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Abstract— The advent of Web services has made automated
workflow composition possible. One technique, that has received
some attention, for automatically composing workflows is AI-
based classical planning. However, classical planning suffers from
the paradox of first assuming deterministic behavior of Web
services, then requiring the additional overhead of execution
monitoring to recover from unexpected behavior of services. To
address these concerns, we propose utilizing Markov decision
processes (MDPs), an efficient stochastic optimization framework,
to model workflow composition. Our method models both, the
inherent stochastic nature of Web services, and the dynamic
nature of the environment. The resulting workflows are robust
to non-deterministic behaviors of Web services and adaptive
to a changing environment. Using an example scenario, we
demonstrate our method and provide empirical results in its
support.

I. INTRODUCTION

Over the next decade several enterprises will subscribe to
the distributed computing paradigm of Web services. These
enterprises will provide a Web services based interface to
their core business systems. The task of business process
integration and management (BPIM) will then involve linking
together both intra-enterprise (EAI) and inter-enterprise (B2B)
services to achieve the desired business objectives. In Fig 1,
we illustrate this observation.
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Fig. 1. BPIM Layer in Enterprise IT Infrastructure

While prevalent techniques for BPIM are tedious and adhoc,
the advent of Web services has the potential to significantly
automate this process. Specifically, the ability to dynamically
discover and bind to desired Web services using Web services

discovery mechanisms facilitate automated workflow compo-
sitions. If we view workflow composition as a goal-oriented
process, AI-inspired planning techniques appear suitable for
the task. Preliminary efforts in this respect [1] utilize classical
STRIPS-style planning algorithms that assume deterministic
behavior of Web services, and require the additional overhead
of execution monitoring to recover from service failures.

In this paper we present a novel policy-based method to
dynamically choreograph Web services thereby generating
workflows. In particular, we focus on automatically establish-
ing the workflow logic and avoid concentrating on the im-
plementation details. Our method models both, the stochastic
nature of services, and the dynamic nature of the environment
producing workflows that are robust and adaptive. Specifically,
we utilize Markov Decision Processes (MDP) [2], [3] to
model the problem of workflow composition. The solution
of a MDP produces a policy that optimally guides a stateful
workflow towards its goal. Additionally, the dynamics of the
environment may render the previously computed policy sub-
optimal. To account for the dynamic nature of the environment,
we intersperse policy computation with model learning. This
allows the workflow to gradually adapt itself to the changed
environment. We empirically measure the learning conver-
gence rate and report our findings.

The remainder of this paper is structured as follows. In
Section II, we briefly dwell on the workflow composition
problem. We also touch upon some related work in this area.
We introduce a real-world motivating scenario in Section III.
This scenario is used as a running example for rest of the
paper. In Section IV, we introduce our stochastic optimization
framework and its application towards workflow generation.
Section V is the focus of our model learning approach. Finally,
we conclude this paper with a discussion in Section VI.

II. DYNAMIC WORKFLOW COMPOSITION

Workflow composition in the context of Web services
involves discovering and binding to Web services that col-
lectively implement the required process functionality. Often,
multiple candidate flows may exist that achieve the required
process functionality. One criteria for selecting a workflow is
to establish a model of optimality and select the workflow that
is most optimal.



Definition 1 (Optimal Workflow): Let W be the set of
candidate workflows. Let Cw

i be the cost associated with each
Web service invocation (WSi) for some workflow,w. Let N
be a fixed maximum number of invocations in each of the
candidate workflows. The workflow, w∗, that results in the
minimal expected cost is called an optimal workflow. Formally,

w∗ = argmin
w∈W

E(
N∑

i=1

Cw
i ) (1)

The expectation operator, E(·), in the above equation is
necessary due to the stochastic nature of the Web services.

Workflow composition may either be static or dynamic, de-
pending on the process environment. Highly dynamic environ-
ments require the workflow to adapt continuously. Specifically,
the changing stochasticity of the Web services may cause the
previously optimal workflow to become suboptimal. Hence, a
new workflow composition must be recomputed taking into
account the changed process environment.

Limited prior work exists in the area of applying Web
services towards workflow compositions. Laukkanen et. al. [4]
outline four distinct steps for composing workflows. These
include identifying the required functionality; semantic match-
ing of Web services; creating or updating the workflow;
and executing and monitoring the workflow. In this paper
we give a method for creating, executing and adapting the
workflow to dynamic environments. Our method deems mon-
itoring of workflows for unexpected behavior, unnecessary.
A separate paper [5] presents our semantic matchmaking
framework for discovering Web services. Another related
effort [1] investigates the application of classical STRIPS-style
planning for choreographing Web services. However, classical
planning assumes a static environment with deterministic
Web services outcomes. Furthermore, classical planning is
a PSPACE-Complete problem. In contrast, our method for
generating workflows is P-Complete, and effectively models
the stochastic nature of Web services thereby producing robust
workflows. The problem of composing adaptive workflows has
also received some attention recently. One line of work [6]
adopts a multiagent perspective to adaptive workflow com-
position and suggests the utilization of standard workflow
languages for multiagent coordination. However, this work is
introductory, and does not contain enough details that can lead
to implementation.

III. MOTIVATING SCENARIO

In order to elucidate the composition of workflows using
Web services we present an example motivating scenario. The
scenario will serve as a running example for the rest of the
paper. We define our example scenario below.

Definition 2 (Example Scenario): A manufacturer re-
ceives an order to deliver some merchandise to a retailer.
The manufacturer may satisfy the order in one of several
ways. He may satisfy the order from his own inventory if
sufficient stock exists. The manufacturer may request parts
from his preferred supplier in order to satisfy the order. The

manufacturer may also search for a new supplier of parts,
or look for parts in a Spot Market. A costing analysis reveals
that the manufacturer will incur least cost if he is able to
satisfy the order from his own inventory. The manufacturer
will incur increasing costs as he tries to fulfil the order by
procuring parts from his preferred supplier, a new supplier,
and the Spot Market.

Clearly, the manufacturer may choose from several candi-
date workflows. For example, the manufacturer may initially
attempt to satisfy the order from his inventory. If he is unable
to do so, he may resort to ordering parts from his preferred
supplier. Another potential workflow may involve bypassing
the inventory check, since the manufacturer strongly believes
that his inventory will not satisfy the order. He may then
initiate a status check on his preferred supplier. These
example workflows reveal two important factors for selecting
the optimal one. First, the manufacturer must possess some
estimate of certainty (belief) with which his order will be
satisfied by his inventory, preferred supplier, supplier, and
the Spot Market. One source of these estimates of ”ground
truth” is historical data on past transactions maintained by
the manufacturer. Suitable extrapolation techniques allow the
estimates to be projected to the current time. In Section V,
we present an alternate approach where the manufacturer is
initially clueless about these estimates, and gradually learns
them from his interactions. Pertaining to the second factor, at
each stage, rather than greedily selecting an action with the
least cost, the manufacturer must select the action which is
expected to be optimal over the long term.

In the next section, we present a decision-theoretic frame-
work whose solution is a policy. The policy prescribes the
expected long-term optimal action to perform at each stage.

IV. MARKOV DECISION PROCESSES

If we view workflow composition as a goal-driven tech-
nique, then classical planning algorithms appear suitable can-
didates for automatically composing workflows. Their simplis-
tic view of the real-world that all Web service operations are
deterministic, permit the workflow composition problem to be
solved using plain search algorithms. Furthermore, classical
planning techniques are mainly concerned with reaching the
goal, and do not subscribe to any notions of optimality. Both
these limitations are addressed by decision-theoretic planning
techniques such as Markov Decision Processes (MDP) [2], [3].

A MDP models the real-world as inherently stochastic,
sequential and fully observable. Modeling the workflow com-
position problem as a MDP and solving it produces a policy
or a ”universal plan”. A policy assigns to each state of
the workflow, an action that is expected to be optimal over
the period of consideration. Thus, if an agent executing the
workflow has a policy, then no matter what the outcome of
any action is, the agent will always know what to do next. We
formally define an MDP below.

Definition 3 (Markov Decision Process (MDP)):
A Markov Decision Process is a sextuplet, M =
(S, A, T, C, H, s0) where S is the set of all possible
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states; A is the set of all possible actions; T is a transition
function, T : S ×A→ ∆(S), which specifies the probability
measure over the next state given the current state and action;
C is a cost function, C : S×A→ R, which specifies the cost
of performing each action from each state; H is the period
of consideration over which the plan must be optimal, also
known as the horizon, 0 < H ≤ ∞; and s0 is the starting
state of the process.

The transition function as defined in a MDP is Markovian,
that is, the probability of reaching the next state depends only
on the current state, and not on the history of earlier states.
Inclusion of the transition function allows MDPs to model
and reason with non-deterministic actions. Furthermore, the
horizon may be either finite or infinite. If a MDP is solved over
a finite horizon, then the resulting policy is non-stationary and
is a sequence of policies each indexed by time. If the horizon
is infinite, then the resulting policy is stationary over time.

In order to gain insight into the functioning of MDPs, let us
model the example scenario given in Definition 2 as a Markov
Decision problem.

Example 1: The state of the workflow is captured by the
random variables – Inventory Availability , Preferred Sup-
plier Availability , New Supplier Availability , Spot Mar-
ket Availability , Order Assembled, and Order Shipped.
A state is then a conjunction of assignments of either Yes,
No, or Unknown to each random variable. Actions are Web
service invocations, A={Check Inventory Status, Check
Preferred Supplier Status, Check New Supplier Status,
Check Spot Market Status, Assemble Order, Ship Or-
der}. The transition function, T , models the non-deterministic
effect of each action on some random variable(s). For ex-
ample, invoking the Web service Check Inventory Sta-
tus will cause Inventory Availability to be assigned Yes
with a probability of T (Inventory Availability =Yes|Check
Inventory Status, Inventory Availability =Unknown), and
assigned No or Unknown with a probability of (1-T (Inventory
Availability =Yes|Check Inventory Status,Inventory Avail-
ability =Unknown)). The cost function, C, prescribes the cost
of performing each action. We let H →∞ which implies that
the manufacturer is concerned with getting the most optimal
workflow possible. Since no information is available at the
start state, all random variables will be assigned the value
Unknown.

Once our manufacturer has modeled his workflow com-
position problem as a MDP, he may apply standard MDP
solution techniques to arrive at an optimal workflow. These
solution techniques revolve around the use of stochastic dy-
namic programming [2] for calculation of the optimal policy.
Bellman [7], via his Principle of Optimality, showed that
the stochastic dynamic programming equation given below is
guaranteed to find the optimal policy for the MDP.

V n(s) =




min
a∈A

{
C(s, a) +

∑
s′∈S

T (s′|a, s)V n−1(s)
}

n > 0

0 n = 0
(2)

where the function, V n : S → R, quantifies the long-term
negative value of each state with n actions remaining to be
performed.

Once we know the negative value of being in each state
of the workflow, the optimal action for each state is the one
which results in the minimum expected negative value.

π∗(s) = argmin
a∈A

{
C(s, a) +

∑
s′∈S

T (s′|a, s′)V n−1(s)
}

(3)

In Equation 3, π∗ is the optimal policy which as we
mentioned before, is simply a mapping from states to actions,
π∗ : S → A. The reader at this point may wonder that
how does an optimal policy such as π∗ translate to an
optimal workflow such as w∗. In Fig. 2, we give an algorithm
that addresses this question. It takes the optimal policy, and
the starting state of the workflow as input, and interleaves
composition and execution of the workflow.

Algorithm for generating workflow
Input: π∗, s0

s← s0

while goal state not reached
a← π∗(s)
ExecuteWeb service a
Get response of a and construct next state, s’
s← s′

end while
end algorithm

Fig. 2. Algorithm for translating a policy into a workflow

In addition to providing a guarantee of optimality, MDPs
admit efficient solution techniques. In particular, the task of
computing the policy of a MDP has been proved to be P-
Complete [8]. Furthermore, we contend that employing a
policy for workflow generation produces robust workflows.
Since a policy is a mapping from each state to an action,
no matter what the current state of the workflow is, the policy
will always prescribe an optimal Web service to execute at
that state. For example, if a Web service fails, then the state
of the workflow remains unchanged. In such a situation, the
policy may prescribe either the same action as before, or a
completely different one, depending on which action is optimal
then. Thus, our policy-based method for generating workflows
is capable of optimally recovering from Web service failures.
In contrast, execution of traditional classical plans needs to
be monitored for unexpected interaction between the plan and
the environment, and there is no fixed method for handling
exceptions that may arise.

In Fig. 3, we present two example workflow traces that
arise when the manufacturer uses the algorithm in Fig. 2 to
compose and execute his workflow. As expected, the workflow
changes as responses to Web service invocations change.
Specifically, if the manufacturer’s inventory is able to satisfy
the order, then he will assemble the order and ship it to the
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Fig. 3. Variations in workflow execution as responses to Web service
invocations change

retailer (Fig. 3.(a)). However, if the inventory is unable to
satisfy the order (Fig. 3.(b)), the manufacturer checks his
preferred supplier’s status. On receiving a positive response,
the manufacturer assembles the order using parts supplied by
his preferred supplier, and ships the order to the retailer.

The current industry standard for representing workflows
is BPEL4WS [9]. BPEL4WS which outgrew from Mi-
crosoft’s XLANG and IBM’s WSFL specifications, is re-
ceiving widespread recognition by the industry. To integrate
our method with industry standards, we have developed a
tool for automatically converting a policy into a workflow
in BPEL4WS specification using the BPWS4J API [10]. The
resulting BPEL4WS flow can be executed in the BPEL engine
that comes bundled with IBM’s Websphere application suite.

V. MODEL LEARNING

In Section III, we indicated that in order to select the optimal
workflow from several candidate ones, the manufacturer must
possess some estimate of certainty with which his requests
will be satisfied. These estimates are a measure of the non-
determinism of Web services and manifest themselves in the
transition function, T , of the MDP. Clearly, the optimal policy,
π∗, is dependent on these estimates, and the policy, and
consequently the workflow changes as the probabilities vary.

We demonstrate the dependency of the manufacturer’s
workflows on his estimates of ”ground truth” in Fig 4. The
optimal workflow changes from the one in Fig. 4.(a) to the
one in Fig. 4.(b) as the manufacturer’s certainty estimate of
his inventory satisfying his request drops. If this estimate is

sufficiently low, then at the start state, the expected negative
value of checking the inventory (computed using the expres-
sion in parenthesis in Equation 3) exceeds the negative value
of checking the preferred supplier’s availability. In such an
event, the optimal workflow changes as shown in the figure.

Preferred
Supplier
Availability
= Yes

Supplier Status

Check Preferred

  Assemble Order

Preferred
Supplier
Availability
= No

(b)

Check Inventory

Status

  Assemble Order

Supplier Status

Check Preferred

Inventory
Availability
= No

Inventory
Availability
= Yes

(a)

Check Inventory

Status

Fig. 4. When T (Inv Avail = Yes|Chk Inv Stat, Inv Avail = Unknown) < p
the optimal workflow changes from (a) to (b)

Though it is possible to derive reasonably accurate estimates
of the true probabilities from historical records of transactions,
in this part of our work, we take the view that the manu-
facturer is initially clueless about these probabilities. Hence,
in true Bayesian manner, the manufacturer assigns equal
probabilities to each response of a Web service invocation. An
initial workflow is generated and executed using the algorithm
in Fig 2. Using a Bayesian learning algorithm, Web service
invocation responses obtained during workflow execution are
used to update the manufacturer’s estimates of ”ground
truth”1. In this manner, we interleave workflow generation
with model learning, and repeat this procedure until the
sequence of workflows converges. Convergence arises out of
the proposition that updating the probabilities using a Bayesian

1This form of learning is frequently called parameter learning in Bayesian
statistics
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Fig. 5. Plots displaying the performance of Bayesian learning of distributions over (a) Inventory Availability (b) Preferred Supplier Availability

learning algorithm leads almost surely to the true probability.
Thus, the manufacturer’s workflows slowly adapt themselves
to the ground truth through repeated interactions with the
environment. In the unusual case of a dynamic environment
(the true probabilities are varying), model learning allows the
workflow to ”keep up” with the changing environment.

Our Bayesian learning algorithm is rather simple, and has its
roots in [11]. The algorithm maintains an experience counter
initialized to 1, for each value of a random variable. During
workflow execution, when a Web service invocation, a, causes
some random variable(s), X, to change its value from x to x ′,
the experience associated with the new value is incremented
by 1. The updated probability, T ′(X = x′|a,X = x), for
that value is calculated from the prior probability, T (X =
x′|a,X = x), as

T ′(X = x′|a,X = x) :=
T (X = x′|a,X = x)× experience + 1

experience’

where experience’ is the incremented counter. In order to make
the probability distribution over X sum to 1, probabilities of
rest of the values of X are updated in the following manner:

T ′(X = y|a,X = x) :=
T (X = y|a,X = x)× experience

experience’

The example given below, illuminates our learning process.
Example 2: Let us apply the Bayesian learning algorithm

outlined above to update the probability distribution over the
random variable, Inventory Availability (X) . The manufac-
turer initially assigns a uniform probability distribution to
the random variable. We assume that on invoking the Web
service, Check Inventory Status (a), a positive response is
obtained, and Inventory Availability is assigned Yes. The
updated probability distribution, T ′(·|a, X = Unknown), is:

T ′(X = Yes|a, X = Unknown) := 0.33×1+1
2 = 0.67

T ′(X = No|a, X = Unknown) := 0.33×1
2 = 0.165

T ′(X = Unknown|a, X = Unknown) := 0.33×1
2 = 0.165

T ′ becomes the new prior for the next Bayesian learning phase.

We empirically measured the performance of our Bayesian
learning algorithm. In particular, we were interested in know-
ing the number of episodes that must elapse before the
estimated probabilities converge to the true probability. An
episode consists of a single pass through the algorithm given
in Fig 2, combined with Bayesian updating of the probability
estimates. At the end of each episode, we measured the
distance between the updated estimates and the true probability
distributions. In order to measure the distance between prob-
ability distributions, we require a metric. We used Kullbach
Leibler Divergence (KLD), also known as relative entropy, as
the metric for measuring the distance between two probability
distributions.

Definition 4 (Kullbach-Leibler Divergence (KLD)):
The KLD between two probability distributions, p and q, is
defined as:

D(p||q) :=
∑

x

p(x)log2
p(x)
q(x)

(4)

Note that KLD is not a true metric. Specifically, it is asym-
metric and does not obey the triangle inequality, though it is
non-negative. Furthermore, D(p||q) = 0 if p = q.

The performance plots are displayed in Fig. 5. Our method-
ology for generating these plots involved running an episode
of workflow generation using current probability estimates in-
terleaved with Bayesian learning; measuring the KLD between
the estimated probability distribution and the true distribu-
tion, for each random variable; and plotting the KLD value.
Fig. 5.(a) shows the plot of three independent runs of learning
the probability distribution over the random variable Inven-
tory Availability , measured over 300 episodes. Clearly, after
initial fluctuations, the estimated probabilities have almost
converged to the true ones. Notice that convergence has almost
been attained by the 100th episode. In Fig. 5.(b), we show the
plot of three independent runs for the probability distribution
over the random variable Preferred Supplier Availability
over 300 episodes. In this case, even after 300 episodes, the
distribution is yet to converge, exhibiting a large KLD variance
in all the 3 runs. We observed that in several workflows,
the Web service Check Preferred Supplier Status was not
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invoked, since the order was satisfied by the inventory itself.
Subsequently, few episodes effected a Bayesian update of
the distribution over Preferred Supplier Availability thereby
slowing down its convergence. When the same experiment was
carried out over 500 episodes, KLD almost converges to zero
(as expected).

Our experiments provide two important conclusions. First,
they validate our hypothesis that the Bayesian learning ap-
proach is effective for model learning. Second, they reveal an
important observation that during learning, models of events
lower down in the workflow take more time to converge than
those higher up in the workflow. This behavior occurs because
several workflows terminate before reaching the lower events.

VI. DISCUSSION

In this paper, we have presented a novel policy-based ap-
proach for dynamically choreographing Web services resulting
in workflows. Our primary focus has been on assembling the
workflow at an abstract level, ignoring the implementation-
level details. We believe that our work is novel in two respects:
(1) Instead of ignoring the non-determinism inherent in real-
world Web services, we have utilized a stochastic optimization
framework, namely Markov Decision Processes, that permit
us to model this uncertainty and reason with it. Furthermore,
MDPs allow us to associate a measure of quality with each
workflow, thereby facilitating selection of the optimal one. By
efficiently generating policies, they produce workflows that
are tolerant of service failures and uncertainties. (2) We have
interleaved workflow generation and execution with model
learning, thereby acknowledging that the true stochastic infor-
mation (”ground truth”) may not be accurately known a’priori.
Through empirical experiments, we have demonstrated the
effectiveness of our Bayesian learning algorithm for learning
the true probability models. The net result is that our method
generates robust and adaptive workflows.

We believe that our method will scale well to composing
complex workflows. In order to validate this belief, we are
currently testing our approach with several large real-world
workflows. The current industry standard for representing
workflows is BPEL4WS. We feel that this standard is not
expressive enough for representing intricate workflows. Hence,
another focus of our future work will be to improve the rich-
ness of BPEL4WS thereby facilitating its widespread adoption.
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