
RC23145 (W0403-068) March 9, 2004
Computer Science

IBM Research Report

Supporting Efficient Keyword-Based File Search in
Peer-to-Peer File Sharing Systems

Lintao Liu, Kyung Dong Ryu
Department of Computer Science & Engineering

Arizona State University
Tempe, AZ 85287

Kang-Won Lee
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Supporting Efficient Keyword-based File Search
in Peer-to-Peer File Sharing Systems

Lintao Liu Kyung Dong Ryu Kang-Won Lee
Dept. of Computer Science & Engineering

Arizona State University
Tempe, AZ 85287, USA

IBM T.J. Watson Research Center
Hawthorne, NY 10532, USA

{lintao.liu, kdryu}@asu.edu kangwon@us.ibm.com

Abstract— Peer-to-Peer (P2P) computing has become a
popular distributed computing paradigm thanks to
abundant computing power of modern desktop
workstations and widely available network connectivity
via the Internet. Although P2P file sharing provides a
scalable alternative to conventional server-based
approaches, providing efficient file search in a large
scale dynamic P2P system remains a challenging
problem. In this paper, we propose a set of mechanisms
to provide a scalable keyword-based file search in DHT-
based P2P systems. Our proposed architecture, called
Keyword Fusion, balances unfair storage consumptions
at peers, transforms users’ queries to contain focused
search terms. Through trace-driven simulations, we
show that Keyword Fusion can reduces the storage
consumption of the top 5% most loaded nodes by 50%
and decrease the search traffic by up to 67% even in a
modest scenario of combining two keywords.

Keywords— P2P file sharing, keyword-based file
search, distributed hash table (DHT), inverted
distributed hash table

I. INTRODUCTION

Peer-to-Peer (P2P) computing has become a popular
distributed computing paradigm thanks to abundant
computing power of modern desktop workstations and
widely available network connectivity via the Internet.
Although P2P file sharing provides a scalable alternative to
conventional server-based approaches, providing efficient
and robust file search in P2P systems has been a key
challenge. To provide effective search for desired files in
large-scale P2P networks, distributed hash table (DHT) has
been proposed [1-4]. In DHT-based P2P systems, locating a
node that contains a particular file is simply done by
querying a distributed lookup table that stores <file ID,
value> mapping over multiple DHT nodes, where file ID
denotes the globally unique ID of the file and the value
represents the location of the file. These DHT-based
approaches guarantee efficient discovery of an existing file
in a small bounded number of network hops (O (log N)) for
a network consisting of N nodes.

Although DHTs provide efficient lookup service, files can
be located only through their globally unique IDs.
Oftentimes, however, users may wish to search for files
using a set of descriptive keywords or do not have the exact
ID of the files. To provide a search capability using
keywords to the users, an extension called the inverted
distributed hash table method has been proposed [5, 6].
The main idea of the inverted DHT is to use keywords as
indices of a DHT to locate files by maintaining <keyword,
list of values> information at each DHT node, in place of
<file ID, value>. Note that because the same keyword can
appear in multiple files, unlike in the case of file ID, the
right hand side of the mapping is extended to store a list of
values to include the locations of all files containing that
keyword . In addition to facilitating the basic mechanism for
keyword-based search, the related work has proposed
several optimization techniques to reduce the query traffic
using Bloom filter to compress the intermediate results [5,
6] and caching previous results [5].

The main focus of this paper is to address an important
challenge, called the common keyword problem, inherent to
a peer-to-peer file sharing system that employs an inverted
hash table mechanism. The common keyword problem
arises from the fact that certain keywords are commonly
associated with a very large number of files compared to
other keywords [7]. Consequently, a small number of peers,
which are responsible for storing location information for
such common keywords, will have to consume excessive
amount of storages than other peer nodes. This induces
severe unfairness among its users, and therefore it may
discourage users from participating in P2P networks.
Furthermore, a search query containing these common
keywords will generate a huge volume of network traffic
since they are associated with a very long list of file location
information. To make matters worse, not all the search
results may be used to answer the user’s query since these
common keywords tend to be too generic and thus may
contain a large amount of irrelevant information.

In this paper, we propose a novel keyword-based file
search mechanism called Keyword Fusion. This mechanism
provides a scalable and efficient solution for DHT-based
P2P file sharing systems, where files are annotated with
descriptive keywords (as in the case of music, pictures,

 2

video files). In particular, Keyword Fusion is a fully
decentralized architecture with the following features:
• Utilizing a distributed data structure, called the Fusion

Dictionary, which stores certain common keywords in
the system, Keyword Fusion transforms queries to more
specific search terms and thereby improves search
efficiency.

• Safely deleting excessively large lists of files
containing common keywords or redistributing them
over the entire network, Keyword Fusion can mitigate
the level of unfairness in storage consumption.

Based on a set of distributed algorithms, which can be
easily incorporated into an existing DHT-based P2P lookup
service, Keyword Fusion offers a low overhead solution to
the inefficiency in search and unfairness in peer overhead in
current keyword-based search mechanisms. Through trace-
driven simulations, we show that Keyword Fusion can
reduces the storage consumption of the top 5% most loaded
nodes by 50% and decrease the search traffic by up to 67%
even in a modest scenario of combining two keywords. Our
proposed mechanism is designed for searching multimedia
files annotated with related keywords, such as images and
movies, rather than full-text searches of documents.

The rest of this paper is organized as follows. Section II
provides a brief overview of the inverted hash table method.
Section III introduces the Keyword Fusion architecture and
addresses the common keywords problem. Section IV
evaluates the effectiveness of Keyword Fusion using an
extended Chord simulator and annotated multimedia file
data sets. Section V describes related work, and finally,
Section VI concludes this paper.

II. KEYWORD SEARCH IN DHT-BASED P2P
SYSTEMS

This section presents an overview of the inverted
distributed hash table mechanism using Chord [1] as a
reference DHT, to support keyword search capability.

To describe briefly, in DHT-based P2P systems, locating a
node that contains a particular file is simply done by
querying a distributed lookup table that stores <file ID,
value> mapping, where file ID denotes the globally unique
ID of the file and the value represents the location of the
file. To accommodate typically huge ID space, this <file ID,
value> mapping information is distributed and stored over
multiple DHT nodes. When assigning a file ID to a node,
consistent hashing is used so that the load is evenly
distributed across the entire nodes. To facilitate efficient
routing, DHT-based P2P systems organize the participating
nodes into a logical overlay structure. In case of Chord, the
nodes are organized into a logical ring.

When a node receives a query message, it looks up the
local routing table (called “finger table”) that contains the
next node information in the logical ring and forwards the
message to the next node. Chord organizes the finger table

in such a way that routing a message to the destination
resembles a distributed binary search. As a result it can
efficiently route messages in O (log N) steps for a network
consisting of N nodes.

Using the inverted distributed hash table scheme, we can
easily extend Chord to support keyword-based queries by
maintaining <keyword, list of values> information at each
DHT node, instead of <file ID, value>. Note that because
the same keyword can appear in multiple files, the right
hand side of the mapping is extended to store a list of values
to include the locations of all files containing that keyword.
Figure 1 presents an illustration of such an extension.

In this example, there are five files (a.jpg, b.jpg, c.jpg,
d.jpg, e.jpg) with corresponding keywords describing the
contents of the files. The location information of the files is
now distributed using the keyword as the key for consistent
hashing. For example, consider b.jpg with a set of keywords
{Tree, River, Mountain}. To assign the location information
of the file in the extended Chord, each of its keywords is
first hashed and assigned to a DHT node. In the example,
Tree is assigned to N3, River is assigned to N4, and
Mountain is assigned to N1. Since any of these keywords
can be used by a query to locate b.jpg, the location
information of b.jpg must be stored at all the three nodes,
N3, N4, and N1. In this way, we can guarantee that b.jpg’s
location is returned for any query that searched for Tree,
River, or Mountain.

III. KEYWORD FUSION ARCHITECTURE

One of the main challenges in designing a keyword search
mechanism for DHT is to address the problem of common
keywords. Common keywords are those keywords that

File ID Keywords
a.jpg Tree, River, Mountain, Sunset
b.jpg Tree, River, Mountain
c.jpg Boat, River
d.jpg Apple, Tree
e.jpg Tree

Figure 1. Chord extensions for keyword-based searches

N1

N2

N3N4

N5

N6
Mountain:{ a.jpg, b.jpg}

Apple:{d.jpg}

Tree:{a.jpg, b.jpg,
 d.jpg, e .jpg}River:{a.jpg, b.jpg, c.jpg}

Boat:{c.jpg}

Sunset:{a.jpg}

Insert Message
Q uery Message

Mountain:{b.jpg}

Tree:{b.jpg}

River:{b.jpg}
Tree?

Mountain?

 3

frequently appear in the keyword lists of a large number of
files. They may provide hints to the file type (e.g. music,
picture, mp3, jpg) or are very generic words (e.g. classical,
landscape). In this section, we present the main contribution
of this paper, namely the Fusion Dictionary and Keyword
Fusion that can effectively handle the problem of common
keywords.

A. Preliminaries

Before describing the Keyword Fusion architecture, we
first define a few notations. Let h(k) denote the hosting
DHT node which stores the mapping for keyword k, and
K(f) denote the set of keywords associated with file f. Also,
let F(k) denote the set of files which contains keyword k.
Throughout this paper we use file f and the location of file f
interchangeably. Using these notations, we can concisely
denote the mapping for keyword k as <k, F(k)>. As an
example, in Figure 1, h(Tree) = N3, F(Tree) = {a.jpg, b.jpg,
d.jpg, e.jpg}, and K(c.jpg) = {Boat, River}.

For query processing, we consider only conjunctive
queries, i.e. multiple keywords in a query are AND-ed.
Supporting disjunctive queries (logical OR) is achieved by
issuing multiple queries. Once a user issues a query, it is
routed to the DHT nodes that are responsible for the
keywords in the query. At each node, it filters down the
query result by intersecting the previous results with its own.
For example, in Figure 1, if a user at wants to find files
containing both Tree and Mountain, he or she can send out a
query message to N3 which is responsible for Tree. N3 then
sends the intermediate result set {a.jpg, b.jpg, d.jpg, e.jpg}
to N1, where the file list of Mountain is stored. By
intersecting the intermediate results from N3 with the file
list for Mountain, N1 will generate the final result, {a.jpg,
b.jpg}. The benefit of this chained query processing is
documented in [5, 6].

B. Fusion Dictionary & Partial Keywrod List

Consider a query searching for “music AND classic AND
Beethoven”. In this query, we observe that music is the most
generic keyword, and Beethoven is the most specific
keyword. Thus the following inequality holds in terms of
cardinality: | F(Beethoven) | < | F(classic) | < | F(music) |.
Therefore, when searching for files that contain all three
keywords (music, classic, Beethoven), it is advantageous to
search for the most specific keyword (Beethoven) first, and
then filter the results using the other keywords music and
classic. In other words, identifying non-common keywords
and processing the query using non-common keywords can
optimize the chained query processing. This observation
provides an insight into the notion of Fusion Dictionary.

Simply put, Fusion Dictionary is a distributed data
structure, to which DHT nodes can register common
keywords. When a DHT node determines that its storage
consumption is excessive based on its local threshold and
the other nodes’ storage usage learned from control
messages, it registers the most common keywords (with the

longest value lists in the mapping) into the Fusion
Dictionary and removes the entries for the common
keyword from its registry. In this respect, Fusion Dictionary
can be considered as a collection of common keywords that
have been deleted from their hosting nodes. The content of
the Fusion Dictionary is replicated and propagated across
DHT nodes in order to minimize the lookup overhead.
Using the Fusion Dictionary, a query initiating node can
transform the user queries to contain only non-common
keywords by removing the registered common keywords.

While the Fusion Dictionary can provide an effective
guideline to transform the query to contain more specific
search terms, this mechanism alone cannot ensure that the
query is processed correctly. More precisely, because
certain common keywords have been removed from the
query, the original semantic of conjunctive query is lost and
the returned result will be a superset of the correct result.
For instance, suppose that an original query was for “music
AND classic AND Beethoven” and music is a common
keyword registered in Fusion Dictionary. Then following
the above procedure, the user will send out a query for
“classic AND Beethoven” and receive a result, in which
some of the files do not have music as a keyword.

To address this issue, we introduce a data structure called
partial keyword list per file, which contains common
keywords (registered in the dictionary) that are associated
with the corresponding file. In other words, a partial
keyword set for a file f is defined as PK(f) = K(f) ∩ FD. To
utilize the partial keyword list, the query is transformed to
contain common keywords as meta-information instead of
just omitting them. With this modification, now when the
query for “music AND classic AND Beethoven” gets
processed at destination nodes for classic and Beethoven,
the destination nodes also refer to the meta-information and
construct intermediate results to include only the files with
keywords classic and Beethoven that also have music in
their partial keyword lists.

Managing the Fusion Dictionary and the partial keyword
list is a fully decentralized operation in the proposed
architecture. Each node maintains a local Fusion Dictionary.
The local Fusion Dictionary periodically exchanges
heartbeat messages carrying updates with other Fusion
Dictionaries of the neighbors. Thus after a well-defined time
period P, the registration of a keyword k to the Fusion
Dictionary will be propagated to all DHT nodes1 . After
waiting for time P, the hosting node H(k) removes the file
location information from k’s mapping. A similar
decentralized operation is performed to update the partial
keyword list. The storage overhead of our mechanism is
determined by the keyword set size of each file and the
popularity distribution of keywords. A Zipf-like distribution
of keyword popularity (See section IV for trace data)
indicates that only a small fraction of the keywords are very

1 The time window P can be computed from the update period and
the diameter of the DHT network.

 4

common and would be inserted into Fusion Dictionary.
Consequently, partial keyword lists would also be small. In
addition, the Partial keyword lists can be efficiently encoded
since they are small in number and are listed in the Fusion
Dictionary.

C. Keyword Fusion

The key insight behind the Fusion Dictionary algorithm is
that when a file is associated with multiple keywords a and
b, we can safely remove this file’s information from node
h(a) as long as the entry for keyword b is maintained
because the file is still searchable using b. Now what
happens when h(b) decides that keyword b too is generic
and must be removed from its hosting DHT node? Such
situations are handled by Keyword Fusion.

Before we describe Keyword Fusion, we first define a
function combine that generates a new keyword by
concatenating a set of keywords in the Alphabetic order. Let
K denote a set of keywords {k1, k2, …, kn}. Then combine(K)
generates a new keyword k’ = k1&k2&…kn where k1, k2, …, kn
are enumerated in the Alphabetic order. 2 For example,
combine (music, classic) generates a new keyword
music&classic. We call them synthetic keywords to
distinguish them from the original keywords. After a
synthetic keyword has been generated a mapping for this
new keyword is defined as: <k1&k2&…&kn,
F(k1)∩F(k2)∩…∩F(kn)>. In other words, the value part of the
mapping for the synthetic keyword is a list of the files that
contain all k1, k2, …, kn in their keyword lists.

The operation of Keyword Fusion is as follows. Assume
Fusion Dictionary contains keywords, a1, a2, …, am. Now
suppose a keyword b is added into the Fusion Dictionary
from its hosting node h(b). New keywords are generated by
combining b with all the keywords in the Fusion Dictionary
and new synthetic keywords are inserted into the P2P
network using consistent hashing along with their mappings.
More precisely, Keyword Fusion ensures that all the
keywords in the Fusion Dictionary that are combined in a
pair-wise manner do exist in DHT. For example, if Fusion
Dictionary = {a, b, c}, Keyword Fusion guarantees that
synthetic keywords a&b, b&c, and a&c exist in the DHT.
Note that synthetic keywords can be further synthesized to
generate new keywords if the synthetic keywords are still
too common. In this case, they first need to be decomposed
and recombined to generate a new keyword in the
Alphabetic order.

Now we describe the Keyword Fusion algorithm using an
example. Suppose music is in the Fusion Dictionary. Now
when keyword classic gets removed from its host h(classic),
the hosting node first looks up the partial keyword lists of

2 We maintain the Alphabetic order during keyword fusion to
ensure that combine function is commutative, i.e., combine (k1,
k2) = combine (k2, k1). In this way, we ensure that combine (k1,
k2) and combine (k2, k1) are hashed to the same value.

F(classic) and finds music there. Then before removing the
entry for classic, the node create a new keyword
music&classic and inserts the mapping <music&classic,
F(music) ∩ F(classic)> to the inverted DHT network. Once
the synthetic keyword and its corresponding mapping
information have been successfully inserted, the entry for
keyword classic can be removed from its host.

After this Keyword Fusion, suppose a user generates a
query for music AND classic. The initiating node first looks
up its local Fusion Dictionary. Since both music and classic
are registered with the Fusion Dictionary, it knows that both
keywords have been removed from their original hosts.
However, Keyword Fusion guarantees that a new synthetic
keyword has been generated for all keywords registered
with Fusion Dictionary. Thus, the initiating node modifies
the query to music&classic and sends it out to the DHT
network. The query will be answered by the node hosting
the synthetic keyword music&classic and the result F(music)
∩ F(classic) will be returned to the initiating node.

Figure 2 presents a pseudo code for the Keyword Fusion
algorithm. Basically, when the mappings for common
keyword k is removed from h(k), it is first registered with
Fusion Dictionary (line 3) and tries to combine with the
keywords in the partial keyword lists of K(f) (line 4, 5). Line
7 is used to check whether a combination is required. If it is
necessary, the new synthetic keywords and their
corresponding files are inserted to DHT (line 8) and the
entry for the combined files gets removed (line 12). As a
result, Keyword Fusion scatters file lists for a common
keyword to other nodes. Note that the above algorithm only
used the local Fusion Dictionary and the partial keyword list
of each file.

To summarize, this section has presented two main ideas
of our Keyword Fusion architecture: Keyword Dictionary
and Keyword Fusion. The role of Keyword Dictionary is to
help peers with excessive storage consumption reduce their
loads and help users generate efficient search queries by
avoiding common keywords. The role of Keyword Fusion is
to ensure that conjunction of deleted keywords can be
searched by users by creating synthetic keywords. Both

1 Keyword Fusion (k)
2 {
3 FD ← FD U {k} // fusion dictionary update
4 for all files f in F(k) // iterate through all files containing k
5 for all keywords j in PK(f)
6 L ← decompose (k) U {j}
7 if (all members of 2L but L are in FD)
8 insert file f using keyword combine (L).
9 end // if
10 end // for all keywords
11 end // for all files
12 remove F(k);
13 }

Figure 2. A pseudo code for Keyword Fusion algorithm

 5

methods, when jointly applied, will reduce the degree of
storage imbalance and the possibility of generating large
volume query-return traffic.

IV. PERFORMANCE EVALUATION

In this section, we present a simulation-based evaluation
of the proposed Keyword Fusion algorithms. In particular,
we are interested in the effectiveness of the proposed
scheme in terms of traffic reduction, fairness in resource
consumption at each peer. For performance evaluation, we
have implemented the proposed data structures and
algorithms in the Chord simulator [8]. To drive the
simulator, we used two data sets: one with 1,000 image files
from Corel’s image database and the other with 40,000
image files [9, 10].

A. Date set Analysis

Before evaluating our scheme, we first characterize the
date set to be used in our simulations. The first date set (we
refer to as date set A) includes 1,000 image files that were
selected from Corel’s image database and manually
annotated with relevant keywords by a media lab at the City
University of Hong Kong [9]. This image file set contains a
total of 1,000 unique keywords and each image is annotated
with 12 keywords on the average. The second date set (date
set B) is obtained from Digital Library Project in the
University of California at Berkley [10] and contains 40,000
images files. More than 38,000 of these files are annotated
with four keywords selected from 6,510 unique keywords.

Figure 3 presents the characteristics of the two date sets.
The graph (a) shows the keyword count distribution for
date set A, i.e. number of files vs. number of keywords
attached to each file. From the figure, we observe that the
distribution follows a bell shape in general with average of
12 or 13 keywords per file. We also note that as an
exception, more than 60 files have only two keywords. On

the other hands, in date set B we observed that almost all
files have about four keywords.

Figure 3 (b) and (c) present the frequency of each
keyword occurring in each file’s annotation for the two date
sets. As we expected, these two graphs show that popularity
of keywords used for annotation roughly follows a Zipf-like
distribution. In date set A, the highest rank keyword is used
to annotate more than 300 files among total 1,000 files. We
observe that the top 5% most frequent keywords (i.e. 50
words) appear 6,608 times, which is about a half the total
annotations. In date set B, top 5% most frequent keywords
appear 124,534 times out of the total 161,051 keyword
occurrences. Our analysis shows that hosting nodes for
these 5% most frequent keywords will consume excessive
amount of storage and extra processing cycles to handle
frequent updates in the keyword information due to file
addition and deletion.

B. Impact of Keyword Fusion

In our architecture, sending search queries for synthetic
keywords instead of searching the original keywords should
reduce network bandwidth consumption. This results from
the fact that synthetic keywords are typically mapped to a
much smaller file list than the original ones. In this
subsection, we briefly illustrate the impact of this Keyword
Fusion in terms of reduction in file information. Table 1
presents several sample keyword pairs and the size of
resulting file list when Keyword Fusion has been applied to

Keyword Count Distribution

0

30

60

90

120

150

0 5 10 15 20 25 30
Num of Keywords Per File

N
um

 o
f F

ile
s

Keyword Popularity Distribution
In Log-Log Scale

1

10

100

1000

1 10 100 1000
Keyword (Sorted by Popularity)

O
cc

ur
re

nc
e

Keyword Popularity Distribution
in Log-Log Scale

1

10

100

1000

10000

1 10 100 1000 10000
Keyword (Sorted by Popularity)

O
cc

ur
re

nc
e

(a) Keyword Count Distribution for date set A (b) Keyword Popularity Distribution for date set A (c) Keyword Popularity Distribution for date set B

Figure 3. Keyword count and popularity distributions in annotated image files

Keyword 1 (K1) #Files Keyword 2 (K2) #Files K1+K2 K1&K2 Reduction

PLANT 116 FLOWER 101 217 101 53%

PLANT 116 LEAVES 147 263 72 62%
SNOW MOUNTAIN 91 SKY 153 244 67 58%
SUNSHINE 85 PEOPLE 145 230 46 65%
FLOWER 91 FRAGRANCE 99 190 91 50%
BEACH 101 SKY 153 254 49 67%

Table 1. Reduction of search result traffic using Keyword Fusion

 6

date set A. From the table, we observe that Keyword Fusion
can reduce the search result traffic by up to 67% compared
to the regular chained query processing. Note that our
example is a conservative case of combining only two
common keywords that are correlated. In practice,
synthesizing a new keyword from multiple keywords that
are weakly correlated will further improve the reduction
factor.

C. Balancing Storage Demand

In this subsection we present the effectiveness of Keyword
Fusion in terms of reduction of resource consumption at
DHT nodes that host common keywords.

Figure 4 presents the amount of file information that has
been assigned to each participating peers using the vanilla
extension of Chord, and using Keyword Fusion with various
threshold values. Figure 4 (a) presents the case of date set A
under extended Chord consisting of 100 nodes while Figure
4 (b) is the case that date set B is inserted into 1000 nodes.
Note that the nodes are sorted according to their storage
consumption and only a portion of the nodes are shown in
the graph as the curves are slowly and constantly tapering
down for the rest of the nodes in Figure 4 (b). In the figures,
“No KF” represents the case when Keyword Fusion has not
been used. In this case, we observe that the load is highly
skewed and concentrated on a few nodes; in Figure 4 (a),
top 5% highly-loaded nodes store 3,307 file entries (660
files per node) and top 10% highly-loaded nodes store 5,121
file entries (512 file entries per node) where the average is
only 120 file entries per node. In Figure 4 (b), the case is
even worse; top 5% highly-loaded nodes stores 87,884 file
entries, which are about 55% of total file entries.

In each graph, the other three curves correspond to the
case of Keyword Fusion with three different thresholds. For
example, in Figure 4 (a), for three cases where the threshold
T is set to 450, 350, and 330, respectively, the number of
files hosted by overloaded nodes successfully reduces below
the threshold. More specifically, when T is set to 350, the
top 5% nodes now store only 1,698 files, about 50%

reduction compared to the “No KF” case. Notice that in the
case of T = 330, the distribution is more leveled, but the
average number of files per node increases. This is the case
when the system is overcorrected by setting threshold value
too low. Similarly, Figure 4 (b) presents the results with
date set B having threshold set to 1500, 1000 and 500. This
graph shows a similar result as with date set A. However, in
this case a low threshold will not generate a large number of
new instances.

Overall the simulation results demonstrate that Keyword
Fusion can effectively reduce the excessive storage
consumption at overloaded peers and redistribute the
storage demand to the file sharing system, without
significantly increasing the storage consumption on the
other peers.

V. RELATED WORK

The P2P environment recently has become one of the most
popular information sharing architectures. Although search
technologies on the Web have been studied extensively,
their centralized indexing scheme is not suitable for highly
dynamic P2P systems. Providing searching capability is
quite different for two different P2P models: unstructured
and structured. Unstructured P2P file sharing systems, such
as Gnutella [11], uses flooding as its links are naturally
constructed by user selected neighbors. While it can easily
provide keyword or attribute-based search, its efficiency and
coverage are limited. On the other hand, structured P2P
systems, such as Tapestry [4], Pastry [2], Chord [1], and
CAN [3] guarantee locating existing files, regardless of their
physical and logical locations. However, they are all
designed to locate a file with its unique index key and are
not capable of searching with keywords.

A few studies [5, 6] extended the DHT scheme to support
keyword search using the inverted DHT. With such
extension, keyword-based search can return the list of all
relevant files, but its query traffic can cause a significant
burden on the network. Reynolds et al. [5] addressed this

Storage Load Distribution

0

200

400

600

800

1000

0 20 40 60 80 100
Nodes (Sorted by Number of Files)

N
um

be
r o

f F
ile

s
No KF
T = 450

T = 350
T = 330

Storage Load Distribution

0

1000

2000

3000

4000

5000

0 100 200 300 400 500
Node (Sorted by Number of Files)

N
um

be
r o

f F
ile

s

NO KF

T=1500

T=1000

T=500

(a) Date set A with 100 nodes (b) Date set B with 1,000 nodes

Figure 4. File list redistribution using Keyword Fusion

 7

problem by processing queries cooperatively at destination
nodes and using bloom filters to compress intermediate file
lists. They also cache the results of previous queries to
further reduce network traffic and response time. Panache
[6] proposed truncating intermediate results using file
popularity information. However, these approaches do not
address the problem introduced by common keywords.

Gnawali [12] proposed Keyword-Set Search (KSS), which
groups multiple keywords into a keyword-set and uses it as
a hash index. This is similar to our work in that keywords
are combined. However, KSS can create excessive
redundant file lists as all possible keyword combinations are
generated for each file insertion. In contrast, our Keyword
Fusion combines keywords adaptively depending on their
changing popularity.

VI. CONCLUSION

In this paper, we have proposed a set of mechanisms to
provide a scalable keyword-based file search in a DHT-
based P2P system. Our proposed solution, called Fusion
Dictionary and Keyword Fusion, balances unfair storage
consumptions at peers, transforms users’ queries to contain
focused search terms. To evaluate the performance, we have
implemented the Keyword Fusion algorithm by extending
the Chord Simulator and used two types of data sets. The
results show that Keyword Fusion can reduce search traffic
by up to 67% even in a modest scenario of combining two
relatively common keywords. We have also shown that
Keyword Fusion can effectively alleviate overloaded peers
and distribute the file storage load across the entire DHT
network. For example, Keyword fusion reduces the storage
consumption of the top 5% most loaded nodes by 50%
without significantly increasing the storage consumption
level in the other peers.

We are currently conducting more extensive experiments
using various date sets, query patterns, and keyword
correlations. We are also developing a distributed algorithm
to dynamically adapt the threshold value for Key Fusion.

REFERENCES

[1] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M.
F. Kaashoek, F. Dabek, and H. Balakrishnan, "Chord: A
Scalable Peer-to-peer Lookup Protocol for Internet
Applications," Proc. SIGCOMM'01, 2001.

[2] A. Rowstron and a. P. Druschel, "Pastry: Scalable,
distributed object address and routing for large-scale
peer-to-peer systems," Proc. IFIP/ACM Int'l Conf.
Distributed Systems Platforms, 2001.

[3] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker, "A Scalable Content-Addressable Network,"
Proc. ACM SIGCOMM 2001, 2001.

[4] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph,
"Tapestry: An Infrastructure for Fault-tolerant Wide-area

Location and Routing," IEEE Journal on Selected Areas
in Communications (c) 2003 IEEE, 2001.

[5] P. Reynolds and A. Vahdat, "Efficient Peer-to-Peer
Keyword Searching," Proc. Middleware. 2003, 2003.

[6] T. Lu, S. Sinha, and A. Sudan, "Panache: A Scalable
Distributed Index for Keyword Search," 2003.

[7] G. Zipf, Selective Studies and the Principle of relative
Frequency in Language, C. Harvard University Press,
MA, 1932, Ed., 1932.

[8] Chord, "http://www.pdos.lcs.mit.edu/chord/."
[9] Benjiman,

"http://abacus.ee.cityu.edu.hk/~benjiman/corel_1/."
[10]Digital-Library-Project,

"http://elib.cs.berkeley.edu/photos/corel/."
[11]Gnutella, "http://genutella.wego.com."
[12]O. D. Gnawali, "A Keyword-Set Search System for

Peer-to-Peer Networks," in MIT. Massachusetts, 2002.

