
RC23148 (W0403-084) March 12, 2004
Computer Science

IBM Research Report

Design and Implementation of SIP Network and Client
Services for Enabling Collaborative Applications

Aameek Singh
Georgia Institute of Technology

College of Computing
801 Atlantic Drive

Atlanta, Georgia 30332

Priya Mahadevan
Department of Computer Science and Engineering

University of California, San Diego
9500 Gilman Drive, Dept. 0114

La Jolla, CA 92093-0114

Arup Acharya, Zon-Yin Shae
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

Design and Implementation of SIP Network and Client
Services for Enabling Collaborative Applications

Aameek Singh†♣ Priya Mahadevan‡♣ Arup Acharya¥∗ Zon-Yin Shae¥

 †College of Computing, ‡Computer Science & Eng., ¥IBM T.J. Watson Research Center,
 Georgia Tech UCSD Hawthorne, NY
aameek@cc.gatech.edu pmahadevan@cs.ucsd.edu {arup, zshae}@us.ibm.com
♣ Work done at IBM Research

 ∗ Contact Author

Abstract

The Session Initiation Protocol (SIP) has been
widely adopted for VoIP and Instant Messaging
systems. However, the deployment has been
primarily on a per-application basis. In this paper,
we describe the design and implementation of a
generic SIP client service and API that is available
to all applications and provides unified
mechanisms for functions like conference joins,
pub-sub, call transfers etc. The service allows a
user to plug in a softphone of his choice, and to use
any one of multiple softphones, IP or PSTN phones
on a per-session basis. We demonstrate the utility
of this API by enhancing the user experience for
existing applications as well as describing new
converged applications. This client service is
supported on the network side by prototyping a
number of building blocks in addition to integrating
a commercially available packet-audio mixer.

1. Introduction

Session Initiation Protocol (SIP) [1] is a popular
choice for establishing media sessions and Instant
Messaging. There are several IP softphones and
hardphones available in the market today that are
SIP capable which are being used for VoIP (Voice
over IP). In addition to point-to-point calls, SIP is
also being used for multi-party conference calls [2].
Typically, each SIP application such as an IM client
or a softphone rolls out its own implementation of
SIP. One of the popular JAVA APIs, the JAIN API
[3] provides a low-level API to applications to
invoke SIP call flows.

We view SIP as a new control pipe to the client
desktop beyond just IM and VoIP and offer SIP as
a generic service that is available to all applications
on the client. Current deployment of SIP has been
primarily on a per-application basis, lacking a
unified mechanism across various applications.

This prevents the system from exploiting all of SIP
functionality in an integrated manner. In this paper,
we describe the design and implementation of a
SIP service which provides a generic SIP API to all
applications in the form of a small set of SIP-
specific primitives like conference join, event
notification, call transfer. In addition, the service is
designed such that it is easy to plug in a softphone
of user's choice, thereby offering the opportunity to
select one of multiple devices such as one of
multiple softphones, IP or PSTN phones on a per-
session basis. We demonstrate the richness of this
API by enhancing the user experience for existing
applications such as native SIP click-to-call in web
browsers and enabling ad-hoc conferencing in a
non-SIP aware messaging client, as well as
describing new converged applications such as
web-browsing with out-of-band control information
passed via the SIP service, as well dynamic multi-
conferencing support for multiplayer network
games. This client service is supported on the
network side by prototyping a number of building
blocks such as a conferencing server with pub-sub
support and the ability to create conferences on-the-
fly, web sites that use applets to control client SIP
service and a gaming server that maps changing
gaming contexts to one of multiple conferences. A
commercially available packet-audio mixer was
integrated into the network for media support.

2. SIP
SIP is a control protocol that allows creation,
modification and termination of sessions with one
or more participants. SIP is used for voice and
video calls either as point-to-point or multiparty
sessions. It is independent of the media transport
which for example, typically uses RTP [4]. SIP is
also used for Instant Messaging and Presence [4].
SIP allows multiple end-points to establish media
sessions with each other: it supports locating the
end-points, establishing the session and then, after
the media session has been completed, terminating

 2

the session. A SIP infrastructure consists of user
agents, registration servers, location servers and
SIP proxies deployed across a network. SIP defines
a set of messages such as such as INVITE, REFER
etc. to setup sessions between user agents. These
methods are routed through SIP proxies and that are
deployed in the network. SIP uses the Session
Description Protocol (SDP) [5] in the message body
to provide information about the session like media
type, transport protocol, IP addresses and port
numbers of endpoints. Details can be found in [1].

3. Client-side SIP Service
Our SIP service acts as a client side system service
(like telnet, ftp) running on a particular port. It
offers an API to applications at a higher functional
level than call control, as offered by existing SIP
APIs such as JAIN SIP [3]. More importantly, the
API is targeted at the operating systems level so
that the API is available to all applications
independent of the application execution
environment such as a JVM . There are two
principal modes in which applications can invoke
this API: (a) by directly sending messages to the
specified port of the service, and (b) SIP was
registered as a protocol in the operating systems
registry (Win2K in our case) along with a protocol
handler. Consequently, any existing or new
application that looks up the registry to determine
protocol handlers would automatically be able to
handle SIP URIs by invoking the associated
protocol handler. SIP was thus made into a first-
class protocol recognized and handled by the
operating system in a similar fashion such as a
mailto: or http: URIs. The specified protocol
handler would then invoke a pre-determined
function from the SIP service API. An important
requirement of our SIP service is that the
supporting API be extensible. Thus, the current set
of functions which will be described later, is not by
any means complete, but rather to illustrate an
initial set that we found useful across multiple
application scenarios.

A second motivation for a client-side SIP service is
to offer all control functions that SIP has to offer,
within a single service, instead of separate
application bundling in specific subsets of full SIP
functionality. For example, an IM client may
incorporate publish-subscribe mechanisms of SIP,

3 We used an IBM-internal version of the Lotus
SameTime client. The latest commercial release of
Lotus SameTime and Web Conferencing (version
3.1) supports SIP for inter-gateway communication
but not for client-server interaction [10].

but may not allow an audio call to be setup, while a
softphone may incorporate call control functionality
but not necessarily support Presence and IM
functionality. In addition, when two such
applications are executed concurrently, there is
often a problem with sharing common port numbers
(such as port 5060). More importantly though, this
leads to narrowly focused SIP applications. Our
motivation for an application-independent SIP
service is to enable new applications that combine
multiple contro l features of SIP in interesting ways.

Figure 1: SIP Service Architecture

Lastly, a requirement of our proposed SIP service is
the ability to easily plug in a softphone of user’s
choice and also offer a choice of end-device for
user interaction. A user may choose a device with
features that is best suited for the type of session,
e.g. a cell-phone may have a built-in camera, or the
desktop phone may offer good speakerphone
support. This requirement has several advantages:
firstly, it frees the SIP service from providing
media I/O capability, which is best offered by
specialized devices, while retaining the control of
such devices from the SIP service. In terms of
realizing this requirement, it implies that the SIP
service be designed to allow integrating end-
devices in different ways, e.g. some softphones
may simply be launched with a SIP URI as a
parameter while some softphones only allow
indirect interaction using a web server, in which
case appropriate HTTP POST messages are
required. In addition, when an external device is
used, the user may still like to retain control of the
session (rather than offloading both media and
control to the device). This is especially true, when
a user wants to utilize special SIP functions like
SUBSCRIBE/NOTIFY, which a non-SIP device
cannot provide.

The SIP service also allows users to switch devices
in the midst of a session. This requirement places a
burden on the design of SIP Service in that it
should allow easy integration of other SIP devices
and also PSTN devices. This is achieved through

 3

device-specific wrappers, which are responsible for
translating such higher level functional demands to
lower level device commands, either through SIP or
non-SIP methods such as HTTP post.

3.1 API
Applications communicate with the SIP service
using XML messages , which encode SIP service
API calls. The use of XML allows standardized
mechanisms of interaction with the SIP service and
also provides extensibility to the API. New
functions can be easily added by using appropriate
XML messaging tags. Below, we define an initial
set of API calls :

3.1.1 ExternalJoin
This command is used to call a particular party
when no end-user device is selected. The format for
such a message is:

<ExternalJoin id=SIP URI />
This indicates that a call is to be made to a SIP URI
such as sip:1619@research.ibm.com. The SIP
service then pops up a dialog box asking the user to
select from one of a set of end-user devices such as
softphone, IP phones etc. Once a device has been
selected, the SIP service uses the appropriate
wrapper’s primitive operations to make the call.

3.1.2 Join
This command is used to call a particular party by
using a particular device. The format for such a
message is as follows:

<Join id=SIP URI1>
 <Use dev= dev-id/>
</Join>

This indicates that a call is to be made to
destination URI1 using a end-user device pointed to
by dev-id. The dev-id is either the local softphone
identifier, which indicates the SIP service to launch
the appropriate softphone, or the SIP URI for an
external hardphone device. Softphones are
especially distinguished in this manner since we
can easily launch them using their specific
wrappers. However, it is also possible to use a
similar hardphone mechanism using the SIP URL
for the softphone as the chosen device. In cases
when a SIP URI is used, the SIP service needs to
establish a control path with the appropriate devices
and set up a connection. This can be achieved in
two modes, referring to the SIP service
involvement in the entire process.

Transfer Mode: In this case, the SIP service
establishes a session between the end-device
identified by URI2 and the called party URI1. The

call is completely transferred to URI2. In this
scenario, the SIP service has no further control on
the call and the media transfer takes place between
endpoints identified by the two URIs.

Figure 2: SIP Client Transfer Mode

Loop Mode: The SIP service acts as a Back2Back
User Agent [7] between the two endpoints. The
media path is still end-to-end between the two
URIs; however, the SIP service stays in the control
path between the two end-points. This is useful for
the SIP service to receive event notifications.

Figure 3: SIP Client Loop Mode
For example, in a conference call, a user may
subscribe to join/leave events (using SIP
SUBSCRIBE) and be notified of other participants
joining/leaving the conference. Staying in the loop
allows the SIP client to display any such
notifications. This would not be possible using the
transfer mode since the device represented by URI2
may either be incapable of handling the events or
exposing them to the user in an appropriate way
and then capturing user response to those events.
The loop mode is also useful in the context of the
next API call described below.

3.2.2 SameDeviceJoin
SameDeviceJoin allows a user to seamlessly switch
the called endpoint (e.g. conference) without

4REFER

8OK

Client
SIP
Service

Selected
End-device

Destination
URI

1INVITE

7INVITE

2OK

6BYE

3ACK

5OK

9ACK

 Join Msg

Client SIP
Service

1INVITE

 Join Msg
Selected

End-device

Destination
URI

2OK

3INVITE
4OK

6ACK

 RTP

 4

changing the end-device currently in use. The
format for a SameDeviceJoin message is :

<SameDeviceJoin id= SIP URI/>
This functionality cannot be realized by dropping
the entire call and setting up a new call from the
same end-device to the new target, since this would
mean hanging up the external device and picking it
up again, i.e. the switch would be perceptible. We
need to provide a seamless switch. We use the loop
mode SIP service, i.e. the SIP service is on the
control path between URI1 and URI2 created by an
earlier Join command in loop mode. The steps
involved in realizing this function is to drop the leg
to the current called party (URI1), setup a new call
to the endpoint referred to by the URI in the
SameDeviceJoin message, and then exchange the
IP addresses and port numbers of the two media
endpoints corresponding to URI and URI2.

Figure 4: SIP Same Device Join

3.2.3 Multi-Invite
This API calls is specific to conferencing, and
instructs the SIP service to invite specified
additional participants to the current conference. In
case the invoking user is not in a conference, a new
ad-hoc conference is created and des ired
participants are invited to that conference. The
format of the message is as follows:

<Invite>
 <Add id=SIP URI1 />
 <Add id=SIP URI2 />

</Invite>

The mechanisms of creating and setting up ad-hoc
conferences are detailed in Section-4.

4 Network Infrastructure
In order to support the SIP client service described
above, we designed and implemented a number of
building blocks within the network infrastructure.

The first of these is a conference control server,
which when coupled with a commercially available
SIP-controllable media mixer, provides a network
service for setting up conferences and mixing audio
streams . The unique properties of our conference
control server are the ability to create ad-hoc on-
the-fly conferences, and also to support event
notification services for events related to
conferencing. The conferencing service enables the
SIP service client to create and control conferences
on the fly, and offer that as a primitive to client
applications.

Figure 5: SIP Workflow for joining a conference

To establish an ad-hoc conference, a user generates
a unique ID (e.g. a username appended by a random
number), creates a conference URL of the form
“sip:<unique-ID>@<conf-server address>” and
sends an INVITE. The SIP proxy in our network is
configured to forward any unregistered SIP URLs
to the machine in the domain field of the URL (the
conference server in our case). On receiving the
INVITE, the conference server (CS) creates a new
conference (if no such conference id exists; else the
user is added to an existing conference as a
participant). The setup is shown in Figure-5.

A second application building block that we
introduced is modeled as a primitive gaming server
which uses the conferencing server to enhance the
gaming experience. The purpose of this building
block is to show that SIP allows multiple services in
the network to be composed in interesting ways,
rather than to demonstrate gaming per se. The
gaming server should be viewed as representing an
application server with multiple concurrent states,
such that application clients are each associated
with one of the server states. This basic abstraction
is augmented by associating clients sharing a
common state at the application server with a
common conference, demonstrating that the
conferencing service is useful not just as a
standalone service but perhaps more so, when

 5

combined with another network service. This
service composition can be achieved either by
coupling the game and conference servers, or by
coupling the game client with the SIP service API
at the client-side. Both approaches are feasible.

In a corporate enterprise setting, the “game service”
is offered as an add-on service to conferencing that
allows employees to participate in multiple
simultaneous conferences, presented visually to the
user as a set of boxes : dragging the mouse to a
specified box seamlessly switches the employee’s
current active conference without any perceptible
break in audio (i.e. without requiring the employee
to hang-up and dial in to the new conference).
The feature of the gaming service that we wish to
highlight is the ability to seamlessly and
automatically switch the associated conference
when a game client changes its gaming context
(such as a ‘dungeon’). This is where the
functionality offered by the SIP service
SameDeviceJoin comes in handy. The game client
can invoke SameDeviceJoin when the user moves
to a different game context, passing the SIP URI of
the conference to the SIP service.

The final building block we introduce is a web-site
that is cognizant of the SIP service API at the
client. It can use embedded applets in its pages to
instruct users to join particular conferences
associated with those web pages. For example, a
discussion forum web site, using this mechanism
will instruct the viewers of a particular forum to be
in a single audio conference and hence exchange
their views via voice. More details in Section-5.

5 Prototypes of SIP-enabled Applications
In this section, we describe some of our prototype
applications that combine the SIP service API and
building blocks in the network infrastructure.

SIP URI’s in web-browser: Since SIP is n
protocol recognized by the Windows registry,
browser programs that refer to the registry invoke
the SIP protocol handler when an user clicks on a
SIP URI embedded in a web-page. The protocol
handler initiates an ExternalJoin SIP Service API
call, which asks user input for device selection and
then sets up a session to the URI. Note that the
browser code was unmodified.

Enabling a non-SIP aware IM client : We selected
an IM client and server system3 that uses a
proprietary non-SIP protocol, modified the client
code to recognize SIP URI’s within message
bodies, highlighted the SIP URIs as ‘clickable’
links, and on user click, invoked the Join SIP
Service API to create an ad-hoc conference via the
conferencing service.

We followed certain naming conventions to
identify a URI as a conference URI (e.g. the host
name in the URI is conf.ibm.com), and hence, the
user would need to supply just the conference name
(e.g. abc in the example). The key points to note:
(a) the functionality of the IM system was enhanced
without changing the application’s native client-
server protocol (b) the messaging capability of the

 6

application is used to inform other participants of a
conference (SIP URI) and (c) this highlights how
the SIP client and network services are useful for a
class of applications whose client code may be
amenable to modification but not the server code.

Multi-conferencing / Gaming with seamless
conferencing: The “game” consists of four
quadrants and a user can move in any of the four
directions. When a user crosses a quadrant
boundary, he is seamlessly conferenced in with
users in the new quadrant. In the screenshot shown,
arup and edie are able to hear each other, while
aameek is not able to hear either. If arup were to
move into the top-left quadrant, then arup would be
added to the conference associated with that
quadrant, and arup and aameek will hear each other
(if aameek continues to remain in that quadrant).

Community Web Browsing : This application
comprises of a group of web-pages, such that
viewers of a web-page are informed of all
concurrent viewers of that web-page using SIP’s
event notification mechanism as well as being
conferenced together. In addition, whenever a user
moves to a different page, her conference
automatically switches to the one associated with
the new page. To facilitate this switching, we again
use the client SIP API. All “enabled” web pages
contain a signed applet which simply writes a
SameDeviceJoin message to the client SIP service
socket. As a result whenever a client loads the page,
the applet writes the SameDeviceJoin command
and the user is brought into the conference of that
particular web page. Note that in case there is no
active device, the SameDeviceJoin acts as an
ExternalJoin, requiring user input for device
selection. In addition, to provide users with
information about other viewers at that time, we use
SIP based SUBSCRIBE/NOTIFY features
notifying users of all Join and Leave events. This

application is an attempt at community based
communication. For example, this would allow a
community of movie fans reviewing a particular
movie to participate in a voice discussion amongst
online fans in real-time, as opposed to text chat.

The SIP client service and network services were
integrated with the existing SIP pilot network
within IBM Watson. This is shown in the following
network diagram, which shows the SIP client
service and a conferencing service (gaming and SIP
enabled web-site is not included in the diagram)

6 Conclusions
In this paper, we designed an implemented an
extensible client-side SIP service API and network
building blocks that proved to be useful in
enhancing existing collaborative applications as
well come up with new applications such as
seamless conferencing for gaming and community-
based web-browsing.

 References
1. J. Rosenberg et al. SIP : Session Initiation

Protocol. RFC 3261. IETF, June 2002.
2. Handley, M. and V. Jacobson, “SDP: Session

Description Protocol”, RFC 2327, IETF Apr98.
3. JSR 32 : JAINTM SIP API Specification. Java

Community Process.
4. H. Schulzrinne et al. RTP : A Transport

Protocol for Real-Time Applications. RFC
1889.IETF, Jan 96..

5. B. Campbell, editor. Session Initiation
Protocol (SIP) Extension for Instant
Messaging. RFC 3428.IETF, Dec 2002.

6. Igor Miladinovic and Johannes Stadler,
“Multiparty Conference Signaling using SIP”,
International Network Conference, 2002.

7. B. Campbell et al. The Message Session Relay
Protocol. SIMPLE Working Group Internet-
Draft, Jan 2004.

 7

8. J. Lennox and H. Schulzrinne. A Protocol for
Reliable Decentralized Conferencing.
NOSSDAV 2003.

9. J. Rosenberg et. al. Best Current Practices for
Third Party Call Control in the Session
Initiation Protocol. Internet-Draft , Dec 2003.

10. http://www.lotus.com/products/lotussametime.
nsf/wdocs/about

,

