
RC23146 (W0403-071) March 10, 2004
Computer Science

IBM Research Report

An Approach to Benchmarking Configuration Complexity

Aaron B. Brown, Joseph L. Hellerstein
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

An Approach to Benchmarking Configuration Complexity

Aaron B. Brown and Joseph L. Hellerstein
IBM T. J. Watson Research Center

{abbrown,hellers}@us.ibm.com

Abstract

Configuration is the process whereby components are
assembled or adjusted to produce a functional system
that operates at a specified level of performance. Today,
the complexity of configuration is a major impediment to
deploying and managing computer systems. We describe
an approach to quantifying configuration complexity,
with the ultimate goal of producing a configuration
complexity benchmark. Our belief is that such a bench-
mark can drive progress towards self-configuring sys-
tems. Unlike traditional workload-based performance
benchmarks, our approach is process-based. It generates
metrics that reflect the level of human involvement in the
configuration process, quantified by interaction time and
probability of successful configuration. It computes the
metrics using a model of a standardized human opera-
tor, calibrated in advance by a user study that measures
operator behavior on a set of parameterized canonical
configuration actions. The model captures the human
component of configuration complexity at low cost and
provides representativeness and reproducibility.

1. Introduction

Driven by the insatiable demand for features and per-
formance, modern server systems have become incredi-
bly complex. Much of this complexity is exposed as con-
figuration complexity, with the result that these systems
require significant investments of time and skill on the
part of human system administrators to set them up and
keep them running over time.

The magnitude of the problem is best illustrated by
example. Figure 1 depicts the basic tasks in configuring

a web service application using IBM’s DB2 and Web-
Sphere Application Server along with the data flows be-
tween these tasks. This particular configuration process
requires that the human administrator perform over 50
individual configuration steps—and it is one of the sim-
plest possible web service configuration scenarios.

If we continue to build systems that require such
complicated configuration processes, we will soon reach
a point where our systems are completely unmanageable.
Researchers have begun to realize this, and there is bur-
geoning interest in tackling the problem of configuration
complexity, or “futz” in the terminology established at
the 1999 HotOS workshop [8]. IBM’s autonomic com-
puting effort is a major industrial effort [5], and aca-
demic researchers have identified research agendas in
reduced-futz computing as well [4]. But a key missing
piece in all this work is a quantitative way to measure
futz—a repeatable benchmark that can quantify the level
of configuration complexity for a given system, evaluate
the impact of new technology on configuration complex-
ity, and prove the value of futz-reducing techniques.

Building a benchmark for measuring configuration
complexity requires a radically different approach from
what is used in traditional performance benchmarks.
This is apparent in Figure 1 in that the primary focus is
on process complexity rather than runtime performance.
Whereas traditional performance-oriented benchmarks
are workload-driven, configuration complexity bench-
marks must be process-driven as shown in Figure 2, with
metrics based on an analysis of a captured process rather
than on a system’s response to a workload. Process-
driven benchmarks demand novel methodologies and
produce different categories of metrics than the usual
throughput and latency metrics we are used to seeing.

create
user

install wiz.
(db2)

select
features

specify
cfg. params reboot app cmd

(cli)
env var

(3)
cfg file
(1 line)

app cmd
(cli) start svc install wiz.

(jvm)
install wiz.

(app)
app.
script

(blddb)
...

Database:

App Server:

cfg file
(3 lines)

install wiz
(db2)

select
features

(4)
reboot app cmd

(cli)
app cmd

(cli)
app cmd

(cli)
app cmd

(cli)
install wiz

(was)
start svc

(was)
open web
console ...

db2_host

user/pass

instance
svc_name

jvm_path

db_name

node alias

upgrade
wizard
(was)

...

Figure 1. Representation of configuration process for Java-based web application. The figure shows the first few steps in the
configuration process for a simple enterprise Java web application. Each box represents a configuration step, and dotted arrows rep-
resent information that the operator must pass between tasks.

Furthermore, quantifying configuration complexity
inherently involves a human component. We typically
try to avoid introducing people into benchmarks, since
they add significant variability and cost. But it is un-
avoidable when benchmarking configuration complex-
ity, since what we are trying to quantify is exactly the
amount of human effort and skill required to achieve a
configuration goal. An essential challenge is therefore to
incorporate an understanding of human factors into the
benchmark while minimizing the actual human involve-
ment and resulting cost and variability.

Finally, good benchmarks produce metrics that are
representative of real-world observable quantities; they
are based on methodologies that are reproducible,
widely-applicable, and resistant to nefarious optimiza-
tions designed solely to improve the benchmark score.
Over time, we have figured out how to achieve these
qualities for workload-driven performance benchmarks,
but there is little experience to draw on for process-
driven configuration complexity benchmarks. Repro-
ducibility and representativeness are particularly chal-
lenging aspects, especially given the need to capture the
human component of the configuration process.

While these technical challenges are daunting, we do
not believe them to be insurmountable. In this paper, we
outline a research agenda that we believe will lead us to
solid benchmarks for configuration complexity, and pre-
sent our initial approaches to constructing such bench-
marks. We begin in Section 2 by focusing on the con-
figuration process, then expand our horizons in Sections
3 and 4 by situating those processes in the context of
system lifecycle. We treat related work in Section 5, and
conclude in Section 6.

2. Quantifying the configuration process

At the core of our proposed benchmarks is a method-
ology for quantifying the complexity of a configuration
process—the set of interactions between human operator
and computer system that achieve a configuration goal.

Systems with high configuration complexity force their
administrators to carry out intricate, difficult, and error-
prone configuration processes. In contrast, self-
configuring, futz-free systems have simple configuration
processes in which administrators only specify the con-
figuration goal; the systems do the rest. System Under Test

Benchmark
Driver

Workload

Response

Workload
Specification

Results

System Under Test

Process

Representation
of Process

Analysis

Benchmark
Results

(a) Workload-driven benchmark

(b) Process-driven benchmark

We quantify process complexity in terms of human
interaction time and the probability that the configura-
tion process is completed without error, parameterized
by the skill level of the human operator. For example,
the benchmark might report that an expert operator could
configure a system in 25 minutes with a 95% likelihood
of success, but that a novice operator would take 45 min-
utes and would only succeed 60% of the time.

A direct way of obtaining these metrics for a configu-
ration process is through human factor studies. However,
such an approach is costly and difficult to reproduce.
Fortunately, Figure 2(b) suggests an alternative: we can
capture a best-case version of the configuration process
using one expert human operator, then derive from this
process appropriate metrics that quantify its complexity.
Such an approach consists of the following steps:

1. process capture: The expert operator performs
the configuration process on the system under test
while the benchmark infrastructure records her in-
teractions in a response file. This step can be re-
peated as needed to ensure the response file re-
flects the best-case configuration process.

2. process decomposition and analysis: The bench-
mark infrastructure maps each recorded interaction
in the response file into a parameterized canonical
configuration action. Examples of canonical con-
figuration actions include selecting installable fea-
tures and entering a configuration variable.

3. process scoring: The process is scored as to its
complexity by estimating the interaction time and
success probability for each canonical action and
aggregating those metrics across all actions in the
process. This scoring will be based on a model of
the complexity of the canonical actions and the in-
terrelationships between them, calibrated by stud-
ies of how human operators perform. Note that
once these calibration studies have been done, they
can be applied repeatedly to many benchmarks.

4. process validation: The benchmark verifies that
the captured process has achieved its configuration
goal subject to lifecycle-based quality constraints.
We discuss this aspect in depth in Sections 3 and 4.

Our process-capture methodology is inspired by the
model-human-processor (MHP) technique developed in
the human factors community. MHP is used to predict
human behavior on low-level stimulus-response tasks
like moving a mouse pointer to click an on-screen button
[2]; it works by identifying a set of basic, parameterized
actions (like moving a mouse a certain distance) and
uses a calibrated model of typical human behavior to es-

Figure 2. Workload- vs. Process-driven benchmarks.

2

timate the time it would take a person to perform those
actions. We want to achieve the same thing, but at a
much higher level where the basic actions are steps in a
configuration process and where the model assigns both
time and success probability to those actions. Thus our
methodology hinges on defining the right set of param-
eterized canonical configuration actions, and on building
the model that maps them to human interaction time and
error rate. These are open research challenges; we out-
line our initial approaches in the following subsections.

2.1. Defining canonical configuration actions

The boxes in Figure 1 are examples of canonical con-
figuration actions. Included are actions such as selecting
installable features from a list, setting environment vari-
ables, and editing configuration files. Each type of action
may be parameterized. For example, “select features”
could be parameterized by the number of features that
must be selected, the total number of features available,
and the number of changes made from the defaults.

The actions are also affected by the configuration in-
formation supplied by the operator, which is represented
by the dashed arrows in Figure 1. Our hypothesis is that
one of the major factors in configuration complexity is
that the human operator needs to generate, remember,
and later re-supply configuration variables, for example
to input the IP address and port number of an earlier-
configured database server when later setting up an ap-
plication server. We can capture this complexity by
characterizing each configuration action by the number,
type, and source of its configuration variables, so that an
action that reuses a variable that appeared 5 steps earlier
in the process can be distinguished from one that uses a
never-before-seen variable, and from one that uses a
variable generated in the immediately-preceding step.

2.2. Building the complexity model

The complexity model predicts human interaction
time and success probability for each of the canonical
actions. In doing so, it defines the behavior of a stan-
dardized human operator. We envision a reasonably
simple model that maps each canonical configuration
action to a set of interaction times and success probabili-
ties, based on the parameterization of that action. To
calibrate and validate this model, we cannot escape the
need for a human user study, but luckily it can be per-
formed up front during process of designing and specify-
ing the benchmark; the resulting calibrated model be-
comes a reusable part of the benchmark specification.

The design of the user study is straightforward. Start-
ing from the set of canonical actions, we generate a set
of test cases that cover the parameter spaces of each ac-
tion. To capture relationships between actions, we rely
on the parameterization of configuration variables dis-

cussed above; our test cases must therefore include mock
sequences of actions with different numbers of steps be-
tween a variable’s generation and use. With the test
cases in hand, we next recruit trained system operators to
work through the test cases, and we measure their inter-
action times and success rates. From the collected data,
we can determine which parameters have a statistically-
significant effect on complexity, and can calculate ex-
pected interaction times and success rates for various
values of those relevant parameters, along with associ-
ated confidence intervals. If we achieve tight confidence
intervals, we know that we have chosen and parameter-
ized our canonical actions well; if not, then we must re-
fine the set of actions and repeat the calibration process.

A key challenge in creating the complexity model
will be to control the variance in the subject pool by se-
lecting subject operators with similar skill levels; we ex-
pect that well-established screening techniques from
human factors research will be sufficient. Ideally, the
modeling process should be repeated with different sub-
ject pools—expert, newly-certified, and novice opera-
tors, at minimum—to produce a set of models indexed
by the skill level of the operators used to calibrate them.

2.3. Discussion

Our approach satisfies most of the properties of a
good benchmark. If the model is accurate, we produce
results that are representative of real-world configura-
tion complexity, namely predicted human interaction
time and success probability. By using a model, we
achieve representativeness without the cost and variabil-
ity of a separate large-scale human trial for each use of
the benchmark. Our approach is widely-applicable, be-
cause it is based on analyzing canonical configuration
actions, rather than directly processing system system-
specific actions. Its results are reproducible since they
are derived from a standardized operator model included
in the benchmark. Furthermore, the standardized model
and action set ensures those results can be directly com-
pared across systems, assuming the same configuration
goal was specified for each. Our approach provides
guidance for improvement, since it is easy to identify the
steps of the configuration process that contributed the
most to the overall complexity score; the benchmarker
can use the model to estimate the impact of specific im-
provements. Finally our approach is reasonably low cost:
other than the cost of the expert operator and process
capture, the benchmark is entirely analytical. Note that
the cost of the operator is not an issue in many practical
benchmarking scenarios, as at least one expert operator
will already be employed to ensure that the system is op-
timally configured before collecting performance results.

Our approach does suffer some limitations. It as-
sumes a single operator, and will have to be altered to
scale to system installations that require multiple coop-

3

erating operators. It examines only one possible configu-
ration process—the one captured in the response file. If
the system supports multiple configuration paths, the
benchmark must be repeated on each and cannot capture
the complexity of choosing between those paths. Finally,
our approach is not resistant to benchmark-specific op-
timization. Since we do not check the results of the con-
figuration process, an unscrupulous benchmarker can
choose an over-simplified process that produces a non-
functional system. We address this concern in the next
section by adding specific configuration goals and qual-
ity constraints to our process-evaluation methodology.

3. Adding lifecycle constraints

Configuration processes (and hence configuration
complexity) enter at many different points in the lifecy-
cle of a software system, including initial setup, runtime
reconfiguration, and system decommissioning. Each of
these lifecycle phases has different goals and constraints:
for example, a system administrator might ignore system
performance and availability while performing an initial
configuration process, but might be very concerned
about preserving them during runtime configuration. As
a result, a configuration task performed on a running
system could require a much more complicated set of
configuration actions than the same task performed dur-
ing the system’s initial setup. The implication for our
benchmark is that it must consider more than one lifecy-
cle scenario. For each scenario, it must define and en-
force lifecycle-specific quality constraints.

One way to approach the problem of defining quality
constraints is to represent the system’s lifecycle as a tra-
jectory in a multidimensional space, where each dimen-

sion measures the quality of one aspect of the system’s
service. For example, a simple web server might trace a
path through a four-dimensional space defined by axes
of throughput, latency, functionality, and correctness; a
clustered system might add an axis for fault-tolerance.
At any point during the system’s lifecycle, there is a tar-
get region in the space that defines acceptable quality,
and thus establishes quality constraints. As a system
moves through different phases in its lifecycle, it can
move out of its target region, requiring configuration to
bring it back into line.

Figure 3 gives a few examples for a very simple 1-
dimensional space characterized by an unspecified per-
formance metric. Figure 3(a) depicts initial setup of a
system. The system starts out at the origin, since a set of
undeployed components provides no performance. The
target region is defined by the system’s desired perform-
ance; the initial configuration process shifts the system
from the origin to the target point. In this example, the
constraint on the configuration process is that it must
produce a system that falls within the target by the end
of the process; the intermediate trajectory is irrelevant.

Figure 3(b) depicts a scenario that might be seen
when a sudden workload surge hits a system. The surge
pushes the system out of its target performance region,
and some configuration process is needed to bring it
back to normal (perhaps, deploying additional capacity).
In this case, the configuration is reactive and ongoing,
and the constraints are both to minimize the time it takes
the system to return to its target window and to minimize
any additional performance impact during that time.
Figure 3(c) is similar, but here the target has moved
rather than the system, representing a scenario where an
administrator proactively reconfigures a running system,
perhaps via an upgrade or by deploying capacity to meet
a predicted upcoming load increase. The constraints for
this scenario are to reach the new performance target by
a pre-specified time and to minimize additional perform-
ance degradation in the meantime.

4. A complete benchmark scenario

In this section, we combine the methodology of Sec-
tion 2 with the constraints of Section 3 to form a com-
plete benchmark methodology for measuring the con-
figuration complexity of initial system setup (from Fig-
ure 3(a)). To begin, we must pick a specific application
context for the benchmark—this will help us set goals
and constraints. For convenience, we hijack the scenario
from an existing performance benchmark—say, the
SPECjAppServer2002 Java Enterprise application
benchmark [9]. This gives us a configuration goal,
namely to assemble a system that can satisfy the
SPECjAppServer workload at some performance level.
We leave the level undefined to allow the benchmark to
scale across different system sizes, but require that the
benchmark report the performance achieved. This re-

Figure 4. Space-time plots of lifecycle-based configuration
scenarios. The diagrams show a simplified space with per-
formance as the only dimension. The dashed lines define the
region of desired performance. The solid line depicts the sys-
tem’s performance trajectory.

performance

tim
e

0

target
performance

config.
process

performance

tim
e

0

target
performance

workload
surge

config.
process

performance

tim
e

0

target
performance

target
change

requested

config.
process

(a) (b)

(c)

deadline

4

porting rule ensures that the configuration goal is met,
and that an unscrupulous benchmarker cannot get away
with optimizing away configuration complexity at the
cost of system performance.

In this scenario, the benchmark methodology is
straightforward. First, the benchmarker documents the
initial state of the system as an inventory of the compo-
nents that will be assembled into the working system.
Next, she performs the configuration process, applying
the methodology of Section 2 to capture the final proc-
ess. She then chooses a behavior model based on the
skill level of her system’s operators, and uses the model
to analyze the captured process and produce a complex-
ity score. She then runs the SPECjAppServer2002 per-
formance benchmark on the configured system and re-
cords the performance result. Finally, she prepares a
benchmark report that includes the complexity score, the
skill level of the model used, the final performance
score, the component inventory, and the response file
corresponding to the captured process. Besides the ulti-
mate complexity score, this report contains enough in-
formation to reproduce the analysis and audit the results
for accuracy. While we have described the benchmark
workflow as a manual process, our hope is that it can
eventually be fully automated via technology for auto-
mated process capture and decomposition [6].

Note that we can extend our methodology to the other
scenarios in Figure 3 by replacing the goal appropriately
and by requiring that the SPECjAppServer workload be
applied continuously during the configuration process.
The continuous trace of performance results during the
configuration process is sufficient to quantify the re-
sponse time and performance impact of the process,
much as is done in availability and dependability bench-
marks to capture the impact of an injected failure [1] [7].

5. Related work

To our knowledge, there is very little existing work
on benchmarking configuration complexity. Benchmarks
exist that attempt to test properties of a static configura-
tion, such as the CIS Security Benchmarks [3], but these
do not measure the complexity of changing the configu-
ration, and hence cannot evaluate complexity-reducing
technology.

That said, our process-based benchmark approach
borrows from existing techniques in other fields. As al-
ready mentioned, our model-based approach to assigning
human-based complexity metrics was inspired by the
model human processor concept from the human factors
community [2]. And the idea of measuring a process it-
self is a direct extension of the traditional user-centric
approach used by HCI practitioners to evaluate new in-
terface designs; our contribution here is to distill that ap-
proach into a benchmark framework so that it can be ap-
plied reproducibly, and at low cost, across systems.

One domain where complexity has been studied in
great depth is software engineering, where hundreds of
metrics exist for quantify the static complexity of a piece
of code (see, for example, Zuse’s excellent survey [10]).
Unfortunately, nearly all this work focuses on complex-
ity as manifested in a static snapshot of the code (typi-
cally based on the control-flow graph), and does not
translate to the process-centric view of configuration
complexity that we have defined. While there may be
value in adapting these software metrics to the task of
measuring the static complexity of a system’s configura-
tion, we believe it far more important to quantify the
complexity of altering the configuration, as that aspect is
what contributes to system management cost.

6. Conclusion

The techniques that we have outlined in this paper
represent a first step toward rigorous, reproducible con-
figuration complexity benchmarks. But significant re-
search challenges remain: in identifying the right set of
canonical configuration actions and their parameteriza-
tions, in constructing and validating the model, in cap-
turing different operator skill levels, and in automating
the task of process capture and analysis, amongst others.
While we are only starting to tackle these challenges by
implementing proof-of-concept benchmarks, we do be-
lieve that our methodologies are sound and that they of-
fer great promise toward building the evaluation tools
that will prove the value of and drive progress toward
low-futz, easily-configured systems.

References
[1] A. Brown and D. Patterson. Towards Availability Bench-

marks: A Case Study of Software RAID Systems.
USENIX Annual Technical Conference, 2000.

[2] S. Card, T. Moran, and A. Newell. The Model Human
Processor. In Boff, K., Kaufman, L., and Thomas, J.
(Eds.) Handbook of Perception and Human Performance,
1986.

[3] Center for Internet Security. http://www.cisecurity.org.
[4] D. Holland et al. Research Issues in No-Futz Computing.

Proc. 8th Workshop on Hot Topics in Operating Systems.
Schoss Elmau, Germany, 2001.

[5] P. Horn. Autonomic Computing Manifesto. http://www.
ibm.com/autonomic/pdfs/autonomic_computing.pdf.

[6] T. Lau et al. Learning Procedures for Autonomic Comput-
ing. Workshop on AI and Autonomic Computing (IJCAI
2003). Acapulco, Mexico, 2003.

[7] H. Madeira and P. Koopman. Dependability benchmark-
ing: making choices in an n-dimensional problem space.
First Workshop on Evaluating and Architecting Systems
for Dependability, Göteborg, Sweden, 2001.

[8] M. Satyanarayanan. Digest of Proceedings. 7th Workshop
on Hot Topics in Operating Systems, Rio Rico, AZ, 1999.

[9] SPEC. SPECjAppServer2002. http://www.spec.org/
jAppServer2002/.

[10] H. Zuse. Software Complexity: Measures and Methods.
Berlin: Walter de Gruyter, 1991.

5

	1. Introduction
	2. Quantifying the configuration process
	2.1. Defining canonical configuration actions
	2.2. Building the complexity model
	2.3. Discussion

	3. Adding lifecycle constraints
	4. A complete benchmark scenario
	5. Related work
	6. Conclusion
	References

