior
e = high

In ou on, we use a policy editing tool
to

.2. Policy repository
stores policies either locally

or

.3. Policy service agent
sponsible for retrieving

pol

.4. Policy translator
parses an XML-based policy

do

.5. Policy decision point
t evaluates policies and

pro

Figure 4. Policy-enabled dynamic surge

.1. Policy specification

ML documents associated
wit

ontroller using the “4-
tup

ntroller

itivity == high &&

Actio
ssOfService = Bronze

rior
e = high

In ou on, we use a policy editing tool
to

.2. Policy repository
stores policies either locally

or

.3. Policy service agent
sponsible for retrieving

pol

.4. Policy translator
parses an XML-based policy

do

.5. Policy decision point
t evaluates policies and

pro

egration of policy-based management into the
dynamic surge protection system. The architecture
consists of a policy editing tool, a policy repository, a
policy agent, a policy translator, a policy decision
point, and a policy enforcement point. The high level
service objective is specified through the system
administrator GUI editor and represented in a Java
object that is the input to the decision logic unit of the
dynamic surge protection system controller. A detailed
description of each component is given below.

translator, a policy decision
point, and a policy enforcement point. The high level
service objective is specified through the system
administrator GUI editor and represented in a Java
object that is the input to the decision logic unit of the
dynamic surge protection system controller. A detailed
description of each component is given below.

Policy
Repository

policies

Policy Agent

Translator

Policies in XML New/Updated
policies

policy
object

Condition
object

Config.
object

D.S.P.
Controller

Decision Logic

 Capacity
Planner

SLO
Polic

Policy Schema

Policy
Enforcement

Point

Policy
Decision Point

Service Level Objective

protection. protection.

33
Policies are defined as XPolicies are defined as X
h a policy schema file that specifies how to validate

the semantic correctness of the policy document. A “4-
tuple” policy specification is used, consisting of
components defining the Scope, Pre-condition(s),
Priority and Action(s) associated with the policy. The
Scope of a policy is an indication of the type of
resource manager that is intended to be influenced by
the policy. The Pre-condition component defines the
situations under which a particular policy is to apply.
The priority of a policy indicates its relative
importance with respect to other policies with the same
scope, and can be used by the policy decision point for
conflict resolution in the event that multiple policies
are satisfied simultaneously. The Action component

describes specifically what is to be done when the
policy is applied to the system.

An example policy for the c

h a policy schema file that specifies how to validate
the semantic correctness of the policy document. A “4-
tuple” policy specification is used, consisting of
components defining the Scope, Pre-condition(s),
Priority and Action(s) associated with the policy. The
Scope of a policy is an indication of the type of
resource manager that is intended to be influenced by
the policy. The Pre-condition component defines the
situations under which a particular policy is to apply.
The priority of a policy indicates its relative
importance with respect to other policies with the same
scope, and can be used by the policy decision point for
conflict resolution in the event that multiple policies
are satisfied simultaneously. The Action component

describes specifically what is to be done when the
policy is applied to the system.

An example policy for the c
le” representation can be described as follows:

Scope:

le” representation can be described as follows:

Scope:
 Co Co
Precondition: Precondition:
 CostSens CostSens

Responsiveness == low Responsiveness == low
n: n:

 Cla Cla
P ity: P ity:

ValuValu

r implementatir implementati
create, edit and view policies. The editing tool also

validates policies at policy creation time and provides
a way to control policies when they are ready to be
deployed.

create, edit and view policies. The editing tool also
validates policies at policy creation time and provides
a way to control policies when they are ready to be
deployed.

Administrator
GUI Request policy, subscribe

33
The policy repository The policy repository y Editor

remotely. In addition, it also performs policy
validation, static conflict resolution and policy
transformation, and distributes policies over a policy-
based management system. It is designed to interact
with the policy editing tool and the policy agent.

remotely. In addition, it also performs policy
validation, static conflict resolution and policy
transformation, and distributes policies over a policy-
based management system. It is designed to interact
with the policy editing tool and the policy agent.

Forecaster

33
The policy agent is reThe policy agent is re
icies requested by the policy decision point from a

policy repository. It first subscribes to services being
provided by the policy repository, and then obtains
policies of interest. When a policy is modified, the
policy agent will notify the users of that policy about
changes through a notification mechanism.

icies requested by the policy decision point from a
policy repository. It first subscribes to services being
provided by the policy repository, and then obtains
policies of interest. When a policy is modified, the
policy agent will notify the users of that policy about
changes through a notification mechanism.

33

The policy translator The policy translator
cument, and converts it into a Java policy object.

The resulting Java policy object is then used for all the
policy processing functions, such as validation,
evaluation, etc.

cument, and converts it into a Java policy object.
The resulting Java policy object is then used for all the
policy processing functions, such as validation,
evaluation, etc.

33

The policy decision poinThe policy decision poin
vides decisions to the controller of the dynamic

surge protection system in order to affect its behavior.
As shown in Figure 4, the Pre-conditions are obtained
from the decision logic unit of the controller.
Whenever the Pre-conditions evaluate to true for any

vides decisions to the controller of the dynamic
surge protection system in order to affect its behavior.
As shown in Figure 4, the Pre-conditions are obtained
from the decision logic unit of the controller.
Whenever the Pre-conditions evaluate to true for any

 4

of the pre-defined policies associated with the
controller, the actions indicated in that policy will be
applied to the controller. In the dynamic surge
protection system, that means that the internal
parameters of the controller will be set to those defined
in the class of service determined by the policy. In the
event that multiple policies are appropriate at the same
time, any potential conflict or inconsistency must be
resolved. This can be done based on the priority value
of each policy or using a meta- policy based approach
[7].

resolved. This can be done based on the priority value
of each policy or using a meta- policy based approach
[7].

33.6. Policy enforcement point

s the component of
the

4. Experiments
the IBM autonomic computing

str

y ToolKit contains a policy
uti

igure 5. Software architecture of the policy

he Policy ToolKit is written in pure Java and

sup

t we have designed and
imp

ation parameters for
the

.6. Policy enforcement point
s the component of

the

4. Experiments
the IBM autonomic computing

str

y ToolKit contains a policy
uti

igure 5. Software architecture of the policy

he Policy ToolKit is written in pure Java and

sup

t we have designed and
imp

ation parameters for
the

The policy enforcement point iThe policy enforcement point i
 system that enforces the selected policy by passing

a new Configuration object to the decision logic that
contains the low level configuration settings that are
understood by the controller of the dynamic surge
protection system.

 system that enforces the selected policy by passing
a new Configuration object to the decision logic that
contains the low level configuration settings that are
understood by the controller of the dynamic surge
protection system.

In support of In support of
ategy, the Policy Technologies Group at the IBM T.

J. Watson Research Center, has developed a set of
software development tools called the Policy ToolKit
[6]. Figure 5 shows the software architecture of the
Policy ToolKit. It consists of a set of modules
performing specific functions plus a set of common
use classes. The policy editor module, which generates
a customized policy editing GUI for different
applications, can be used to specify policies for a given
policy-based application. The validation module can be
used to perform a set of validation checks on a group
of policies. The decomposition module translates a
high level policy into a low level resource
configuration. Conversely, the composition module
translates a low-level resource configuration into a
high-level policy. The policy agent module can be
used to interface with a policy repository. The policy
enforcement module can be used to create a policy
enforcement point which executes policies satisfying a
set of specified pre-conditions. The policy conflict
resolution module can be used to detect and resolve
policy conflicts among a group of policies. The policy
rule hierarchy module can be used to merge policy
groups within the same policy rule hierarchy. The
policy core classes represent policy rules, pre-
conditions, actions, etc.

In addition, the Polic

ategy, the Policy Technologies Group at the IBM T.
J. Watson Research Center, has developed a set of
software development tools called the Policy ToolKit
[6]. Figure 5 shows the software architecture of the
Policy ToolKit. It consists of a set of modules
performing specific functions plus a set of common
use classes. The policy editor module, which generates
a customized policy editing GUI for different
applications, can be used to specify policies for a given
policy-based application. The validation module can be
used to perform a set of validation checks on a group
of policies. The decomposition module translates a
high level policy into a low level resource
configuration. Conversely, the composition module
translates a low-level resource configuration into a
high-level policy. The policy agent module can be
used to interface with a policy repository. The policy
enforcement module can be used to create a policy
enforcement point which executes policies satisfying a
set of specified pre-conditions. The policy conflict
resolution module can be used to detect and resolve
policy conflicts among a group of policies. The policy
rule hierarchy module can be used to merge policy
groups within the same policy rule hierarchy. The
policy core classes represent policy rules, pre-
conditions, actions, etc.

In addition, the Polic
lity module consisting of a set of Java helper classes

to ease policy processing. We note that XML and
XML schemas play an important role in the Policy

Toolkit. The XML file is used as a mechanism to
define policies, and to import and export policies into
and out of the Policy Toolkit environment, while the
XML schema file is used to define the structure of the
policy files.

lity module consisting of a set of Java helper classes
to ease policy processing. We note that XML and
XML schemas play an important role in the Policy

Toolkit. The XML file is used as a mechanism to
define policies, and to import and export policies into
and out of the Policy Toolkit environment, while the
XML schema file is used to define the structure of the
policy files.

Policy ToolKit Core Classes

(rules, preconditions, actions, etc)

Policy Documents (in XML format)

P
ol

ic
y

D
ec

om
po

si
tio

n
M

od
ul

e

P
ol

ic
y

C
on

fli
ct

 R
es

ol
ut

io
n

P
ol

ic
y

E
nf

or
ce

m
en

t P
oi

nt

P
ol

ic
y

V
al

id
at

io
n

M
od

ul
e

P
ol

ic
y

S
yn

th
es

is
 M

od
ul

e

P
ol

ic
y

H
ie

ra
rc

hy
 M

od
ul

e

P
ol

ic
y

E
di

to
r M

od
ul

e

P
ol

ic
y

A
ge

nt

FF
toolkit. toolkit.

TT
ports all the functions described above. The

ToolKit can be used across a wide variety of
applications and can simplify the task of developing or
integrating policy related methodologies into new or
existing software systems.

Using the Policy ToolKi

ports all the functions described above. The
ToolKit can be used across a wide variety of
applications and can simplify the task of developing or
integrating policy related methodologies into new or
existing software systems.

Using the Policy ToolKi
lemented policy-based management for the

controller of the dynamic surge protection system.
Figure 6 (b) shows a graphical view produced by the
policy editing tool displaying four rules specified for
the controller. These rules employ high level
considerations like Cost Sensitivity, Responsiveness,
and Workload Variability (not used in the current
prototype) to determine quality of service. Four classes
of service were defined for the controller of the
dynamic surge protection system. These are: Platinum,
Gold, Silver and Bronze as shown in Figure 6 (a).
Each of these classes of service determines a certain
level of operational performance.

 The detailed internal configur

lemented policy-based management for the
controller of the dynamic surge protection system.
Figure 6 (b) shows a graphical view produced by the
policy editing tool displaying four rules specified for
the controller. These rules employ high level
considerations like Cost Sensitivity, Responsiveness,
and Workload Variability (not used in the current
prototype) to determine quality of service. Four classes
of service were defined for the controller of the
dynamic surge protection system. These are: Platinum,
Gold, Silver and Bronze as shown in Figure 6 (a).
Each of these classes of service determines a certain
level of operational performance.

 The detailed internal configur
 controller are fine tuned for each of the classes of

service based on experience and historical data. We
note that one of the attributes in the service class
definition (ControlObjective) is not used in the work
described here, but remains as a place holder for future
work. Most of the other attributes (e.g., ContFactor)
are there to provide robustness to poor
forecasting/capacity planning. The administrator only

 controller are fine tuned for each of the classes of
service based on experience and historical data. We
note that one of the attributes in the service class
definition (ControlObjective) is not used in the work
described here, but remains as a place holder for future
work. Most of the other attributes (e.g., ContFactor)
are there to provide robustness to poor
forecasting/capacity planning. The administrator only

 5

inputs the high level considerations affecting system behavior, such as:

(a) Classes of services corresponding to the service level objective.

(b) Four rules defined for the controller.

Figure 6. View of the policy editing tool.

 Figure 7 also shows the results of the experiments
conducted on our research testbed. The middle graph
of Figure 7 (a), (b) and (c) plots the actual and
predicted business operations per second (BOPS), the
metric used to characterize workload. The bottom
graph of Figures 7 (a), (b) and (c) shows the changes
of state and the number of application servers allocated
in response to the actual and forecasted demands on
the system. The top graph of Figures 7 (a), (b) and (c)
depicts the effect that these actions have on response
times.

CostSensitivity and Responsiveness. In our
implementation these take simple values of “high” or
“low”. The corresponding service class is determined
by the policy evaluation engine and is further
transformed into the low level configuration settings
for the controller by the policy enforcement point. It is
important to realize that additional policies to
determine class of service (e.g., what class to use if
both CostSensitivity and Responsiveness are both set
to “medium”) can be entered without bringing down
the system. The specifics are “hidden” from the
administrator that sets the controller objectives, and the
task of the system administrator is therefore
dramatically simplified.

To effectively demonstrate the value of policy
enablement within the time span of the controller
display (30 min), we actually use a workload with
periodic surges, although the system is designed to
deal with random surges. In Figure 7 (a), we show
results using a low class of service (Bronze), which
corresponds to administrator preferences for high
CostSensitivity and low Responsiveness. This is the
most economical controller setting, and is appropriate
for workload surges with relatively low ramp rates.
The predicted transaction rate tracks the actual
transaction rate quite well, and the additional resources
are brought on-line in time to keep response time

The simple policy administration panel used with
the prototype is included in Figure 7 (a), (b), and (c).
The bottom part displays the high level input
parameters from the system administrator, while the
upper part depicts the corresponding low level
configuration settings produced by the policy
enforcement point as shown in Figure 4.

 6

excursions small. In contrast, in Figure 7 (b), we show
that the controller performs somewhat poorly when
faced with surges that have higher ramp rates. We note
that the only thing that is changed in going from Figure
7 (a) to 7 (b) is that the surge period is shortened (both
surge amplitude and average value are unchanged).

It is apparent that the prediction does not perform as
well in this case, which is not surprising since the
surge only lasts ~ 3 min, and the prediction uses a 1
min look-ahead. Again we emphasize that the
forecaster is not designed to “remember”
characteristics of past surges, since workload surges of
interest here are typically random (start time, intensity,
and duration). With this rapidly varying a workload,
the controller cannot respond sufficiently quickly
(adding servers in time), and we see temporary
response time excursions which are quite large.

R
es

po
ns

e
B

us
in

es
s s

ph
er

e
R

es
po

ns
e

B
us

in
es

s s
ph

er
e

R
es

po
ns

e
Ti

m
e

B
us

in
es

s
O

pe
ra

tio
ns

pe
r S

ec
on

d
bS

ph
er

e
Se

rv
er

s

Service class changed by adminService class changed by admin

Class=Platinum: More
aggressive, less cost sensitive,
small RT excursions

Class=Platinum: More
aggressive, less cost sensitive,
small RT excursions

(c) Service class changed from bronze to platinum (CostSensitivity = low, Responsiveness = high) with rapidly

 varying workload. Note that response time excursions are greatly reduced with the platinum service class. The
added performance does come at the cost of deploying a higher average number of WAS servers.

Figure 7. Performance of the dynamic surge protection system.

W
e

Ti
m

e
O

pe
ra

tio
n

pe
r S

ec
on

d
W

eb
S

Se
rv

er
s

Ti
m

e
O

pe
ra

tio
n

pe
r S

ec
on

d
W

eb
S

Se
rv

er
s

(a) Service class = Bronze (CostSensitivity = high, Responsiveness = low) with a slowly varying workload.
The system is performing as expected, and the response times as behaving well with regards to their

target value (1 sec).

R
es

po
ns

e
Ti

m
e

B
us

in
es

s
O

pe
ra

tio
ns

pe
r S

ec
on

d
W

eb
Sp

he
re

Se
rv

er
s

R
es

po
ns

e
Ti

m
e

B
us

in
es

s
O

pe
ra

tio
ns

pe
r S

ec
on

d
W

eb
Sp

he
re

Se
rv

er
s

Class=Bronze: Less aggressive more
cost sensitive. Large RT excursions
Class=Bronze: Less aggressive more
cost sensitive. Large RT excursions

(b) Service class = Bronze (CostSensitivity = high, Responsiveness = low) with a rapidly varying workload.
 Note the large response time excursion in comparison to the target value (1 sec).

target

target

target

 7

In Figure 7 (c), the administrator preferences are
changed to low CostSensitivity and high
Responsiveness. This results in a class of service that
is more responsive to more rapidly varying workloads,
and is also more apt to use additional resources to
minimize temporary response time excursions. With
the change to this higher service class (Platinum), we
note that again the response time is quite well behaved,
but this additional performance comes at the cost of
higher average server usage (about 2.5 in Figure 7 (c),
vs. about 1.7 in Figure 7 (a)). As indicated in Section
3, some controller rules/parameters are used to
accommodate situations where guidance from the
forecaster/capacity planner is poor. A typical approach
to uncertainty is to use contingency factors in
determining when to add/remove servers. Additional
“safety” is provided by using a lower threshold (higher
contingency factor) when removing a server in
comparison to adding a server. This feature is enabled
by setting RemoveServerMethod =
UseLowWaterMarkContFactor (Gold and Platinum
service classes). The downside of this feature is that it
tends to keep more servers in the active state than a
situation where servers are added/removed based on
the same threshold (Silver and Bronze service classes).

This prototype was shown to several different
audiences in IBM and it is interesting to note their
reactions/feedback. The audiences themselves were
varied, ranging from policy experts to developers,
system administrators, and executives. Most of the
discussions revolved around what type of inputs (e.g.,
here CostSensitivity and Responsiveness), if any,
should be exposed to the administrator. The actual
service classes (Platinum to Bronze) did not generate
as much discussion, which is probably not surprising,
since they have to do with actual controller settings for
performance.

One opinion was that the service class should be
directly chosen by the administrator, without having
the higher level considerations. A motivation behind
this is that CostSensitivity and Responsiveness cannot
really be considered to be orthogonal inputs – i.e. a
highly responsive system would typically be less cost
sensitive.

Another opinion was that these considerations
should not serve as inputs, but should be derived from
a higher level policy or service level agreement (SLA).
For instance, an SLA stating that 80% of the response
time (RT) measurements taken in a defined time
window must be less than RTSLA, could possibly map
onto the Bronze service class. Alternatively, if the
requirement was that 95% of these response time

measurements be less than RTSLA, the mapping would
be to the Platinum service class. This would be ideal in
a sense that a business policy would be automatically
decomposed into IT policies. The challenge is that the
appropriate decomposition is not easy to derive,
especially since it needs to somehow capture the
workload variability (the capacity planning tool we use
is not designed for transients). One approach to this
would be to do online model building and learning to
elucidate the appropriate service class corresponding to
the SLA parameters. Note that the usefulness of
learning is not just limited to determine service classes,
but also the values of the low level configuration
parameters. For instance, by measuring forecast error
together with associated RT over a period of time, it
should be possible to adjust the ContFactor to
accommodate high forecast error.

Other points of discussion centered around the use
of unsolicited decisions. This is more involved than
simply using some other input in the policy pre-
conditions (e.g., variables not entered by the
administrator, such as time of day), since the current
implementation of the architecture we show in Figure
4 is geared towards solicited decisions, i.e., the
controller asks for the configuration object at the
beginning of every 10s control interval. In the
unsolicited case, the controller would continue to use
the same configuration object until it was explicitly
updated by some other management component. This
would not make a significant difference in the present
system, since these objects are small; but, this might be
important in environments where large amounts of data
are involved in the decision process.

We note that this is a separate consideration than
that of solicited versus unsolicited policies. In the
current architecture, the configuration object is
updated whenever a new condition object is received.
It is also updated whenever a change is made to the
policy object. The policy subscription mechanism thus
supports unsolicited updates.

5. Conclusions

This paper has presented a policy-based
management scenario, which shows how the controller
of the dynamic surge protection system was policy-
enabled, allowing it to dynamically allocate application
server resources based on a set of pre-defined policies
in order to achieve its required service level objectives.
The internal settings of the controller were aggregated
into classes of service that could be more intuitively
determined by administrator policies. Since the
detailed settings of the controller were abstracted away

 8

 9

by policies, the task of the system administrator has
been dramatically simplified. The integration of
policy-based management into the controller of the
dynamic surge protection system also separates its
control settings from its control logic, making it
possible for the controller to adjust itself to
dynamically meet a range of operating conditions and
also performance expectations by simply modifying its
policies.

A policy management tool was developed based on
a set of common tools provided by the Policy ToolKit.
We have also conducted a number of experiments on a
testbed system to gain insight into the characteristics of
dynamic surge protection and the effects of policy-
based management. Overall, we have found it to be
well behaved, although the policies designed for the
controller of the dynamic surge system were relatively
simple.

Our future work will extend the current system to
include more complicated policies for the handling of
multiple workloads, incorporating tuning as well as
provisioning actions. Conflict detection and resolution
will also be addressed in order to resolve potential
inconsistencies caused by interacting sets of more
complex policies.

6. Acknowledgements

We would like to acknowledge the contributions of
all the individuals who were involved with the
Dynamic Surge Protection System and the Policy
Toolkit. Mandis Beigi was particularly helpful in
developing policy schemas for different versions of the
prototype. We would also like to recognize Nagui
Halim who headed the Distributed Computing
Department, and Richard Telford, Director of
Autonomic Computing, who both encouraged the
policy-enablement effort.

7. References

[1] IBM Autonomic computing, Creating self-managing
computing systems (http://www.ibm.com/autonomic), 2003.

[2] Autonomic Computing Roadmap V1.0, September 26,
2002.

[3] An Architectural Framework for Autonomic Computing
v2.0, October 22, 2002.

[4] E. Lassettre, et. al, “Dynamic Surge Protection: An
Approach to Handling Unexpected Workload Surges with
Resource Actions That Have Dead Times,” 14th IFIP/IEEE

International Workshop on Distributed Systems: Operations
and Management, DSOM 2003, Heidelberg, Germany,
October 20-22, 2003, Proceedings.

[5] Morris Sloman, Jorge Lobo and Emil Lupu, “Policies for
Distributed Systems and Networks,” International Workshop,
POLICY 2001 Bristol, UK, January 29-31, 2001,
Proceedings.

[6] IBM Policy ToolKit High Level Design V1.0, July 2003.

[7] E. Lupu and M Sloman, “Conflicts in Policy-Based
Distributed Systems Management,” IEEE Transactions on
Software Engineering, Vol. 25, No. 6, Nov/Dec 1999.

http://www.ibm.com/autonomic
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sloman:Morris.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lobo:Jorge.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lupu:Emil.html

	1. Introduction
	3.1. Policy specification
	3.2. Policy repository
	3.3. Policy service agent
	3.4. Policy translator
	3.5. Policy decision point
	3.6. Policy enforcement point

	4. Experiments
	6. Acknowledgements
	7. References

