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Abstract 
 
Policies are increasingly being used to manage 

complex systems. This paper presents our work on 
policy enablement of a dynamic surge protection 
system, which predicts the traffic changes in an IT 
environment and then balances an application’s 
resources based on a set of pre-defined policies. We 
aggregate the controller settings of the system into 
classes of service that can be more intuitively 
determined through administrative policies. The 
detailed settings of the elements of each class are 
defined and maintained by the use of a policy 
management tool. The controller automatically 
allocates or de-allocates application server resources 
in order to satisfy time varying workloads based on the 
input service level objectives. This not only 
externalizes the controller parameter settings but also 
allows the modification of the policies to change the 
behavior and strategy of the dynamic surge protection 
system without recoding the controller. As a result, the 
administrator’s tasks can be dramatically simplified, 
as the system adapts to changing environments. 

 
 
1. Introduction 

Today’s IT systems have widely varying demands 
for resources due to unexpected surges in subscriber 
accesses. New applications are deployed, but their 
resource demands are unknown. The typical approach 
for dealing with these problems is to over-provision 
and/or manually re-allocate resources. Unfortunately, 
both approaches are undesirable due to cost factors 
(equipment, licenses, etc) and the need for expert 
operators. In addition, resource actions often involve 
lead times, such as server warm-up or cool-down 
periods, resulting in delays between action initiation 
and effect. 

As part of IBM’s thrust in autonomic computing 
[1][2][3], a previous work introduces a system to 
adaptively and efficiently manage resource deployment 

to handle unexpected workload variability [4]. This 
dynamic surge protection system is designed to 
proactively satisfy Service Level Objectives (SLO) in 
the face of workload surges by automatically adding 
the appropriate number of resources to handle a surge 
and then removing them when they are no longer 
needed. 

Briefly, the dynamic surge protection system 
(described in more detail in [4]) employs three 
technologies: adaptive short-term forecasting, on-line 
capacity planning, and configuration management. The 
forecasting approach is designed to be responsive to 
rapid changes, yet robust towards occasional spurious 
predictions (an undesirable side-effect of highly 
responsive predictors). On-line capacity planning 
determines the appropriate number of resources needed 
to satisfy service levels for any given workload 
intensity. Lastly, configuration management allows for 
resource adjustments, e.g., application provisioning. 

The optimal setting of the parameters of operation 
of the dynamic surge protection system requires a 
detailed understanding of the controller, and hence is 
best suited to administrators with expert knowledge. In 
addition, several of the important control settings are 
hard-coded as static values which are a compromise 
over a range of operating conditions and performance 
expectations. 

Policy-based technologies are increasingly being 
used in the management of networks and distributed 
systems [5]. Policies are rules governing the choices in 
the behavior of a system. Explicitly separating policies 
from the system components that interpret them allows 
the modification of the policies to change the behavior 
and strategy of the management system without 
changing the management software itself. The 
management components can then adapt to changing 
requirements by disabling policies or updating policies 
without shutting down the system. This is obviously 
very desirable for the dynamic surge protection 
system, since it is meant to provide continuous 
adjustment of resources to meet service level 
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objectives. The policy-enablement of its operation 
avoids potential downtime when external conditions 
change, and significantly simplifies its management. 
To this end, we have therefore extended the system 
controller to accept pre-defined policies, and have 
incorporated policy management tools into the overall 
system for the editing, storage, and deployment of 
policy information. 

Figure 2 shows the control and data flow for 
dynamic surge protection. Workload data from 
monitoring are input to the forecaster, which predicts 
future workload. The capacity planner uses the 
predicted workload and SLO to determine the 
appropriate number of application servers needed.  The 
 

This paper describes our work on the policy 
enablement of the dynamic surge protection system, 
including a policy framework and its implementation. 
The paper is organized as follows: Section 2 presents a 
description of the dynamic surge protection system; 
Section 3 describes the extensions to that system for 
policy enablement; Section 4 presents experimental 
results obtained on our research testbed; and, Section 5 
presents conclusions and future work.  

 
2. Dynamic surge protection 

Since the dynamic surge protection system is 
presented in detail elsewhere [4], we provide a brief 
description of the research testbed which also 
highlights elements pertinent to policy enablement. 

The system is organized into three layers as shown 
in Figure 1. The Application layer provides the 
business function. In this work, a two-tier web 
application with one or more application servers 
(IBM’s Websphere Application Server 5.0) and a 
database server (IBM’s DB2 v8.1 database) is used.  
The application deployed on this testbed simulates the 
supply chain management of a manufacturing 
company. 

A key feature of the system is that the application 
tier can scale horizontally without requiring system 
shutdown. The testbed also includes a workload driver, 
controller and deployment manager on another 
machine. Both Controller and Deployment Manager 
code are lightweight and incur minimal CPU load. 

The Deployment Manager interfaces with the 
application layer, and has the appropriate hooks for 
monitoring and configuring the application layer.  
Transaction rates (business operations per sec) and 
response times are monitored, while configuration 
management (provisioner) is focused on the addition 
or removal of application servers.  

The Controller monitors the application layer state 
and initiates appropriate actions if an SLO (e.g., 
response time) violation is anticipated or if the SLO 
can be satisfied in a more cost-effective way. 
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Figure 1. Architecture for dynamic surge 
protection. 

 
decision logic manages the information flow and 
determines the resource adjustments (by comparison to 
the deployment state data). These adjustments are 
effected by the provisioner.  
 

 

 Monitoring 

 Forecaster 

 Capacity  SLOs Planner 

Decision Logic

 Provisioner

 
Figure 2. Control and data flow. 

 
Key technologies employed by the dynamic surge 

protection system are adaptive forecasting, on-line 
capacity planning and rapid configuration 
management. The adaptive forecaster employed is 
based on a non-seasonal autoregressive predictor with 
variable order (for robustness) and uses very short 
history (hence it is able to learn quickly). The on-line 
capacity planner is queuing-model based and is not 
computationally intensive. Rapid application server 
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provisioning leverages WAS 5.0’s cellular cluster 
capability and uses the WAS startServer/stopServer 
commands.  

As reasoned in the previous work [4], a prediction 
horizon H which is approximately equal to P + S, 
where P is the control interval, and S is the resource 
addition lead time, is expected to be sufficient to 
proactively avoid SLO violations. Here, as before, P = 
10 sec, S ~ 40 sec, and H = 60 sec. Implicit in this 
reasoning is that once an application server is added, it 
can take load as effectively as the other active servers. 
However, in practice this is not always the case, as 
there is some period (about 20 – 30 sec) where it 
services the load quite poorly (due to class loading, 
etc). Hence, response times can be temporarily worse, 
especially with the simple round-robin scheduling 
option used with the application server’s workload 
manager. Another observation is that the stopping time 
for an application server can sometimes be quite long 
(3 min – which corresponds to a preconfigured 
timeout).  
 

 
 

Figure 3. Typical performance from the 

 
In Figure 3, typical testbed performance is shown. 
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dynamic surge protection testbed. 

e top panel shows the response time, while the 
middle panel shows the actual and 60 sec ahead 
predicted transaction rates (business ops per sec) and 
the bottom panel shows the application servers in their 
different states as they go from idle to active (i.e. 
starting) and the converse (i.e. stopping). The key 
features in Figure 3 are that once a transaction rate 
surge starts, the predicted rate, while lagging at first, 
quickly adapts and provides useful leading information 
about the surge. Additional application servers are 
made active to handle the additional work, hence 
keeping the response time low (mostly < 1 sec), and 

are removed when the surge subsides. Note that these 
surges occur randomly, and the short-term forecaster 
does not retain any “memory” of the preceding surge.  
3. Policy enablement for dynamic surge
protection 

The core of
 controller. The goal of the controller is to maintain 

service level objectives in the face of time varying 
workload. In order to achieve this goal, a set of 
internal rules/parameters is used to govern controller 
decisions. These rules/parameters determine how to 
dampen controller actions, how aggressively to 
respond to a workload upswing or how to handle 
insufficient guidance from the forecaster and capacity 
planner. 

These 
ecificity to the controller software, and programmed 

into the control logic in the first prototype [4]. As such, 
they can only be modified by expert programmers, 
since it requires a deep understanding of the system 
control logic to make any modifications. Therefore, 
coding the controller settings into the control logic 
results in an inflexible system design and makes it very 
difficult to administer the system. It is possible to 
externalize controller settings through a configuration 
file, but this is not the best solution as the administrator 
would still need to understand the controller in detail. 

The more appealing alternative is for the 
ministrator of the dynamic surge protection system 

to use a policy-based management tool that allows 
configuration of dynamic surge protection at a higher 
level of abstraction, instead of having to set individual 
internal low-level configuration. This way, it not only 
simplifies the system administration but also ensures 
that the system always performs at its best by using the 
expert fine-tuned configuration parameters guided by a 
set of policies. More importantly, the use of policies 
makes it possible to dynamically change the behavior 
of the dynamic surge protection system without 
changing its code. These characteristics reduce system 
complexity, while permitting an efficient control of 
service level objectives. Furthermore, policy can be 
dynamically modified to be adaptive to system 
requirements. 

To abstrac
nfiguration parameters, we aggregate internal 

settings of dynamic surge protection into classes of 
service, so that the controller configuration can be 
determined more intuitively through pre-specified 
administration policy decisions. For example, the 
system administrator only needs to decide how cost 
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sensitive the controller should be or how responsive 
the controller should be, while the detailed individual 
internal configuration parameters are obtained through 
policy transformations that map the higher level 
service objectives to lower level configuration settings. 

Figure 4 shows a joint architecture designed for 
int

Figure 4. Policy-enabled dynamic surge 
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egration of policy-based management into the 
dynamic surge protection system. The architecture 
consists of a policy editing tool, a policy repository, a 
policy agent, a policy translator, a policy decision 
point, and a policy enforcement point. The high level 
service objective is specified through the system 
administrator GUI editor and represented in a Java 
object that is the input to the decision logic unit of the 
dynamic surge protection system controller. A detailed 
description of each component is given below. 
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Policies are defined as XPolicies are defined as X
h a policy schema file that specifies how to validate 

the semantic correctness of the policy document. A “4-
tuple” policy specification is used, consisting of 
components defining the Scope, Pre-condition(s), 
Priority and Action(s) associated with the policy. The 
Scope of a policy is an indication of the type of 
resource manager that is intended to be influenced by 
the policy. The Pre-condition component defines the 
situations under which a particular policy is to apply. 
The priority of a policy indicates its relative 
importance with respect to other policies with the same 
scope, and can be used by the policy decision point for 
conflict resolution in the event that multiple policies 
are satisfied simultaneously. The Action component 

describes specifically what is to be done when the 
policy is applied to the system. 

An example policy for the c
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Scope: 
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Precondition: Precondition: 
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r implementatir implementati
create, edit and view policies. The editing tool also 

validates policies at policy creation time and provides 
a way to control policies when they are ready to be 
deployed. 
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The policy repository The policy repository y Editor 

remotely. In addition, it also performs policy 
validation, static conflict resolution and policy 
transformation, and distributes policies over a policy-
based management system. It is designed to interact 
with the policy editing tool and the policy agent. 
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The policy agent is reThe policy agent is re
icies requested by the policy decision point from a 

policy repository. It first subscribes to services being 
provided by the policy repository, and then obtains 
policies of interest. When a policy is modified, the 
policy agent will notify the users of that policy about 
changes through a notification mechanism. 
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The policy translator The policy translator 
cument, and converts it into a Java policy object. 

The resulting Java policy object is then used for all the 
policy processing functions, such as validation, 
evaluation, etc. 
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The policy decision poinThe policy decision poin
vides decisions to the controller of the dynamic 

surge protection system in order to affect its behavior. 
As shown in Figure 4, the Pre-conditions are obtained 
from the decision logic unit of the controller. 
Whenever the Pre-conditions evaluate to true for any 
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of the pre-defined policies associated with the 
controller, the actions indicated in that policy will be 
applied to the controller. In the dynamic surge 
protection system, that means that the internal 
parameters of the controller will be set to those defined 
in the class of service determined by the policy. In the 
event that multiple policies are appropriate at the same 
time, any potential conflict or inconsistency must be 
resolved. This can be done based on the priority value 
of each policy or using a meta- policy based approach 
[7]. 
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 system that enforces the selected policy by passing 

a new Configuration object to the decision logic that 
contains the low level configuration settings that are 
understood by the controller of the dynamic surge 
protection system. 
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In support of In support of 
ategy, the Policy Technologies Group at the IBM T. 

J. Watson Research Center, has developed a set of 
software development tools called the Policy ToolKit 
[6]. Figure 5 shows the software architecture of the 
Policy ToolKit. It consists of a set of modules 
performing specific functions plus a set of common 
use classes. The policy editor module, which generates 
a customized policy editing GUI for different 
applications, can be used to specify policies for a given 
policy-based application. The validation module can be 
used to perform a set of validation checks on a group 
of policies. The decomposition module translates a 
high level policy into a low level resource 
configuration. Conversely, the composition module 
translates a low-level resource configuration into a 
high-level policy. The policy agent module can be 
used to interface with a policy repository. The policy 
enforcement module can be used to create a policy 
enforcement point which executes policies satisfying a 
set of specified pre-conditions. The policy conflict 
resolution module can be used to detect and resolve 
policy conflicts among a group of policies. The policy 
rule hierarchy module can be used to merge policy 
groups within the same policy rule hierarchy. The 
policy core classes represent policy rules, pre-
conditions, actions, etc.  
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In addition, the Polic
lity module consisting of a set of Java helper classes 

to ease policy processing. We note that XML and 
XML schemas play an important role in the Policy 

Toolkit.  The XML file is used as a mechanism to 
define policies, and to import and export policies into 
and out of the Policy Toolkit environment, while the 
XML schema file is used to define the structure of the 
policy files. 
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ToolKit can be used across a wide variety of 
applications and can simplify the task of developing or 
integrating policy related methodologies into new or 
existing software systems. 
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lemented policy-based management for the 

controller of the dynamic surge protection system. 
Figure 6 (b) shows a graphical view produced by the 
policy editing tool displaying four rules specified for 
the controller. These rules employ high level 
considerations like Cost Sensitivity, Responsiveness, 
and Workload Variability (not used in the current 
prototype) to determine quality of service. Four classes 
of service were defined for the controller of the 
dynamic surge protection system. These are: Platinum, 
Gold, Silver and Bronze as shown in Figure 6 (a). 
Each of these classes of service determines a certain 
level of operational performance. 

 The detailed internal configur
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service based on experience and historical data. We 
note that one of the attributes in the service class 
definition (ControlObjective) is not used in the work 
described here, but remains as a place holder for future 
work. Most of the other attributes (e.g., ContFactor) 
are there to provide robustness to poor 
forecasting/capacity planning. The administrator only 
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inputs the high level considerations affecting system behavior, such as:

(a) Classes of services corresponding to the service level objective. 

(b) Four rules defined for the controller. 
 

Figure 6. View of the policy editing tool. 

 Figure 7 also shows the results of the experiments 
conducted on our research testbed. The middle graph 
of Figure 7 (a), (b) and (c) plots the actual and 
predicted business operations per second (BOPS), the 
metric used to characterize workload. The bottom 
graph of Figures 7 (a), (b) and (c) shows the changes 
of state and the number of application servers allocated 
in response to the actual and forecasted demands on 
the system. The top graph of Figures 7 (a), (b) and (c) 
depicts the effect that these actions have on response 
times.  

CostSensitivity and Responsiveness. In our 
implementation these take simple values of “high” or 
“low”. The corresponding service class is determined 
by the policy evaluation engine and is further 
transformed into the low level configuration settings 
for the controller by the policy enforcement point. It is 
important to realize that additional policies to 
determine class of service (e.g., what class to use if 
both CostSensitivity and Responsiveness are both set 
to “medium”) can be entered without bringing down 
the system. The specifics are “hidden” from the 
administrator that sets the controller objectives, and the 
task of the system administrator is therefore 
dramatically simplified. 

To effectively demonstrate the value of policy 
enablement within the time span of the controller 
display (30 min), we actually use a workload with 
periodic surges, although the system is designed to 
deal with random surges. In Figure 7 (a), we show 
results using a low class of service (Bronze), which 
corresponds to administrator preferences for high 
CostSensitivity and low Responsiveness. This is the 
most economical controller setting, and is appropriate 
for workload surges with relatively low ramp rates. 
The predicted transaction rate tracks the actual 
transaction rate quite well, and the additional resources 
are brought on-line in time to keep response time 

 

The simple policy administration panel used with 
the prototype is included in Figure 7 (a), (b), and (c).  
The bottom part displays the high level input 
parameters from the system administrator, while the 
upper part depicts the corresponding low level 
configuration settings produced by the policy 
enforcement point as shown in Figure 4. 
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excursions small. In contrast, in Figure 7 (b), we show 
that the controller performs somewhat poorly when 
faced with surges that have higher ramp rates. We note 
that the only thing that is changed in going from Figure 
7 (a) to 7 (b) is that the surge period is shortened (both 
surge amplitude and average value are unchanged).  

                                                                                    
It is apparent that the prediction does not perform as 
well in this case, which is not surprising since the 
surge only lasts ~ 3 min, and the prediction uses a 1 
min look-ahead. Again we emphasize that the 
forecaster is not designed to “remember” 
characteristics of past surges, since workload surges of 
interest here are typically random (start time, intensity, 
and duration). With this rapidly varying a workload, 
the controller cannot respond sufficiently quickly 
(adding servers in time), and we see temporary 
response time excursions which are quite large. 
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(c) Service class changed from bronze to platinum (CostSensitivity = low, Responsiveness = high) with rapidly  

    varying workload. Note that response time excursions are greatly reduced with the platinum service class. The 
added performance does come at the cost of deploying a higher average number of WAS servers. 

 
Figure 7. Performance of the dynamic surge protection system. 
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(a)  Service class = Bronze (CostSensitivity = high, Responsiveness = low) with a slowly varying workload.   
The system is performing as expected, and the response times as behaving well with regards to their 

target value (1 sec). 
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cost sensitive. Large RT excursions
Class=Bronze: Less aggressive more 
cost sensitive. Large RT excursions

 
 

(b) Service class = Bronze (CostSensitivity = high, Responsiveness = low) with a rapidly varying workload. 
 Note the large response time excursion in comparison to the target value (1 sec). 
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target
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In Figure 7 (c), the administrator preferences are 
changed to low CostSensitivity and high 
Responsiveness. This results in a class of service that 
is more responsive to more rapidly varying workloads, 
and is also more apt to use additional resources to 
minimize temporary response time excursions. With 
the change to this higher service class (Platinum), we 
note that again the response time is quite well behaved, 
but this additional performance comes at the cost of 
higher average server usage (about 2.5 in Figure 7 (c), 
vs. about 1.7 in Figure 7 (a)).  As indicated in Section 
3, some controller rules/parameters are used to 
accommodate situations where guidance from the 
forecaster/capacity planner is poor. A typical approach 
to uncertainty is to use contingency factors in 
determining when to add/remove servers. Additional 
“safety” is provided by using a lower threshold (higher 
contingency factor) when removing a server in 
comparison to adding a server. This feature is enabled 
by setting RemoveServerMethod = 
UseLowWaterMarkContFactor (Gold and Platinum 
service classes). The downside of this feature is that it 
tends to keep more servers in the active state than a 
situation where servers are added/removed based on 
the same threshold (Silver and Bronze service classes). 

This prototype was shown to several different 
audiences in IBM and it is interesting to note their 
reactions/feedback. The audiences themselves were 
varied, ranging from policy experts to developers, 
system administrators, and executives.  Most of the 
discussions revolved around what type of inputs (e.g., 
here CostSensitivity and Responsiveness), if any, 
should be exposed to the administrator. The actual 
service classes (Platinum to Bronze) did not generate 
as much discussion, which is probably not surprising, 
since they have to do with actual controller settings for 
performance.  

One opinion was that the service class should be 
directly chosen by the administrator, without having 
the higher level considerations. A motivation behind 
this is that CostSensitivity and Responsiveness cannot 
really be considered to be orthogonal inputs – i.e. a 
highly responsive system would typically be less cost 
sensitive.  

Another opinion was that these considerations 
should not serve as inputs, but should be derived from 
a higher level policy or service level agreement (SLA). 
For instance, an SLA stating that 80% of the response 
time (RT) measurements taken in a defined time 
window must be less than RTSLA, could possibly map 
onto the Bronze service class. Alternatively, if the 
requirement was that 95% of these response time 

measurements be less than RTSLA, the mapping would 
be to the Platinum service class. This would be ideal in 
a sense that a business policy would be automatically 
decomposed into IT policies. The challenge is that the 
appropriate decomposition is not easy to derive, 
especially since it needs to somehow capture the 
workload variability (the capacity planning tool we use 
is not designed for transients). One approach to this 
would be to do online model building and learning to 
elucidate the appropriate service class corresponding to 
the SLA parameters. Note that the usefulness of 
learning is not just limited to determine service classes, 
but also the values of the low level configuration 
parameters. For instance, by measuring forecast error 
together with associated RT over a period of time, it 
should be possible to adjust the ContFactor to 
accommodate high forecast error.  

Other points of discussion centered around the use 
of unsolicited decisions. This is more involved than 
simply using some other input in the policy pre-
conditions (e.g., variables not entered by the 
administrator, such as time of day), since the current 
implementation of the architecture we show in Figure 
4 is geared towards solicited decisions, i.e., the 
controller asks for the configuration object at the 
beginning of every 10s control interval. In the 
unsolicited case, the controller would continue to use 
the same configuration object until it was explicitly 
updated by some other management component.  This 
would not make a significant difference in the present 
system, since these objects are small; but, this might be 
important in environments where large amounts of data 
are involved in the decision process. 

We note that this is a separate consideration than 
that of solicited versus unsolicited policies.  In the 
current architecture, the configuration object is 
updated whenever a new condition object is received. 
It is also updated whenever a change is made to the 
policy object. The policy subscription mechanism thus 
supports unsolicited updates. 
 
5. Conclusions 

This paper has presented a policy-based 
management scenario, which shows how the controller 
of the dynamic surge protection system was policy-
enabled, allowing it to dynamically allocate application 
server resources based on a set of pre-defined policies 
in order to achieve its required service level objectives. 
The internal settings of the controller were aggregated 
into classes of service that could be more intuitively 
determined by administrator policies. Since the 
detailed settings of the controller were abstracted away 
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by policies, the task of the system administrator has 
been dramatically simplified. The integration of 
policy-based management into the controller of the 
dynamic surge protection system also separates its 
control settings from its control logic, making it 
possible for the controller to adjust itself to 
dynamically meet a range of operating conditions and 
also performance expectations by simply modifying its 
policies.  

A policy management tool was developed based on 
a set of common tools provided by the Policy ToolKit. 
We have also conducted a number of experiments on a 
testbed system to gain insight into the characteristics of 
dynamic surge protection and the effects of policy-
based management. Overall, we have found it to be 
well behaved, although the policies designed for the 
controller of the dynamic surge system were relatively 
simple. 

Our future work will extend the current system to 
include more complicated policies for the handling of 
multiple workloads, incorporating tuning as well as 
provisioning actions. Conflict detection and resolution 
will also be addressed in order to resolve potential 
inconsistencies caused by interacting sets of more 
complex policies. 

 
6. Acknowledgements 

We would like to acknowledge the contributions of 
all the individuals who were involved with the 
Dynamic Surge Protection System and the Policy 
Toolkit. Mandis Beigi was particularly helpful in 
developing policy schemas for different versions of the 
prototype. We would also like to recognize Nagui 
Halim who headed the Distributed Computing 
Department, and Richard Telford, Director of 
Autonomic Computing, who both encouraged the 
policy-enablement effort. 
 
 
7. References 
 
[1] IBM Autonomic computing, Creating self-managing 
computing systems (http://www.ibm.com/autonomic), 2003. 

[2] Autonomic Computing Roadmap V1.0, September 26, 
2002. 

[3] An Architectural Framework for Autonomic Computing 
v2.0, October 22, 2002. 

[4] E. Lassettre, et. al, “Dynamic Surge Protection: An 
Approach to Handling Unexpected Workload Surges with 
Resource Actions That Have Dead Times,” 14th IFIP/IEEE 

International Workshop on Distributed Systems: Operations 
and Management, DSOM 2003, Heidelberg, Germany, 
October 20-22, 2003, Proceedings. 

[5] Morris Sloman, Jorge Lobo and Emil Lupu, “Policies for 
Distributed Systems and Networks,” International Workshop, 
POLICY 2001 Bristol, UK, January 29-31, 2001, 
Proceedings. 

[6] IBM Policy ToolKit High Level Design V1.0, July 2003. 

[7] E. Lupu and M Sloman, “Conflicts in Policy-Based 
Distributed Systems Management,” IEEE Transactions on 
Software Engineering, Vol. 25, No. 6, Nov/Dec 1999. 

http://www.ibm.com/autonomic
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sloman:Morris.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lobo:Jorge.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lupu:Emil.html

	1. Introduction
	3.1. Policy specification
	3.2. Policy repository
	3.3. Policy service agent
	3.4. Policy translator
	3.5. Policy decision point
	3.6. Policy enforcement point

	4. Experiments
	6. Acknowledgements
	7. References

