
RC23133 (W0403-026) March 2, 2004
Computer Science

IBM Research Report

Parameterized Semantic Matchmaking for Workflow
Composition

Prashant Doshi
Dept. of Computer Science
Univ. of Illinois at Chicago

Chicago, IL 60612

Richard Goodwin, Rama Akkiraju
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Sascha Roeder
IBM

Hechstheimer Str. 2
Mainz 55131

Germany

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Parameterized Semantic Matchmaking for Workflow
Composition

Paper ID: 195

Prashant Doshi
Dept. of Computer Science
Univ. of Illinois at Chicago

pdoshi@cs.uic.edu

Richard Goodwin and Rama Akkiraju
IBM T. J. Watson Research Center

Hawthorne, NY
{rgoodwin,akkiraju}@us.ibm.com

Sascha Roeder
IBM

Mainz, Germany
sroeder@de.ibm.com

Abstract— Workflow compositions in the context of Web ser-
vices represent an important application of semantic match-
making. Existing matchmaking frameworks utilizing a strict
capability-based matchmaking prove to be inadequate for this
application. To address these limitations, we present a pa-
rameterized semantic matchmaking framework that exhibits a
customizable matchmaking behavior. Using an example scenario,
we argue that such customization is essential for application
in workflows, and demonstrate the wider applicability of our
matchmaking algorithm. Additionally, we outline an industrial
application of our technique.

I. INTRODUCTION

Workflow composition in the context of Web services in-
volves discovering and binding to Web services that collec-
tively implement the required process functionality. The com-
position may either be static or dynamic depending on the pro-
cess environment. Highly dynamic environments require the
workflow to adapt continuously, during which new Web ser-
vices may be discovered and invoked. Furthermore, the flows
may either be intra-organizational or cross-organizational.
Intra-organizational workflows connect Web services within
the same organization. Cross-organization workflows span
multiple organizations and tie together the Web services of
the participating organizations.

In workflow compositions Web services serve the role
of building blocks. The loose coupling delivered by Web
services facilitate automatic generation of dynamic workflows,
provided technology to discover the required Web services
exists. Early efforts in the area of Web services discovery have
resulted in preliminary matchmaking frameworks that attempt
to match a service request with a service advertisement. Web
services annotated with semantic information1 enable semantic
matching that is more robust than pure syntactic matching.
Inclusion of semantic information in the matching process is
a proven technique in the Information Retrieval domain [1]for
retrieving more useful search results than simple syntactic
comparisons.

The primary contribution of our paper is in presenting
a semantic matchmaking framework that is tailored towards

1Web services annotated with semantic information are popularly labeled
as ”Semantic Web Services”

workflow compositions. Specifically, our matchmaking frame-
work permits complete customization of the matching process
by allowing external specification of the matchmaking criteria.
In contrast, existing frameworks exhibit an immutable match-
ing process and use only service capability (input, output,
preconditions, and, effects) as the criteria for a match. It is
our hypothesis that the criteria utilized for matching services
is subjective to the matchmaking application. A simple ex-
ample that motivates our hypothesis is in composing cross-
organizational workflows where quality of the process must be
maintained. This requires the target Web service to have a pre-
defined quality of service in addition to the required capability,
without which the match will fail. Thus, strict capability-
based matchmaking proves to be inadequate in this scenario.
Furthermore, as a step towards increasing the ”hit” ratio
of successful matches, we suggest utilization of backward-
chaining based composition of Web services as part of our
matchmaking framework. Hence, our matchmaking framework
uses a two-step approach towards service discovery. Firstly,
a direct match between service request and some advertise-
ment is attempted. If this proves impossible, a subset of the
advertisements are composed into an aggregate service using
backward chaining that satisfies the request. We demonstrate
the applicability of our approach by discussing its potential
use in an industrial setting. In particular, business process
integration and management (BPIM) appears to be a field
where our matchmaking framework may find good use.

The rest of this paper is structured in the following manner.
In the next section, we briefly discuss the composition of
workflows in the context of an example scenario. We then
present our semantic matchmaking framework. An application
of our technique follows.

II. WORKFLOW COMPOSITION

The prevalent technique in workflow composition follows a
manual and tedious approach involving assimilation of varied
process design and vendor specifications, and writing vast
amounts of code that produces a tight inflexible coupling
between processes. We believe that the distributed computing
platform provided by Web services possesses the potential to
automate this technique to a great extent.

Limited prior work exists in the area of applying Web
services towards workflow compositions. Laukkanen et al [2]
explore the role of Semantic Web services and matchmaking
in composing workflows. Specifically, they outline two cases
of workflow compositions involving Web services. In the first
case, the flow is pre-defined but some component Web service
fails; and in the second case, a new flow must be established.
Both these cases place heavy emphasis on discovering target
Web services.

In order to elucidate the composition of workflows using
Web services we present an example cross-organizational
workflow. The workflow describes a simple supply-chain
process, where merchandise is ordered by a retailer from a
manufacturer who in turn orders parts from its supplier to
satisfy the order.

Definition 1 (Example scenario): A manufacturer
receives an order to deliver some merchandise to a retailer.
The manufacturer on checking its inventory may realize a
deficit in parts to build the merchandise. The manufacturer
then places an order of parts with a supplier. Manufacturing
company policy requires all transactions to occur with a
pre-defined quality of service. Additionally, to curtail delivery
times, the supplier must be within a pre-defined geographical
radius from the manufacturer.

We illustrate the above scenario using a UML Activity
Diagram in Fig 1. The diagram serves a two-fold purpose:
It clearly demonstrates the role of Web services as building
blocks in future workflows; and it emphasizes the need for
a customizable matchmaking technology for constructing the
workflow.

Manufacturer Supplier

orderMerchandise

checkInventory

Available

Yes

No

orderParts

assembleOrder

Retailer

Fig. 1. Each activity consists of a call to the matchmaker (denoted by a circle)
followed by discovering and binding to the target Web service (denoted by a
square).

III. MATCHMAKING FRAMEWORK

The design of our matchmaking framework is predicated
on the need for a customizable matching process that permits
the programmer to control the attributes matched, the order
in which they are compared, as well as the closeness of
matching desired. In addition to making the matching engine
light, such an approach leads to the development of a generic
matchmaking framework that may be utilized for a variety of
matching tasks.

Features Matchmaking Frameworks
MATCHMAKER RACER PSMF

Match Capability Capability All
Criteria only only attributes
Markup DAML-S, DAML-S DAML-S ,
Lang. UDDI WSDL, UDDI
Customizable No No Completely
Speed Moderate due to Fast Fast

various extra filters
Performance Excellent Good Good
Target E-commerce E-commerce Workflow
Application composition

TABLE I

A SUBJECTIVE ASSESSMENT OF VARIOUS MATCHMAKING FRAMEWORKS

In Table I we compare our matchmaking effort (PSMF
– Parameterized Semantic Matching Framework) with other
related frameworks2. One of the earliest matchmaking en-
gine is Sycara et al’ MatchMaker [3] that is available on
the Web as a service. In addition to utilizing a capability-
based semantic match, the engine also uses various other IR-
based filters thereby reducing the number of false positives at
the expense of speed of matching. Another related effort is
Racer [4], that focuses solely on a service capability-based
semantic match for application in e-commerce systems. In
contrast, our matchmaking framework provides a high degree
of customizability, permitting the service requester who is
most knowlegeable about its needs, to select the desired
match criteria. This translates into a highly flexible, generative
matchmaking behavior that is well suited to various workflow
compositions.

A. Matching Algorithm

Service matching may be defined as the process of discover-
ing a service advertisement that sufficiently satisfies a service
request. Before we formalize the concept of sufficiency, we
require the definition of a service and other service-specific
notions from the perspective of matchmaking.

Definition 2 (Service): A service, S, is defined simply as
a collection of attributes that describe the service. Let S.A
denote the set of attributes of service, S, and S.A i denote
each member of this set. Let S.N denote the cardinality of
this set.

2Lack of benchmarks and standardized Web services repositories preclude
an objective performance assessment.

2

Example 1: The manufacturer provides a Web service,
orderMerchandise, that is defined by the following attributes:
service category, input, output, preconditions, postcondi-
tions, quality of service, and geographical location.

Definition 3 (Service Capability): The capability of a ser-
vice, S.C, is a subset of service attributes (S.C ⊆ S.A), and
includes only those that directly relate to its working.

Example 2: The capability of orderMerchandise is, S.C =
{input, output, preconditions, postconditions}

Definition 4 (Service Property): The property of a service,
S.P , is a subset of service attributes (S.P ⊆ S.A), and
includes all attributes other than those included in service
capability. Formally, S.P = S.A − S.C.

Example 3: The property of orderMerchandise is, S.P =
{service category, quality of service, geographical loca-
tion}

A semantic match between two entities frequently involves
a similarity measure. The similarity measure quantifies the
semantic distance between the two entities participating in the
match.

Definition 5 (Similarity measure): The similarity measure,
µ, of two service attributes is a mapping that measures the se-
mantic distance between the conceptual annotations associated
with the service attributes. Mathematically,

µ : A×A → {Exact,Plug-in, Subsumption, Container,
Part-of, Disjoint}

where A is the set of all possible attributes.
If the two conceptual annotations are syntactically identical,

the mapping is called an Exact map. If the first conceptual
annotation is specialized by the second, the mapping is called
a Plug-in map. If the first conceptual annotation specializes
the second, the mapping is called a Subsumption map. If the
first conceptual annotation contains the second, the mapping is
called a Container map, and if the first conceptual annotation
is a part of the second, the mapping is called a Part-of map.
Otherwise, the mapping is called a Disjoint map.

A preferential total order may now be established on the
above mentioned similarity maps. We give this preferential
order below.

Definition 6 (Similarity measure preference): Preference
amongst similarity measures is governed by the following
strict total order:

Exact � Plug-in � Subsumption� Container � Part-of
� Disjoint

Here, a � b means that a is preferred over b.
Other matchmaking frameworks [3] utilize an idea similar

to µ, but label it as a ”degree of match”.
We are now ready to define a sufficient match between

services.
Definition 7 (Sufficient service match): Let SR be the ser-

vice that is requested, and SA be the service that is advertised.
Let SR.A be the set of attributes to be utilized for matching.
SR.A may include both service capability as well as service
properties. Let µi be the desired similarity measure for each

service attribute SR.Ai. A sufficient match exists between SR

and SA if for every attribute of SR there exists an identical
attribute of SA and the values of the attributes satisfy the
desired similarity measure. Formally,

∀i∃j (SR.Ai = SA.Aj) ∧ µ(SR.Ai,SA.Aj) � µi

⇒ SuffMatch(SR,SA) 1 ≤ i ≤ SR.N
(1)

Sentence 1 parameterizes the desired similarity measure, µ i,
for each attribute, SR.Ai. Further customization of the match-
ing process is carried out by specifying which attributes of the
service request should be utilized during the matching process,
and the order in which the attributes must be considered for
comparison. An added advantage of this customization ability
is that a single service request may be reused for multiple
matching tasks thereby generating different matches. In order
to permit this customization, we define a Criteria Table that
serves as a parameter to the matching process.

Definition 8 (Criteria Table): A Criteria Table, C, is a rela-
tion consisting of two attributes, C.A and C.M. C.A describes
the service attribute to be compared, and C.M gives the
least preferred similarity measure for that attribute. Let C.A i

and C.Mi denote the service attribute value and the desired
measure in the ith tuple of the relation. C.η denotes the total
number of tuples in C.

Example 4: An example Criteria Table is shown in Table II.

Criteria Table (C)
C.A C.M

service category Subsumes
output Exact

quality of service Plug-in
TABLE II

AN EXAMPLE CRITERIA TABLE

In light of Definition 8, the sufficiency condition (1) can
be rewritten. A sufficient match exists between SR and SA if
for every attribute in C.A there exists an identical attribute of
SR and SA and the values of the attributes satisfy the desired
similarity measure as specified in C.M.

∀i∃j,k (C.Ai = SR.Aj = SA.Ak) ∧ µ(SR.Aj,SA.Ak)
� C.Mi ⇒ SuffMatch(SR,SA) 1 ≤ i ≤ C.η

(2)
Our matching algorithm, Fig 2, follows directly from Sen-

tence 2. Our algorithm is in part motivated by a similar
semantic matching algorithm given in [5] . However, the latter
algorithm permits only a service capability-based match. In
contrast, our algorithm places no restrictions on the attributes
used during matching.

Computational Complexity To understand the asymptotic
complexity of our matchmaking algorithm, we observe that the
process of computing µ is the most ”expensive” step of the
algorithm. Typically, SA.N >> SR.N , hence complexity of
the first outer while loop is O(C .η × SA.N). Our approach
to infer µ(·, ·) is to parse ontological pieces of information

3

serviceMatch(SR, SA, C)
while i ≤ C.η do

while j ≤ SR.N do
if SR.Aj == C.Ai then

Append SR.Aj to rAttributeSet
Assign j ← j + 1

while k ≤ SA.N do
if SA.Ak == C.Ai then

Append SA.Ak to aAttributeSet
Assign k ← k + 1

Assign i ← i + 1
while t < C.η do

if µ(rAttributeSet[t], aAttributeSet[t]) ≺ C.Mt) then
return fail

Assign t ← t + 1
return success

Fig. 2. Algorithm for parameterized service matching.

into facts and utilize commercial rule-based engines which use
the fast Rete [6] pattern-matching algorithm. The complexity
of inferring µ therefore reduces to O(|R||F ||P |) where |R|
is the number of rules, |F | is the number of facts, and |P |
is the average number of patterns in each rule. Hence the
worst case complexity of our algorithm is O(C.η × SA.N) +
O(|R||F ||P |) � O(|R||F ||P |).3

One method for overcoming the limitations of plain
capability-based matchmaking is to include attributes under
service property as part of service capability. Specifically, at-
tributes such as Quality of Service may be included in Service
Input or Service Output. However, existing Web services rep-
resentation languages such as DAML-S [7], clearly distinguish
between the two, providing separate placeholders (XML tags)
for each. Therefore, capability-based matchmaking precludes
the use of service property as part of its match criteria.

B. Architecture

Typical activities of a semantic matching framework encom-
pass parsing Web services interface definitions; utilizing an in-
ference engine capable of performing, at the very least, modus
ponens, modus tollens, and resolution inferencing techniques
on ontologies to infer the similarity measure; and matching
the submitted service request with the existing service adver-
tisements. Additionally, our framework also parses the Criteria
Table, and permits automatic service composition to enhance
its matching ability. In Fig 3 we illustrate the architecture of
our matchmaking framework.

Specification of the Criteria Table as an input parameter
to the matching process facilitates an iterative approach to
matching services. Specifically, at each step, a residual set
of service advertisements that sufficiently match with the
service request is obtained. The residual set may then serve
as the input to the next step where another instance of the
Criteria Table is presented to the matching process. Fig 4

3We assume the usage of large domain ontologies resulting in a large |F |.
|R||P | depends on the number of relationships that need to be inferred, and
the ontology representation language.

Web
Service

Annotation
Parser

Criteria Parser

Ontology
Inference
Engine

Semantic
Matching
Module

Ontology
DB

Web
Service

Annotations

Criteria Table

Automatic Service Composition

Fig. 3. Architectural diagram of PSMF

gives the iterative operation of the matching engine. The
Semantic Matching Module is transformed into a generic
filter that may be called repeatedly for filtering out unsought
services. Furthermore, we also provide a mechanism to post-
process the match results. Either a sort using a programmer-
defined comparison function, or computation of the set of non-
dominated match pairs is possible.

Often, none of the service advertisements individually sat-
isfy a particular service request. However, a composition of
some services may result in a new service that closely satisfies
the criteria required. The capability of this new service is
usually obtained by merging the capabilities of the first and last
service in the chain of composition. Its properties are usually
some function of the properties of the individual component
services. For instance, the Quality of Service of the new service
is obtained by applying the MINIMUM function to the Quality
of Service attribute of the component services.

Service Provider
Markup

Service Requester
Markup

Web service Annotation Parser

I/O Transformation Module

Semantic Matching Module

Semantic Matching Module

Capability Match Criteria
(Output, Plug-in)

(Input, Exact)

Property Match Criteria
(Service Category, Plug-in)
(Quality Guarantee, Exact)

(Geography, Container) Non-dominated
Match Vectors

Non-dominated
Match Vectors

Provider Model Requester Model

Filtered Provider Model Requester Model

Requester ModelFiltered Provider Model

Service Invocation Plan

Fig. 4. The iterative operation involving successive refinement of results

Referring back to our example scenario (Definition 1), the
manufacturer on realizing a deficit in its inventory may per-
form a Service Category based match to discover all suppliers
that supply the desired category of parts. A single supplier may
then be sought by specifying the desired Quality of Service and

4

Geographical Location. Finally, an order may be placed with
the supplier by invoking its ordering Web service discovered
using a service capability- based match.

C. Implementation and Performance

Our semantic matchmaking framework is implemented as
a Java-based API. The popularity of both, WSDL [8] and
DAML-S [7] motivated us to include parsers for both Web
service representation languages. Furthermore, our match-
maker can search both, DAML-S, and semantically aug-
mented UDDI [9] repositories. To obtain a better ”hit” ratio,
we attempt service compositions using a simple backward-
chaining algorithm. Our matchmaking framework is designed
to interface with any off-the-shelf ontological inference engine.
For testing purposes we have used ABLE [10] as its pluggable
rule-based inference engine.

Utilizing semantic information during the matching process
significantly increases the cardinality of successful matches,
as compared to strict syntactic matching. Indexing to com-
mon semantic information, such as ontologies, shields the
matchmaking from the disparate terminology that may be
used while creating the Web service definitions. Furthermore,
the matchmaker must parse and compare a large cardinality
of advertisements. The process can be significantly speeded
up by indexing into specific classes of services and thus
reducing the cardinality of the set of candidate advertisements.
For example, we can concentrate on specific categories of
services by performing a preliminary match on the Service
Category property. A decisive capability-based match can then
be performed on the filtered set of advertisements. This idea
exposes the benefit of our generic matching component that
may be called repeatedly with differing match criteria on a
set of advertisements to progressively constrict the search-
space. It also motivates the need for efficient classification
of services that may be used as indexes. Such classifications,
though present in UDDI repositories in the form of NAICS 4

and UNSPSC5 are lacking in DAML-S based services.

IV. AN APPLICATION - BUSINESS PROCESS INTEGRATION

AND MANAGEMENT

A significant area of application for Web services is in inter-
enterprise (B2B) and intra-enterprise (EAI) process integration
and management. Several enterprises will provide a Web
service based interface to their core business systems. Linking
together the business processes of these enterprises translates
to composing a workflow of required functionality using Web
services. Fig 5 illustrates this observation.

Existing techniques for integrating business processes are
manual and adhoc. These techniques must necessarily adapt to
the new computing paradigm of Web services. We believe that
our semantic matchmaking framework represents a candidate
technology in implementing this change. Specifically, highly

4The North American Industry Classification System published by US
Census

5The United Nations Standard Product and Service Classification jointly
developed by UNDP/Dun & Bradstreet Corp. in 1988

BPIM

DB

��
��
��

��
��
��

ERP CRM SCM

��
��
��

��
��
��

Fig. 5. BPIM Layer in Enterprise IT Infrastructure

customizable generative matchmaking will be required to im-
plement workflows of varying functionalities. Plain capability-
based matchmaking between services will prove to be in-
adequate for this application. The example scenario given
in Definition 1 is one such process integration task that
substantiates this claim.

V. DISCUSSION

In this paper we presented a semantic matchmaking frame-
work that utilizes a parameterized generative matchmaking
algorithm. The framework serves as a key building block
for choreographing Web service based workflows. Through
an example scenario, we demonstrated the wider applicablity
of our framework as compared to other preliminary efforts
in matchmaking. Finally, we discussed a candidate industrial
application of our work. Specifically, employment of semantic
matchmaking will have significant contribution towards au-
tomating business process integration.

As part of future work, we intend to improve the perfor-
mance of the matchmaking algorithm by utilizing better simi-
larity measures. Additionally, we intend to develop automated
workflow composition techniques by utilizing the semantic
matchmaking infrastructure.

REFERENCES

[1] A. Kiryakov and K. Iv, “Ontologically supported seman-
tic matching,” in Proceedings of NoDaLiDa’99 conference.
Trondheim, Norway, 1999., 1999. [Online]. Available: cite-
seer.nj.nec.com/article/kiryakov99ontologically.html

[2] M. Laukkanen and H. Helin, “Composing workflows of semantic web
services,” in Workshop on Web Services and Agent-based Engineering,
AAMAS, Melbourne, Australia, 2003.

[3] K. Sycara, M. Paolucci, M. van Velsen, and J. Giampapa, “The
retsina mas infrastructure,” in The RETSINA MAS Infrastructure.
Technical Report CMU-RI-TR-01-05, Robotics Institute Technical
Report, Carnegie Mellon, 2001., 2001. [Online]. Available:
citeseer.nj.nec.com/sycara01retsina.html

[4] L. Li and I. Horrocks, “A software framework for matchmaking based
on semantic web technology,” in Twelfth International World Wide Web
Conference, 2003.

[5] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara, “Semantic
matching of web services capabilities,” in International Semantic Web
Conference, Sardinia, Italy, June 9-12, 2002, June 2002.

[6] C. Forgy, “Rete: A fast algorithm for the many patterns/many objects
match problem,” Artificial Intelligence, vol. 19, no. 1, pp. 17–37, 1982.

5

[7] DAMLS-Coalition, “Daml-s: Web service description for the semantic
web,” in International Semantic Web Conference, Sardinia, Italy, June
9-12, 2002, 2002. [Online]. Available: citeseer.nj.nec.com/507459.html

[8] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web
services description language,” Website http://www.wsdl.org, 2001.

[9] R. Akkiraju, R. Goodwin, P. Doshi, and S. Roeder, “A method for
semantically enhancing the service discovery capabilities of uddi,” in
Workshop on Information Integration on the Web, IJCAI, Acapulco,
Mexico, 2003.

[10] J. P. Bigus, D. A. Schlosnagle, J. R. Pilgrim, W. N. M. Ill, and
Y. Diao, “Able: A toolkit for building multiagent autonomic systems,”
IBM Systems Journal, vol. 41, no. 3, pp. 350–371, 2002.

6

