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Abstract— Peer-to-Peer (P2P) computing has become a 
popular distributed computing paradigm thanks to 
abundant computing power of modern desktop 
workstations and widely available network connectivity 
via the Internet.  Although P2P file sharing provides a 
scalable alternative to conventional server-based 
approaches, providing efficient file search in a large 
scale dynamic P2P system remains a challenging 
problem. In this paper, we propose a set of mechanisms 
to provide a scalable keyword-based file search in DHT-
based P2P systems. Our proposed architecture, called 
Keyword Fusion, balances unfair storage consumptions 
at peers, transforms users’ queries to contain focused 
search terms.  Through trace-driven simulations, we 
show that Keyword Fusion can reduces the storage 
consumption of the top 5% most loaded nodes by 50% 
and decrease the search traffic by up to 67% even in a 
modest scenario of combining two keywords.  

Keywords— P2P file sharing, keyword-based file 
search, distributed hash table (DHT), inverted 
distributed hash table 

I. INTRODUCTION  

Peer-to-Peer (P2P) computing has become a popular 
distributed computing paradigm thanks to abundant 
computing power of modern desktop workstations and 
widely available network connectivity via the Internet. 
Although P2P file sharing provides a scalable alternative to 
conventional server-based approaches, providing efficient 
and robust file search in P2P systems has been a key 
challenge.  To provide effective search for desired files in 
large-scale P2P networks, distributed hash table (DHT) has 
been proposed [1-4]. In DHT-based P2P systems, locating a 
node that contains a particular file is simply done by 
querying a distributed lookup table that stores <file ID, 
value> mapping over multiple DHT nodes, where file ID 
denotes the globally unique ID of the file and the value 
represents the location of the file. These DHT-based 
approaches guarantee efficient discovery of an existing file 
in a small bounded number of network hops (O (log N)) for 
a network consisting of N nodes.  

Although DHTs provide efficient lookup service, files can 
be located only through their globally unique IDs. 
Oftentimes, however, users may wish to search for files 
using a set of descriptive keywords or do not have the exact 
ID of the files. To provide a search capability using 
keywords to the users, an extension called the inverted 
distributed hash table method has been proposed [5, 6].  
The main idea of the inverted DHT is to use keywords as 
indices of a DHT to locate files by maintaining <keyword, 
list of values> information at each DHT node, in place of 
<file ID, value>. Note that because the same keyword can 
appear in multiple files, unlike in the case of file ID, the 
right hand side of the mapping is extended to store a list of 
values to include the locations of all files containing that 
keyword . In addition to facilitating the basic mechanism for 
keyword-based search, the related work has proposed 
several optimization techniques to reduce the query traffic 
using Bloom filter to compress the intermediate results [5, 
6] and caching previous results [5].  

The main focus of this paper is to address an important 
challenge, called the common keyword problem, inherent to 
a peer-to-peer file sharing system that employs an inverted 
hash table mechanism. The common keyword problem 
arises from the fact that certain keywords are commonly 
associated with a very large number of files compared to 
other keywords [7]. Consequently, a small number of peers, 
which are responsible for storing location information for 
such common keywords, will have to consume excessive 
amount of storages than other peer nodes. This induces 
severe unfairness among its users, and therefore it may 
discourage users from participating in P2P networks. 
Furthermore, a search query containing these common 
keywords will generate a huge volume of network traffic 
since they are associated with a very long list of file location 
information. To make matters worse, not all the search 
results may be used to answer the user’s query since these 
common keywords tend to be too generic and thus may 
contain a large amount of irrelevant information.  

In this paper, we propose a novel keyword-based file 
search mechanism called Keyword Fusion. This mechanism 
provides a scalable and efficient solution for DHT-based 
P2P file sharing systems, where files are annotated with 
descriptive keywords (as in the case of music, pictures, 
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video files). In particular, Keyword Fusion is a fully 
decentralized architecture with the following features: 
• Utilizing a distributed data structure, called the Fusion 

Dictionary, which stores certain common keywords in 
the system, Keyword Fusion transforms queries to more 
specific search terms and thereby improves search 
efficiency. 

• Safely deleting excessively large lists of files 
containing common keywords or redistributing them 
over the entire network, Keyword Fusion can mitigate 
the level of unfairness in storage consumption.  

Based on a set of distributed algorithms, which can be 
easily incorporated into an existing DHT-based P2P lookup 
service, Keyword Fusion offers a low overhead solution to 
the inefficiency in search and unfairness in peer overhead in 
current keyword-based search mechanisms. Through trace-
driven simulations, we show that Keyword Fusion can 
reduces the storage consumption of the top 5% most loaded 
nodes by 50% and decrease the search traffic by up to 67% 
even in a modest scenario of combining two keywords. Our 
proposed mechanism is designed for searching multimedia 
files annotated with related keywords, such as images and 
movies, rather than full-text searches of documents.  

The rest of this paper is organized as follows. Section II 
provides a brief overview of the inverted hash table method. 
Section III introduces the Keyword Fusion architecture and 
addresses the common keywords problem. Section IV 
evaluates the effectiveness of Keyword Fusion using an 
extended Chord simulator and annotated multimedia file 
data sets. Section V describes related work, and finally, 
Section VI concludes this paper. 

II. KEYWORD SEARCH IN DHT-BASED P2P 
SYSTEMS 

This section presents an overview of the inverted 
distributed hash table mechanism using Chord [1] as a 
reference DHT, to support keyword search capability.  

To describe briefly, in DHT-based P2P systems, locating a 
node that contains a particular file is simply done by 
querying a distributed lookup table that stores <file ID, 
value> mapping, where file ID denotes the globally unique 
ID of the file and the value represents the location of the 
file. To accommodate typically huge ID space, this <file ID, 
value> mapping information is distributed and stored over 
multiple DHT nodes. When assigning a file ID to a node, 
consistent hashing is used so that the load is evenly 
distributed across the entire nodes. To facilitate efficient 
routing, DHT-based P2P systems organize the participating 
nodes into a logical overlay structure. In case of Chord, the 
nodes are organized into a logical ring.  

When a node receives a query message, it looks up the 
local routing table (called “finger table”) that contains the 
next node information in the logical ring and forwards the 
message to the next node. Chord organizes the finger table 

in such a way that routing a message to the destination 
resembles a distributed binary search. As a result it can 
efficiently route messages in O (log N) steps for a network 
consisting of N nodes.   

Using the inverted distributed hash table scheme, we can 
easily extend Chord to support keyword-based queries by 
maintaining <keyword, list of values> information at each 
DHT node, instead of <file ID, value>. Note that because 
the same keyword can appear in multiple files, the right 
hand side of the mapping is extended to store a list of values 
to include the locations of all files containing that keyword. 
Figure 1 presents an illustration of such an extension. 

In this example, there are five files (a.jpg, b.jpg, c.jpg, 
d.jpg, e.jpg) with corresponding keywords describing the 
contents of the files. The location information of the files is 
now distributed using the keyword as the key for consistent 
hashing. For example, consider b.jpg with a set of keywords 
{Tree, River, Mountain}. To assign the location information 
of the file in the extended Chord, each of its keywords is 
first hashed and assigned to a DHT node. In the example, 
Tree is assigned to N3, River is assigned to N4, and 
Mountain is assigned to N1. Since any of these keywords 
can be used by a query to locate b.jpg, the location 
information of b.jpg must be stored at all the three nodes, 
N3, N4, and N1. In this way, we can guarantee that b.jpg’s 
location is returned for any query that searched for Tree, 
River, or Mountain.  

III. KEYWORD FUSION ARCHITECTURE 

One of the main challenges in designing a keyword search 
mechanism for DHT is to address the problem of common 
keywords. Common keywords are those keywords that 

 

 

File ID Keywords 
a.jpg Tree, River, Mountain, Sunset 
b.jpg Tree, River, Mountain 
c.jpg Boat, River 
d.jpg Apple, Tree 
e.jpg Tree 

Figure 1. Chord extensions for keyword-based searches 
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frequently appear in the keyword lists of a large number of 
files. They may provide hints to the file type (e.g. music, 
picture, mp3, jpg) or are very generic words (e.g. classical, 
landscape). In this section, we present the main contribution 
of this paper, namely the Fusion Dictionary and Keyword 
Fusion that can effectively handle the problem of common 
keywords.  

A. Preliminaries 

Before describing the Keyword Fusion architecture, we 
first define a few notations. Let h(k) denote the hosting 
DHT node which stores the mapping for keyword k, and 
K(f) denote the set of keywords associated with file f. Also, 
let F(k) denote the set of files which contains keyword k.  
Throughout this paper we use file f and the location of file f 
interchangeably. Using these notations, we can concisely 
denote the mapping for keyword k as <k, F(k)>. As an 
example, in Figure 1, h(Tree) = N3, F(Tree) = {a.jpg, b.jpg, 
d.jpg, e.jpg}, and K(c.jpg) = {Boat, River}. 

For query processing, we consider only conjunctive 
queries, i.e. multiple keywords in a query are AND-ed. 
Supporting disjunctive queries (logical OR) is achieved by 
issuing multiple queries. Once a user issues a query, it is 
routed to the DHT nodes that are responsible for the 
keywords in the query. At each node, it filters down the 
query result by intersecting the previous results with its own.  
For example, in Figure 1, if a user at wants to find files 
containing both Tree and Mountain, he or she can send out a 
query message to N3 which is responsible for Tree. N3 then 
sends the intermediate result set {a.jpg, b.jpg, d.jpg, e.jpg} 
to N1, where the file list of Mountain is stored. By 
intersecting the intermediate results from N3 with the file 
list for Mountain, N1 will generate the final result, {a.jpg, 
b.jpg}. The benefit of this chained query processing is 
documented in [5, 6]. 

B. Fusion Dictionary & Partial Keywrod List 

Consider a query searching for “music AND classic AND 
Beethoven”. In this query, we observe that music is the most 
generic keyword, and Beethoven is the most specific 
keyword. Thus the following inequality holds in terms of 
cardinality: | F(Beethoven) | < | F(classic) | < | F(music) |. 
Therefore, when searching for files that contain all three 
keywords (music, classic, Beethoven), it is advantageous to 
search for the most specific keyword (Beethoven) first, and 
then filter the results using the other keywords music and 
classic. In other words, identifying non-common keywords 
and processing the query using non-common keywords can 
optimize the chained query processing. This observation 
provides an insight into the notion of Fusion Dictionary. 

Simply put, Fusion Dictionary is a distributed data 
structure, to which DHT nodes can register common 
keywords. When a DHT node determines that its storage 
consumption is excessive based on its local threshold and 
the other nodes’ storage usage learned from control 
messages, it registers the most common keywords (with the 

longest value lists in the mapping) into the Fusion 
Dictionary and removes the entries for the common 
keyword from its registry. In this respect, Fusion Dictionary 
can be considered as a collection of common keywords that 
have been deleted from their hosting nodes. The content of 
the Fusion Dictionary is replicated and propagated across 
DHT nodes in order to minimize the lookup overhead. 
Using the Fusion Dictionary, a query initiating node can 
transform the user queries to contain only non-common 
keywords by removing the registered common keywords.  

While the Fusion Dictionary can provide an effective 
guideline to transform the query to contain more specific 
search terms, this mechanism alone cannot ensure that the 
query is processed correctly. More precisely, because 
certain common keywords have been removed from the 
query, the original semantic of conjunctive query is lost and 
the returned result will be a superset of the correct result. 
For instance, suppose that an original query was for “music 
AND classic AND Beethoven” and music is a common 
keyword registered in Fusion Dictionary. Then following 
the above procedure, the user will send out a query for 
“classic AND Beethoven” and receive a result, in which 
some of the files do not have music as a keyword.  

To address this issue, we introduce a data structure called 
partial keyword list per file, which contains common 
keywords (registered in the dictionary) that are associated 
with the corresponding file. In other words, a partial 
keyword set for a file f is defined as PK(f) = K(f) ∩ FD. To 
utilize the partial keyword list, the query is transformed to 
contain common keywords as meta-information instead of 
just omitting them. With this modification, now when the 
query for “music AND classic AND Beethoven” gets 
processed at destination nodes for classic and Beethoven, 
the destination nodes also refer to the meta-information and 
construct intermediate results to include only the files with 
keywords classic and Beethoven that also have music in 
their partial keyword lists.  

Managing the Fusion Dictionary and the partial keyword 
list is a fully decentralized operation in the proposed 
architecture. Each node maintains a local Fusion Dictionary. 
The local Fusion Dictionary periodically exchanges 
heartbeat messages carrying updates with other Fusion 
Dictionaries of the neighbors. Thus after a well-defined time 
period P, the registration of a keyword k to the Fusion 
Dictionary will be propagated to all DHT nodes1 . After 
waiting for time P, the hosting node H(k) removes the file 
location information from k’s mapping. A similar 
decentralized operation is performed to update the partial 
keyword list. The storage overhead of our mechanism is 
determined by the keyword set size of each file and the 
popularity distribution of keywords. A Zipf-like distribution 
of keyword popularity (See section IV for trace data) 
indicates that only a small fraction of the keywords are very 
                                                           
1 The time window P can be computed from the update period and 
the diameter of the DHT network. 
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common and would be inserted into Fusion Dictionary. 
Consequently, partial keyword lists would also be small. In 
addition, the Partial keyword lists can be efficiently encoded 
since they are small in number and are listed in the Fusion 
Dictionary. 

C. Keyword Fusion 

The key insight behind the Fusion Dictionary algorithm is 
that when a file is associated with multiple keywords a and 
b, we can safely remove this file’s information from node 
h(a) as long as the entry for keyword b is maintained 
because the file is still searchable using b. Now what 
happens when h(b) decides that keyword b too is generic 
and must be removed from its hosting DHT node? Such 
situations are handled by Keyword Fusion. 

Before we describe Keyword Fusion, we first define a 
function combine that generates a new keyword by 
concatenating a set of keywords in the Alphabetic order. Let 
K denote a set of keywords {k1, k2, …, kn}. Then combine(K) 
generates a new keyword k’ = k1&k2&…kn where k1, k2, …, kn 
are enumerated in the Alphabetic order. 2  For example, 
combine (music, classic) generates a new keyword 
music&classic. We call them synthetic keywords to 
distinguish them from the original keywords. After a 
synthetic keyword has been generated a mapping for this 
new keyword is defined as: <k1&k2&…&kn, 
F(k1)∩F(k2)∩…∩F(kn)>. In other words, the value part of the 
mapping for the synthetic keyword is a list of the files that 
contain all k1, k2, …, kn in their keyword lists. 

The operation of Keyword Fusion is as follows. Assume 
Fusion Dictionary contains keywords, a1, a2, …, am. Now 
suppose a keyword b is added into the Fusion Dictionary 
from its hosting node h(b). New keywords are generated by 
combining b with all the keywords in the Fusion Dictionary 
and new synthetic keywords are inserted into the P2P 
network using consistent hashing along with their mappings. 
More precisely, Keyword Fusion ensures that all the 
keywords in the Fusion Dictionary that are combined in a 
pair-wise manner do exist in DHT. For example, if Fusion 
Dictionary = {a, b, c}, Keyword Fusion guarantees that 
synthetic keywords a&b, b&c, and a&c exist in the DHT. 
Note that synthetic keywords can be further synthesized to 
generate new keywords if the synthetic keywords are still 
too common. In this case, they first need to be decomposed 
and recombined to generate a new keyword in the 
Alphabetic order.  

Now we describe the Keyword Fusion algorithm using an 
example. Suppose music is in the Fusion Dictionary. Now 
when keyword classic gets removed from its host h(classic), 
the hosting node first looks up the partial keyword lists of 

                                                           
2  We maintain the Alphabetic order during keyword fusion to 
ensure that combine function is commutative, i.e., combine (k1, 
k2) = combine (k2, k1). In this way, we ensure that combine (k1, 
k2) and combine (k2, k1) are hashed to the same value. 

F(classic) and finds music there. Then before removing the 
entry for classic, the node create a new keyword 
music&classic and inserts the mapping <music&classic, 
F(music) ∩ F(classic)> to the inverted DHT network. Once 
the synthetic keyword and its corresponding mapping 
information have been successfully inserted, the entry for 
keyword classic can be removed from its host.  

After this Keyword Fusion, suppose a user generates a 
query for music AND classic. The initiating node first looks 
up its local Fusion Dictionary. Since both music and classic 
are registered with the Fusion Dictionary, it knows that both 
keywords have been removed from their original hosts. 
However, Keyword Fusion guarantees that a new synthetic 
keyword has been generated for all keywords registered 
with Fusion Dictionary. Thus, the initiating node modifies 
the query to music&classic and sends it out to the DHT 
network. The query will be answered by the node hosting 
the synthetic keyword music&classic and the result F(music) 
∩ F(classic) will be returned to the initiating node.  

Figure 2 presents a pseudo code for the Keyword Fusion 
algorithm. Basically, when the mappings for common 
keyword k is removed from h(k), it is first registered with 
Fusion Dictionary (line 3) and tries to combine with the 
keywords in the partial keyword lists of K(f) (line 4, 5). Line 
7 is used to check whether a combination is required. If it is 
necessary, the new synthetic keywords and their 
corresponding files are inserted to DHT (line 8) and the 
entry for the combined files gets removed (line 12). As a 
result, Keyword Fusion scatters file lists for a common 
keyword to other nodes. Note that the above algorithm only 
used the local Fusion Dictionary and the partial keyword list 
of each file.  

To summarize, this section has presented two main ideas 
of our Keyword Fusion architecture: Keyword Dictionary 
and Keyword Fusion. The role of Keyword Dictionary is to 
help peers with excessive storage consumption reduce their 
loads and help users generate efficient search queries by 
avoiding common keywords. The role of Keyword Fusion is 
to ensure that conjunction of deleted keywords can be 
searched by users by creating synthetic keywords. Both 

1   Keyword Fusion (k) 
2   { 
3       FD ← FD U {k} // fusion dictionary update 
4       for all files f in F(k) // iterate through all files containing k 
5           for all keywords j in PK(f)  
6               L ← decompose (k) U {j} 
7               if (all members of 2L but L are in FD) 
8                  insert file f using keyword combine (L).  
9               end // if 
10          end // for all keywords 
11     end // for all files 
12     remove F(k); 
13  } 

Figure 2.  A pseudo code for Keyword Fusion algorithm 
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methods, when jointly applied, will reduce the degree of 
storage imbalance and the possibility of generating large 
volume query-return traffic. 

IV. PERFORMANCE EVALUATION 

In this section, we present a simulation-based evaluation 
of the proposed Keyword Fusion algorithms. In particular, 
we are interested in the effectiveness of the proposed 
scheme in terms of traffic reduction, fairness in resource 
consumption at each peer. For performance evaluation, we 
have implemented the proposed data structures and 
algorithms in the Chord simulator [8]. To drive the 
simulator, we used two data sets: one with 1,000 image files 
from Corel’s image database and the other with 40,000 
image files [9, 10]. 

A. Date set Analysis 

Before evaluating our scheme, we first characterize the 
date set to be used in our simulations. The first date set (we 
refer to as date set A) includes 1,000 image files that were 
selected from Corel’s image database and manually 
annotated with relevant keywords by a media lab at the City 
University of Hong Kong [9]. This image file set contains a 
total of 1,000 unique keywords and each image is annotated 
with 12 keywords on the average. The second date set (date 
set B) is obtained from Digital Library Project in the 
University of California at Berkley [10] and contains 40,000 
images files. More than 38,000 of these files are annotated 
with four keywords selected from 6,510 unique keywords. 

Figure 3 presents the characteristics of the two date sets. 
The graph (a) shows the keyword count distribution for 
date set A, i.e. number of files vs. number of keywords 
attached to each file. From the figure, we observe that the 
distribution follows a bell shape in general with average of 
12 or 13 keywords per file. We also note that as an 
exception, more than 60 files have only two keywords. On 

the other hands, in date set B we observed that almost all 
files have about four keywords.  

Figure 3 (b) and (c) present the frequency of each 
keyword occurring in each file’s annotation for the two date 
sets. As we expected, these two graphs show that popularity 
of keywords used for annotation roughly follows a Zipf-like 
distribution. In date set A, the highest rank keyword is used 
to annotate more than 300 files among total 1,000 files. We 
observe that the top 5% most frequent keywords (i.e. 50 
words) appear 6,608 times, which is about a half the total 
annotations. In date set B, top 5% most frequent keywords 
appear 124,534 times out of the total 161,051 keyword 
occurrences. Our analysis shows that hosting nodes for 
these 5% most frequent keywords will consume excessive 
amount of storage and extra processing cycles to handle 
frequent updates in the keyword information due to file 
addition and deletion.  

B. Impact of Keyword Fusion 

In our architecture, sending search queries for synthetic 
keywords instead of searching the original keywords should 
reduce network bandwidth consumption. This results from 
the fact that synthetic keywords are typically mapped to a 
much smaller file list than the original ones. In this 
subsection, we briefly illustrate the impact of this Keyword 
Fusion in terms of reduction in file information. Table 1 
presents several sample keyword pairs and the size of 
resulting file list when Keyword Fusion has been applied to 

Keyword Count Distribution

0

30

60

90

120

150

0 5 10 15 20 25 30
Num of Keywords Per File

N
um

 o
f F

ile
s

 

Keyword Popularity Distribution 
In Log-Log Scale

1

10

100

1000

1 10 100 1000
Keyword (Sorted by Popularity)

O
cc

ur
re

nc
e

Keyword Popularity Distribution 
in Log-Log Scale

1

10

100

1000

10000

1 10 100 1000 10000
Keyword (Sorted by Popularity)

O
cc

ur
re

nc
e

(a) Keyword Count Distribution for date set A (b) Keyword Popularity Distribution for date set A (c) Keyword Popularity Distribution for date set B 

Figure 3. Keyword count and popularity distributions in annotated image files 

Keyword 1 (K1) #Files Keyword 2 (K2) #Files K1+K2 K1&K2 Reduction

PLANT 116 FLOWER 101 217 101 53% 

PLANT 116 LEAVES 147 263 72 62% 
SNOW MOUNTAIN 91 SKY 153 244 67 58% 
SUNSHINE 85 PEOPLE 145 230 46 65% 
FLOWER 91 FRAGRANCE 99 190 91 50% 
BEACH 101 SKY 153 254 49 67% 

Table 1. Reduction of search result traffic using Keyword Fusion 



 6

date set A. From the table, we observe that Keyword Fusion 
can reduce the search result traffic by up to 67% compared 
to the regular chained query processing. Note that our 
example is a conservative case of combining only two 
common keywords that are correlated. In practice, 
synthesizing a new keyword from multiple keywords that 
are weakly correlated will further improve the reduction 
factor.  

C. Balancing Storage Demand  

In this subsection we present the effectiveness of Keyword 
Fusion in terms of reduction of resource consumption at 
DHT nodes that host common keywords.  

Figure 4 presents the amount of file information that has 
been assigned to each participating peers using the vanilla 
extension of Chord, and using Keyword Fusion with various 
threshold values. Figure 4 (a) presents the case of date set A 
under extended Chord consisting of 100 nodes while Figure 
4 (b) is the case that date set B is inserted into 1000 nodes. 
Note that the nodes are sorted according to their storage 
consumption and only a portion of the nodes are shown in 
the graph as the curves are slowly and constantly tapering 
down for the rest of the nodes in Figure 4 (b). In the figures, 
“No KF” represents the case when Keyword Fusion has not 
been used. In this case, we observe that the load is highly 
skewed and concentrated on a few nodes; in Figure 4 (a), 
top 5% highly-loaded nodes store 3,307 file entries (660 
files per node) and top 10% highly-loaded nodes store 5,121 
file entries (512 file entries per node) where the average is 
only 120 file entries per node. In Figure 4 (b), the case is 
even worse; top 5% highly-loaded nodes stores 87,884 file 
entries, which are about 55% of total file entries. 

In each graph, the other three curves correspond to the 
case of Keyword Fusion with three different thresholds. For 
example, in Figure 4 (a), for three cases where the threshold 
T is set to 450, 350, and 330, respectively, the number of 
files hosted by overloaded nodes successfully reduces below 
the threshold. More specifically, when T is set to 350, the 
top 5% nodes now store only 1,698 files, about 50% 

reduction compared to the “No KF” case. Notice that in the 
case of T = 330, the distribution is more leveled, but the 
average number of files per node increases. This is the case 
when the system is overcorrected by setting threshold value 
too low. Similarly, Figure 4 (b) presents the results with 
date set B having threshold set to 1500, 1000 and 500. This 
graph shows a similar result as with date set A. However, in 
this case a low threshold will not generate a large number of 
new instances.  

Overall the simulation results demonstrate that Keyword 
Fusion can effectively reduce the excessive storage 
consumption at overloaded peers and redistribute the 
storage demand to the file sharing system, without 
significantly increasing the storage consumption on the 
other peers. 

V. RELATED WORK 

The P2P environment recently has become one of the most 
popular information sharing architectures. Although search 
technologies on the Web have been studied extensively, 
their centralized indexing scheme is not suitable for highly 
dynamic P2P systems. Providing searching capability is 
quite different for two different P2P models: unstructured 
and structured. Unstructured P2P file sharing systems, such 
as Gnutella [11], uses flooding as its links are naturally 
constructed by user selected neighbors. While it can easily 
provide keyword or attribute-based search, its efficiency and 
coverage are limited. On the other hand, structured P2P 
systems, such as Tapestry [4], Pastry [2], Chord [1], and 
CAN [3] guarantee locating existing files, regardless of their 
physical and logical locations. However, they are all 
designed to locate a file with its unique index key and are 
not capable of searching with keywords. 

A few studies [5, 6] extended the DHT scheme to support 
keyword search using the inverted DHT. With such 
extension, keyword-based search can return the list of all 
relevant files, but its query traffic can cause a significant 
burden on the network. Reynolds et al. [5] addressed this 
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problem by processing queries cooperatively at destination 
nodes and using bloom filters to compress intermediate file 
lists. They also cache the results of previous queries to 
further reduce network traffic and response time. Panache 
[6] proposed truncating intermediate results using file 
popularity information. However, these approaches do not 
address the problem introduced by common keywords.  

Gnawali [12] proposed Keyword-Set Search (KSS), which 
groups multiple keywords into a keyword-set and uses it as 
a hash index. This is similar to our work in that keywords 
are combined. However, KSS can create excessive 
redundant file lists as all possible keyword combinations are 
generated for each file insertion. In contrast, our Keyword 
Fusion combines keywords adaptively depending on their 
changing popularity. 

VI. CONCLUSION 

In this paper, we have proposed a set of mechanisms to 
provide a scalable keyword-based file search in a DHT-
based P2P system. Our proposed solution, called Fusion 
Dictionary and Keyword Fusion, balances unfair storage 
consumptions at peers, transforms users’ queries to contain 
focused search terms. To evaluate the performance, we have 
implemented the Keyword Fusion algorithm by extending 
the Chord Simulator and used two types of data sets. The 
results show that Keyword Fusion can reduce search traffic 
by up to 67% even in a modest scenario of combining two 
relatively common keywords. We have also shown that 
Keyword Fusion can effectively alleviate overloaded peers 
and distribute the file storage load across the entire DHT 
network. For example, Keyword fusion reduces the storage 
consumption of the top 5% most loaded nodes by 50% 
without significantly increasing the storage consumption 
level in the other peers. 

We are currently conducting more extensive experiments 
using various date sets, query patterns, and keyword 
correlations. We are also developing a distributed algorithm 
to dynamically adapt the threshold value for Key Fusion.  
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