
RC23149 (W0403-088) March 12, 2004
Mathematics

IBM Research Report

On the Implementation of an Interior-Point Filter Line-Search
Algorithm for Large-Scale Nonlinear Programming

Andreas Waechter
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Lorenz T. Biegler
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

On the Implementation of an Interior-Point Filter Line-Search

Algorithm for Large-Scale Nonlinear Programming

Andreas Wächter∗ and Lorenz T. Biegler†

March 12, 2004

Abstract

We present a primal-dual interior-point algorithm with a filter line-search method for non-
linear programming. Local and global convergence properties of this method were analyzed in
previous work. Here we provide a comprehensive description of the algorithm, including the fea-
sibility restoration phase for the filter method, second-order corrections, and inertia correction
of the KKT matrix. Heuristics are also considered that allow faster performance. This method
has been implemented in the IPOPT code, which we demonstrate in a detailed numerical study
based on 954 problems from the CUTEr test set. An evaluation is made of several line-search
options, and a comparison is provided with two state-of-the-art interior-point codes for nonlin-
ear programming.

Keywords: nonlinear programming – nonconvex constrained optimization – filter method –
line search – interior-point method – barrier method

1 Introduction

Growing interest in efficient optimization methods has led to the development of interior-point or
barrier methods for large-scale nonlinear programming. In particular these methods provide an
attractive alternative to active set strategies in handling problems with large numbers of inequality
constraints. Over the past 15 years, there has also been a better understanding of the convergence
properties of interior-point methods [16] and efficient algorithms have been developed with desirable
global and local convergence properties.

To allow convergence from poor starting points, interior-point methods, in both trust region
and line-search frameworks, have been developed that use exact penalty merit functions to enforce
progress toward the solution [2, 27]. On the other hand, Fletcher and Leyffer [14] recently proposed
filter methods, offering an alternative to merit functions, as a tool to guarantee global convergence
in algorithms for nonlinear programming. The underlying concept is that trial points are accepted
if they improve the objective function or improve the constraint violation instead of a combination
of those two measures defined by a merit function.

More recently, this filter approach has been adapted to barrier methods in a number of ways.
M. Ulbrich, S. Ulbrich, and Vicente [21] consider a trust region filter method that bases the accep-
tance of trial steps on the norm of the optimality conditions. Also, Benson, Shanno, and Vanderbei
[1] proposed several heuristics based on the idea of filter methods, for which improved efficiency
is reported compared to their previous merit function approach, although no convergence analysis

∗IBM T.J. Watson Research Center, Yorktown Heights, NY; E-mail: andreasw@watson.ibm.com
†Carnegie Mellon University, Pittsburgh, PA; E-mail: lb01@andrew.cmu.edu

1

is given. Finally, global convergence of an interior-point algorithm with a filter line search is ana-
lyzed in [24]. The assumptions made for the analysis of the interior-point method in [24] are less
restrictive than those made for previously proposed line-search interior-point methods for nonlinear
programming (e.g. [10, 27]).

A number of interior-point methods have been implemented in robust software codes (such as
[3, 22]), and numerical tests have shown them to be efficient and robust in practice. In this paper
we describe the detailed development of a primal-dual interior-point algorithm with a filter line-
search, based on the analysis in [24]. We consider a primal-dual barrier method to solve nonlinear
optimization problems of the form

min
x∈

�
n

f(x) (1a)

s.t. c(x) = 0 (1b)

xL ≤ x ≤ xU , (1c)

where xL ∈ [−∞,∞)n and xU ∈ (−∞,∞]n, with x
(i)
L ≤ x

(i)
U , are the lower and upper bounds on

the variables x. The objective function f : R
n −→ R and the equality constraints c : R

n −→ R
m,

with m ≤ n, are assumed to be twice continuously differentiable. Problems with general nonlinear
inequality constraints, “d(x) ≤ 0,” can be reformulated in the above form by introducing slack
variables.

The paper is organized as follows. Section 2 presents the overall algorithm, including the
step computation, the filter line-search procedure, and a second-order correction. In Section 3,
we describe some aspects of the algorithm, and its implementation, in more detail, including the
restoration phase for the filter procedure, as well as several heuristics to improve the performance
of the overall method. Section 4 presents numerical results of our implementation, called IPOPT,
for the CUTEr test set [18], including a comparison of the filter method with a penalty function
approach, and a comparison with two state-of-the-art nonlinear optimization codes, KNITRO [3, 26]
and LOQO [22].

1.1 Notation

The i-th component of a vector v ∈ R
n is written as v(i). Norms ‖·‖ denote a fixed vector norm and

its compatible matrix norm unless explicitly noted. We further introduce the notation X := diag(x)
for a vector x (similarly Z := diag(Z), etc.), and e stands for the vector of all ones for appropriate
dimension.

2 The Basic Algorithm

The following sections motivate the proposed algorithm, which is formally summarized in Sec-
tion 2.5.

2.1 The Primal-Dual Barrier Approach

To simplify notation, we first describe the method for the problem formulation

min
x∈

�
n

f(x) (2a)

s.t. c(x) = 0 (2b)

x ≥ 0. (2c)

2

The changes necessary to handle the general case (1) will be outlined in Section 3.4. similar to the
algorithms discussed in

As a barrier method, like the methods discussed in [2, 8, 11, 27], the proposed algorithm
computes (approximate) solutions for a sequence of barrier problems

min
x∈

�
n

ϕµ(x) := f(x)− µ
n

∑

i=1

ln(x(i)) (3a)

s.t. c(x) = 0 (3b)

for a decreasing sequence of barrier parameters µ converging to zero. Equivalently, this can be
interpreted as applying a homotopy method to the primal-dual equations,

∇f(x) +∇c(x)λ− z = 0 (4a)

c(x) = 0 (4b)

XZe− µe = 0, (4c)

with the homotopy parameter µ, which is driven to zero (see e.g. [4, 17]). Here, λ ∈ R
m and

z ∈ R
n correspond to the Lagrangian multipliers for the equality constraints (2b) and the bound

constraints (2c), respectively. Note, that the equations (4) for µ = 0 together with “x, z ≥ 0” are
the Karush-Kuhn-Tucker (KKT) conditions for the original problem (2). Those are the first order
optimality conditions for (2) if constraint qualifications are satisfied [7].

The presented method computes an approximate solution to the barrier problem (3) for a fixed
value of µ, then decreases the barrier parameter, and continues the solution of the next barrier
problem from the approximate solution of the previous one.

Using the individual parts of the primal-dual equations (4), we define the optimality error for
the barrier problem as

Eµ(x, λ, z) := max

{‖∇f(x) +∇c(x)λ− z‖∞
sd

, ‖c(x)‖∞,
‖XZe− µe‖∞

sc

}

(5)

with scaling parameters sd, sc ≥ 1 defined below. By E0(x, λ, z) we denote (5) with µ = 0; this
measures the optimality error for the original problem (2). The overall algorithm terminates if an
approximate solution (x̃∗, λ̃∗, z̃∗) (including multiplier estimates) satisfying

E0(x̃∗, λ̃∗, z̃∗) ≤ εtol (6)

is found, where εtol > 0 is the user provided error tolerance.
Even if the original problem is well scaled (see also Section 3.8 on automatic scaling of the

objective and constraint functions), the multipliers λ and z might become very large, for example
when the gradients of the active constraints are (nearly) linearly dependent at a solution of (2).
In this case, the algorithm might encounter numerical difficulties satisfying the unscaled primal-
dual equations (4) to a tight tolerance. In order to adapt the termination criteria to handle such
circumstances, we choose the scaling factors

sd = max

{

smax,
‖λ‖1 + ‖z‖1

(m + n)

}

/smax sc = max

{

smax,
‖z‖1

n

}

/smax

in (5). In this way, a component of optimality error is scaled, whenever the average value of the
multipliers becomes larger than a fixed number smax ≥ 1 (smax = 100 in our implementation). Also

3

note, in the case that the multipliers diverge, E0(x, λ, z) can only become small, if a Fritz-John
point for (2) is approached, or if the primal variables diverge as well.

In order to achieve fast local convergence (to a local solution of (2) satisfying the strong second-
order sufficient optimality conditions), we follow the approach proposed by Byrd, Liu, and Nocedal
[4, Strategy 2]. Denoting with j the iteration counter for the “outer loop,” we require that the
approximate solution (x∗,j+1, λ∗,j+1, z∗,j+1) of the barrier problem (3), for a given value of µj ,
satisfies the tolerance

Eµj
(x̃∗,j+1, λ̃∗,j+1, z̃∗,j+1) ≤ κεµj

for a constant κε > 0, before the algorithm continues with the solution of the next barrier problem.
The new barrier parameter is obtained from

µj+1 = max
{εtol

10
,min

{

κµµj, µ
θµ

j

}}

, (7)

with constants κµ ∈ (0, 1) and θµ ∈ (1, 2). In this way, the barrier parameter is eventually decreased
at a superlinear rate. On the other hand, the update rule (7) does not allow µ to become smaller
than necessary given the desired tolerance εtol, thus avoiding numerical difficulties at the end of
the optimization procedure.

For later reference, we also choose a “fraction-to-the-boundary” parameter

τj = max{τmin, 1− µj} (8)

where τmin ∈ (0, 1) is its minimum value.

2.2 Solution of the Barrier Problem

In order to solve the barrier problem (3) for a given fixed value µj of the barrier parameter, a
damped Newton’s method is applied to the primal-dual equations (4). Here, we use k to denote
the iteration counter for the “inner loop.” Given an iterate (xk, λk, zk) with xk, zk > 0, search
directions (dx

k, dλ
k , dz

k) are obtained from the linearization of (4) at (xk, λk, zk), namely

Wk Ak −I
AT

k 0 0
Zk 0 Xk

dx
k

dλ
k

dz
k

 = −

∇f(xk) + Akλk − zk

c(xk)
XkZke− µje

. (9)

Here Ak := ∇c(xk), and Wk denotes the Hessian ∇2
xxL(xk, λk, zk) of the Lagrangian function,

L(x, λ, z) := f(x) + c(x)T λ− z. (10)

Instead of solving the nonsymmetric linear system (9) directly, the proposed method computes the
solution equivalently by first solving the smaller, symmetric linear system

[

Wk + Σk Ak

AT
k 0

](

dx
k

dλ
k

)

= −
(

∇ϕµj
(xk) + Akλk

c(xk)

)

, (11)

with Σk := X−1
k Zk, derived from (9) by eliminating the last block row. The vector dz

k is then
obtained from

dz
k = µjX

−1
k e− zk − Σkd

x
k . (12)

As is common for most line-search methods, we have to ensure that the matrix in the top-
left block in the matrix in (11), projected onto the null space of the constraint Jacobian AT

k , is

4

positive definite. This is necessary to guarantee certain descent properties for the filter line-search
procedure below [24]. Also, if Ak does not have full rank, the iteration matrix in (11) is singular,
and a solution of (11) might not exist. Therefore, it might be necessary to modify the iteration
matrix. In our implementation, we solve the linear system

[

Wk + Σk + δwI Ak

AT
k −δcI

](

dx
k

dλ
k

)

= −
(

∇ϕµj
(xk) + Akλk

c(xk)

)

, (13)

for some δw, δc ≥ 0. The choice of the scalars δw and δc for each iteration is discussed below in
Section 3.1.

Having computed search directions from (13) and (12), step sizes αk, α
z
k ∈ (0, 1] have to be

determined in order to obtain the next iterate as

xk+1 := xk + αkd
x
k (14a)

λk+1 := λk + αkd
λ
k (14b)

zk+1 := zk + αz
kd

z
k. (14c)

Note that we allow a different step size in the z variables from that of the other variables. In our
experience, this is more efficient since it does not unnecessarily restrict the steps.

Since x and z are both positive at an optimal solution of the barrier problem (3), this property
is maintained for all iterates. It is attained using the fraction-to-the-boundary rule

αmax
k := max {α ∈ (0, 1] : xk + αdx

k ≥ (1− τj)xk} (15a)

αz
k := max {α ∈ (0, 1] : zk + αdz

k ≥ (1− τj)zk} (15b)

where the parameter τj ∈ (0, 1) is defined in (8). Note that αz
k is the actual step size used in (14c).

In order to ensure global convergence, the step size αk ∈ (0, αmax
k] for the remaining variables is

determined by a backtracking line-search procedure exploring a decreasing sequence of trial step
sizes αk,l = 2−lαmax

k (with l = 0, 1, 2, . . .). We use a line-search variant of Fletcher and Leyffer’s
filter method [14], which we analyze in [24].

Before reviewing this procedure in the next section, we briefly note that a requirement for
the convergence proof in [24] is that the “primal-dual barrier term Hessian” Σk does not deviate
arbitrarily much from the “primal Hessian” µjX

−2
k . We ensure this by resetting

z
(i)
k+1 ← max

{

min

{

z
(i)
k+1,

κΣ µj

x
(i)
k+1

}

,
µj

κΣ x
(i)
k+1

}

, i = 1, . . . , n, (16)

for some fixed κΣ ≥ 1 after each step. This guarantees that each component σ
(i)
k+1 of Σk+1 is in the

interval

σ
(i)
k+1 ∈ [

1

κΣ
µj/(x

(i)
k)2, κΣµj/(x

(i)
k)2]. (17)

In our implementation, κΣ = 1010, mainly for theoretical consistency.

2.3 A Line-Search Filter Method

Filter methods were originally proposed by Fletcher and Leyffer [14]. In the context of solving
the barrier problem (3) for µj, the basic idea behind this approach is to interpret (3) as a bi-
objective optimization problem with the two goals of minimizing the objective function ϕµj

(x) and
the constraint violation θ(x) := ‖c(x)‖ (with a certain emphasis on the latter quantity). Following

5

this paradigm, we might consider a trial point xk(αk,l) := xk + αk,ld
x
k during the backtracking line

search to be acceptable, if it leads to sufficient progress toward either goal compared to the current
iterate, i.e. if

θ(xk(αk,l)) ≤ (1− γθ)θ(xk) (18a)

or ϕµj
(xk(αk,l)) ≤ ϕµj

(xk)− γϕθ(xk) (18b)

holds for fixed constants γθ, γϕ ∈ (0, 1). However, the above criterion is replaced by requiring
sufficient progress in the barrier objective function, whenever for the current iterate we have θ(xk) ≤
θmin, for some constant θmin ∈ (0,∞], and the following “switching condition”

∇ϕµj
(xk)

T dx
k < 0 and αk,l[−∇ϕµj

(xk)
T dx

k]sϕ > δ [θ(xk)]
sθ , (19)

with constants δ > 0, sθ > 1, sϕ ≥ 1 holds. If θ(xk) ≤ θmin and (19) is true for the current step size
αk,l, the trial point has to satisfy the Armijo condition

ϕµj
(xk(αk,l)) ≤ ϕµj

(xk) + ηϕαk,l∇ϕµj
(xk)

T dx
k , (20)

instead of (18), in order to be acceptable. Here, ηϕ ∈ (0, 1
2) is a constant. If the projection of the

top-left matrix in (13) onto the null space of AT
k is uniformly positive definite, it can be shown that

condition (19) becomes true if a feasible, but non-optimal point is approached. Enforcing decrease
in the objective function by (20) then prevents the method from converging to such a point. In
accordance with previous publications on filter methods (e.g. [13, 15]) we may call a trial step size
αk,l for which (19) holds, a “ϕ-step size.”

In order to prevent the method from cycling, the algorithm maintains a “filter” Fk ⊆ {(θ, ϕ) ∈
R

2 : θ ≥ 0}, a set of (θ, ϕ)-pairs that define a “prohibited” region for a trial point in iteration k.
During the line search, a trial point xk(αk,l) is rejected, if it is not acceptable to the current filter,
i.e. if (θ(xk(αk,l)), ϕµj

(xk(αk,l))) ∈ Fk. At the beginning of the optimization, the filter is initialized
to

F0 := {(θ, ϕ) ∈ R
2 : θ ≥ θmax} (21)

for some θmax. Later, the filter is augmented for a new iteration using the update formula

Fk+1 := Fk ∪
{

(θ, ϕ) ∈ R
2 : θ ≥ (1− γθ)θ(xk) and ϕ ≥ f(xk)− γϕθ(xk)

}

, (22)

if the accepted trial step size does not satisfy the switching condition (19) or the Armijo condi-
tion (20). In this way, the iterates cannot return to the neighborhood of xk. On the other hand,
if both (19) and (20) hold for the accepted step size, the filter remains unchanged. Because such
an iteration guarantees sufficient progress in the objective function, it may be called a “ϕ-type
iteration.”

Finally, in some cases it is not possible to find a trial step size αk,l that satisfies the above criteria.
We approximate a minimum desired step size using linear models of the involved functions. For
this, we define

αmin
k := γα ·

min

{

γθ,
γϕθ(xk)

−∇ϕµj
(xk)T dx

k

, δ[θ(xk)]sθ

[−∇ϕµj
(xk)T dx

k
]sϕ

}

if ∇ϕµj
(xk)

T dx
k < 0

γθ otherwise,

(23)

with a “safety factor” γα ∈ (0, 1]. If the backtracking line search encounters a trial step size with
αk,l ≤ αmin

k , the algorithm reverts to a feasibility restoration phase. Here, the algorithm tries to

6

find a new iterate xk+1 > 0 which is acceptable to the current filter and for which (18) holds,
by reducing the constraint violation with some iterative method. Note that the restoration phase
algorithm might not be able to produce a new iterate for the filter line-search method, for example
when the problem is infeasible. In this case, a suitable restoration phase algorithm should converge
to a local minimizer (or at least a stationary point) for the constraint violation, indicating to the
user that the problem seems (at least locally) infeasible. Details on the implemented restoration
phase are presented in Section 3.3.

The filter line search is applied to solve the barrier problem for a fixed value, µl, of the barrier
parameter. Whenever µl is decreased, the filter Fk is reset to its initial definition (21).

2.4 Second-Order Corrections

Many methods for nonlinear optimization use second-order corrections (see e.g. [12, 7]) to improve
the proposed step if a trial point has been rejected. A second-order correction (SOC) for some step
d̃x

k aims to reduce the infeasibility by applying an additional Newton-type step for the constraints
at the point xk + d̃x

k, using the Jacobian AT
k at xk. For example, in the proposed method, if the first

trial step size αk,0 has been rejected and if θ(xk(αk,0)) ≥ θ(xk), a second-order correction dx,soc
k

(for the step d̃x
k = αx

k,0d
x
k) is computed that satisfies

AT
k dx,soc

k + c(xk + αx
k,0d

x
k) = 0. (24)

The new corrected search direction is then obtained from

dx,cor
k = αk,0d

x
k + dx,soc

k . (25)

Condition (24) does not uniquely define the second-order correction, and different choices would
be possible. In order to avoid additional matrix factorizations, the proposed method uses the same
matrix as in (13) to compute the overall corrected step (25) from

[

Wk + Σk + δwI Ak

AT
k −δcI

](

dx,cor
k

dλ
k

)

= −
(

∇ϕµj
(xk) + Akλk

csoc
k

)

. (26)

Here, we choose
csoc
k = αk,0c(xk) + c(xk + αk,0d

x
k), (27)

which is obtained from (13), (24) and (25).
Once the corrected search direction dx,cor

k has been computed, we again apply the fraction-to-
the-boundary rule

αsoc
k := max

{

α ∈ (0, 1] : xk + αdx,cor
k ≥ (1− τj)xk

}

(28)

and check if the resulting trial point xsoc
k := xk + αsoc

k dx,cor
k is acceptable to the filter and satisfies

the filter acceptance criteria. Note that the original search direction dx
k is used in (19) and (20).

If this trial point passes the tests, it is accepted as the new iterate. Otherwise, we apply addi-
tional second-order corrections, until the correction step has not decreased the constraint violation
by a fraction κsoc ∈ (0, 1) or a maximum number pmax of second-order corrections has been per-
formed. In that case, the original search direction dx

k is restored and the regular backtracking line
search is resumed with a shorter step size αk,1 = 1

2αk,0.

Note that by choosing to apply the second-order correction at the step d̃x
k = αx

k,0d
x
k instead of,

say, the full step dx
k, no additional evaluation of the constraints is required. This also guarantees

that the constraints are never evaluated for arguments violating the bound constraints (2c), at
which they might not be defined.

7

2.5 The Algorithm

Next we formally state the overall filter line-search algorithm for solving the barrier problem (3).

Algorithm A (Line-Search Filter Barrier Method).
Given: Starting point (x0, λ0, z0) with x0, z0 > 0; initial value for the barrier parameter µ0 > 0;
constants smax ≥ 1; κε > 0; κµ ∈ (0, 1); θµ ∈ (1, 2); τmin ∈ (0, 1); κΣ > 1; θmax ∈ (θ(x0),∞];
θmin > 0 γθ, γϕ ∈ (0, 1); δ > 0; γα ∈ (0, 1]; sθ > 1; sϕ ≥ 1; ηϕ ∈ (0, 1

2); pmax ∈ {0, 1, 2, . . .}.

A-1. Initialize. Initialize the iteration counters j ← 0 and k ← 0, as well as the filter F0 from (21).
Obtain τ0 from (8).

A-2. Check convergence for the overall problem. If E0(xk, λk, zk) ≤ εtol (with the error estimate E0

defined in (5)), then STOP [CONVERGED].

A-3. Check convergence for the barrier problem. If Eµj
(xk, λk, zk) ≤ κεµj, then:

A-3.1. Compute µj+1 and τj+1 from (7) and (8), and set j ← j + 1;

A-3.2. Re-initialize the filter Fk ← {(θ, ϕ) ∈ R
2 : θ ≥ θmax};

A-3.3. If k = 0 repeat this Step A-3, otherwise continue at A-4.

A-4. Compute the search direction. Compute (dx
k , dλ

k , dz
k) from (13), where δw and δc are obtained

from Algorithm IC described in Section 3.1.

A-5. Backtracking line search.

A-5.1. Initialize the line search. Set αk,0 = αmax
k with αmax

k from (15a), and set l← 0.

A-5.2. Compute the new trial point. Set xk(αk,l) := xk + αk,ldk.

A-5.3. Check acceptability to the filter. If (θ(xk(αk,l)), ϕµj
(xk(αk,l)) ∈ Fk, reject the trial step

and go to Step A-5.5.

A-5.4. Check sufficient decrease with respect to the current iterate.

• Case I: θ(xk) ≤ θmin and (19) holds: If (20) holds, accept the trial step xk+1 :=
xk(αk,l) and go to A-6. Otherwise, continue at A-5.5.

• Case II: θ(xk) > θmin or (19) is not satisfied: If (18) holds, accept the trial step
xk+1 := xk(αk,l) and go to A-6. Otherwise, continue at A-5.5.

A-5.5. Initialize the second-order correction. If l > 0 or θ(xk,0) < θ(xk), skip the second-order
correction (SOC) and continue at A-5.10. Otherwise, initialize the SOC counter p← 1
and csoc

k from (27). Initialize θsoc
old ← θ(xk).

A-5.6. Compute the second-order correction. Compute dx,soc
k and dλ

k from (26), αsoc
k from (28),

and xsoc
k := xk + αsoc

k dx,cor
k .

A-5.7. Check acceptability to the filter (in SOC). If (θ(xsoc
k), ϕµj

(xsoc
k)) ∈ Fk, reject the trial

step size and go to Step A-5.10.

A-5.8. Check sufficient decrease with respect to the current iterate (in SOC).

• Case I: θ(xk) ≤ θmin and (19) holds (for αk,0): If (20) holds with “xk(αk,l)”
replaced by “xsoc

k ”, accept the trial step xk+1 := xsoc
k and go to A-6. Otherwise,

continue at A-5.9.

8

• Case II: θ(xk) > θmin or (19) is not satisfied (for αk,0): If (18) holds with
“xk(αk,l)” replaced by “xsoc

k ”, accept the trial step xk+1 := xsoc
k and go to A-

6. Otherwise, continue at A-5.9.

A-5.9. Next second-order correction. If p = pmax or θ(xsoc
k) > κsocθ

soc
old , abort SOC and

continue at A-5.10. Otherwise, increase the SOC counter p ← p + 1, and set csoc
k ←

αsoc
k csoc

k + c(xsoc
k) and θsoc

old ← θ(xsoc
k). Go back to A-5.6.

A-5.10. Choose the new trial step size. Set αk,l+1 = 1
2αk,l and l ← l + 1. If the trial step

size becomes too small, i.e. αk,l < αmin
k with αmin

k defined in (23), go to the feasibility
restoration phase in A-9. Otherwise, go back to A-5.2.

A-6. Accept the trial point. Set αk := αk,l (or αk := αsoc
k if the SOC point was accepted in A-5.8),

and update the multiplier estimates λk+1 and zk+1 from (14b) and (14c) with αz
k from (15b).

Apply (16) to correct zk+1 if necessary.

A-7. Augment the filter if necessary. If (19) or (20) do not hold for αk, augment the filter using
(22). Otherwise leave the filter unchanged, i.e. set Fk+1 := Fk.

A-8. Continue with the next iteration. Increase the iteration counter k ← k + 1 and go back to
A-2.

A-9. Feasibility restoration phase. Augment the filter using (22), and compute a new iterate xk+1

by decreasing the infeasibility measure θ(x), so that xk+1 is acceptable to the augmented
filter, i.e. (θ(xk+1), ϕµj

(xk+1)) 6∈ Fk+1. Then continue with the regular iteration in Step A-8.

If the evaluation of the objective function f or constraint functions c results in an error (such as
NaN, “Not a Number”, or Inf, “Infinity”) for a trial point xk,l, the step size is immediately rejected,
and the backtracking algorithm continues in Step A-5.10.

Note that in each iteration at least one trial point will be tested before the algorithm may switch
to the restoration phase. Also, the condition in Step A-3.3 ensures that eventually at least one step
is taken for each decreased value of the barrier parameter. This is necessary to achieve fast local
convergence in the neighborhood of a local solution satisfying the strong second-order optimality
conditions [4].

In our implementation, the `1 norm is used to measure the infeasibility, i.e. θ(x) = ‖c(x)‖1.
The values of the constants in our implementation (if their value has not yet been mentioned
earlier) are κε = 10; κµ = 0.2; θµ = 1.5; τmin = 0.99; γθ = 10−5; γϕ = 10−5; δ = 1; γα = 0.05;
sθ = 1.1; sϕ = 2.3; ηϕ = 10−4; pmax = 4; as well as µ0 = 0.1, θmax = 104 max{1, θ(x0)} and
θmin = 10−4 max{1, θ(x0)}, where x0 is the starting point. The numerical results in Section 4 were
obtained with εtol = 10−8.

3 Details of the implementation

3.1 Inertia Correction

In order to be able to compute the search direction from (11), we need to ensure that the iteration
matrix is non-singular. In addition, as mentioned earlier, the filter line-search method requires that
the matrix in the top-left block of (11), projected onto the null space of the constraint Jacobian AT

k ,
is positive definite1. These conditions are satisfied if the iteration matrix has the inertia (n,m, 0),

1The global convergence proof in [24] requires that the eigenvalues of the projection are uniformly bounded away
from zero. However, since guaranteeing this property does not seem to be possible without considerable computational

9

i.e. if it has exactly n positive, m negative, and no zero eigenvalues [20]. Therefore, if the inertia
of this matrix is not (n,m, 0), the linear system (13) is resolved in our implementation with a
modified iteration matrix for different trial values for the scalars δw, δc ≥ 0 until the inertia is as
desired. The inertia of the iteration matrix is readily available from several symmetric indefinite
linear solvers such as the factorization routine MA27 from the Harwell subroutine library [19] used
in our implementation.

Note that the desired inertia is obtained if δw is sufficiently large and the constraint Jacobian
∇c(xk)

T has full rank. If ∇c(xk)
T is rank-deficient, the matrix is singular as long as δc is zero, but

a positive value for δc and a sufficiently large value of δw gives the correct eigenvalue signatures2. In
practice, however, the iteration matrix can become so ill-conditioned that the factorization cannot
be performed successfully, even with very large values of δw and some δc > 0. In this case, we
give up on the current step computation and switch directly to the feasibility restoration phase,
hoping that the matrix has better properties close to feasible points. These observations motivate
the following heuristic for choosing δc and δw.

Algorithm IC (Inertia Correction).
Given: Constants 0 < δ̄min

w < δ̄0
w < δ̄max

w ; δ̄c > 0; 0 < κ−
w < 1 < κ+

w < κ̄+
w ; κc ≥ 0. Initialize

δlast
w ← 0 at the beginning of the optimization.

In each iteration k:

IC-1. Attempt to factorize the unmodified matrix in (13) with δw = δc = 0. If the matrix is
non-singular and its inertia is (n,m, 0), use the resulting search direction in the line search.
Otherwise continue with IC-2.

IC-2. If the iteration matrix has zero eigenvalues, set δc ← δ̄cµ
κc , otherwise set δc ← 0.

IC-3. If δlast
w = 0, set δw ← δ̄0

w, otherwise set δw ← max{δ̄min
w , κ−

wδlast
w }.

IC-4. Attempt to factorize the modified matrix in (13). If the inertia is now (n,m, 0), set δ last
w ← δw

and use the resulting search direction in the line search. Otherwise continue with IC-5.

IC-5. If δlast
w = 0, set δw ← κ̄+

wδw, otherwise set δw ← κ+
wδw.

IC-6. If δw > δ̄max
w , abort the search direction computation, skip the backtracking line search, and

switch directly to the restoration phase in Step A-9 of Algorithm A. Otherwise, go back to
IC-4.

In our implementation, we have δ̄min
w = 10−20, δ̄0

w = 10−4, δ̄max
w = 1040, δ̄c = 10−8, as well as

κ̄+
w = 100, κ+

w = 8, κ−
w = 1

3 and κc = 1
4 .

The above heuristic first checks in IC-1 if the unmodified matrix has the desired inertia so
that the “pure” Newton search direction is used whenever possible (with an exception mentioned
below). If IC-1 is unsuccessful, increasing values for δw are used. Note that the first trial value is
based on δlast

w , which stores the perturbation value from the last time a modification of the iteration
matrix was necessary. In this way, we attempt to find the smallest perturbation necessary (within
a factor of κ+

w) while at the same time avoiding futile factorizations in IC-4 for values of δw that
are too small. We here assume that the minimum necessary perturbation is of the same order of

effort, e.g. construction of the projected matrix explicitly, followed by an eigenvalue decomposition, we only guarantee
positive definiteness in each iteration.

2The minus sign for the δc-perturbation is used to avoid generating too many positive eigenvalues.

10

magnitude in successive iterations. The reason for using a much larger factor κ̄+
w in IC-5 for the

very first necessary correction than for the correction in later iterations is that we want to avoid
a high number of trial factorizations when the scale of the problem and the order of magnitude
for a successful correction is not yet known. By choosing κ−

w and κ+
w so that κ−

wκ+
w 6= 1 we avoid

situations where the same perturbation δw is used in successive iterations. Otherwise, the algorithm
could repeatedly produce very large steps dx

k due to a nearly singular iteration matrix, so that only
very small step sizes αk would be taken and little progress would be made.

A nonzero value for δc is always chosen if the unmodified iteration matrix has a zero eigenvalue,
as we assume that the singularity is caused by a rank-deficient constraint Jacobian. We do not
attempt to verify whether the singularity is instead caused by a singular projected Hessian matrix,
because this would increase the number of trial factorizations. Note that the nonzero value for δc

in Step IC-2 converges to zero as µ → 0 (if κc > 0), so that the perturbation is smaller when a
solution of the problem is approached.

In some problem instances, the iteration matrix is structurally singular, for example, when the
equality constraint gradients are always linearly dependent, or when the reduced Hessian is always
rank deficient. We therefore deviate from Algorithm IC in our implementation, if the iteration
matrix is singular in the first three iterations and if this can be corrected by choosing a positive
value for δc. In that case, the value of δc used in the later iteration will always be δ̄cµ

κc (also in
IC-1) in order to avoid futile factorizations with δc = 0. Similarly, if in the first three iterations
singularity of the iteration matrix can be avoided by choosing δw > 0, we assume that a correction
δw > 0 is necessary in any case, and Step IC-1 above is executed with δw = max{δ̄min

w , κ−
wδlast

w }.
We note that the optimization code LOQO [22] also uses a similar procedure to find an appro-

priate perturbation of the Hessian.

3.2 Two Accelerating Heuristics

One possible pitfall of the filter method described in Section 2.3 is that the filter Fk in the current
iteration might include (θ, ϕ)-pairs that have been added earlier for an iterate in a different region,
with similar values for ϕµj

(x) and θ(x) (see also [24, Remark 7]). This could prevent the algorithm
from taking good steps toward a nearby local solution. As a result, the backtracking line-search
algorithm might repeatedly cut back the step size, or could be forced unnecessarily to resort to the
feasibility restoration phase.

We also noticed that in some cases the full step (with αk,0 = αmax
k , even with a second-order

correction) is rejected in successive iterations, because it does not achieve sufficient progress with
respect to the current iterate (condition (18) or (20), respectively). This causes the algorithm to
make little progress, even though the method may converge faster when the acceptance of the full
step is temporarily allowed.

In order to avoid these inefficiencies, two heuristics are added to the proposed method. The
algorithm counts the number of successive iterations in which the first trial step (including a second-
order correction) is rejected. If this number exceeds a given threshold (four in our implementation),
then one of the following actions are taken after the last of those iterations, say iteration k:

• Case I: If θmax > θ(xk+1)/10, and the last unsuccessful trial step size (αk,l = 2αk) in the
backtracking line search was rejected in A-5.3 because the trial point was not acceptable to the
filter.

In this case, the current filter might be blocking good progress, caused by historic information
from iterates in a different (and now irrelevant) region of R

n. To avoid further inefficiencies,
the filter is re-initialized for the next iteration by setting Fk+1 = {(θ, ϕ) : θ ≤ θmax} in

11

Step A-7, after the maximal permitted constraint violation has been been reduced, i.e. θmax ←
0.1θmax. Note that the decrease of θmax ensures that the filter is not reset infinitely many
times, unless the infeasibility becomes arbitrarily small.

• Case II: Otherwise.

Here, we hope to overcome possible inefficiencies by tentatively ignoring the filter criteria
for one iteration, similar to a watchdog procedure [5] (with one relaxed step). In the next
iteration, k + 1, we choose αk+1 = αmax

k+1 without any backtracking line search. The filter is

not augmented in Step A-7 for iteration k + 1, and the search directions dx
k+1, dλ

k+1, dz
k+1

are stored as a backup. Then, new search directions dx
k+2 etc. are computed at the point

xk+2 = xk+1 + αmax
k+1d

x
k+1 etc. We check whether the trial point for the full step αmax

k+2 is
acceptable to the filter Fk+1 and satisfies the line-search acceptance criteria for the previous
iteration k + 1, i.e. whether “θ(xk+2 + αmax

k+2d
x
k+2) ≤ (1− γθ)θ(xk+1)” (similar to (18b)) or

ϕµj
(xk+2 + αmax

k+2d
x
k+2) ≤ ϕµj

(xk+1) + ηϕαmax
k+1∇ϕµj

(xk+1)
T dx

k+1,

(depending on the switching condition in Step A-5.4 for iteration k + 1). If these tests are
passed, the trial point is accepted as iterate xk+3, and λk+3 and zk+3 are updated accordingly.
In this case, we have made sufficient progress with respect to xk+1 within two iterations.
Otherwise, the tentative iterate xk+2 is abandoned, the original search directions dx

k+1, dλ
k+1,

dz
k+1 are restored, and the usual backtracking line-search procedure from xk+1 is resumed to

produce a new iterate xk+3 = xk+1 + αk+1,ld
x
k+1.

Even though these heuristics are not frequently activated and the watchdog heuristic might in
some cases increase the number of iterations, they appear to have an overall positive effect.

3.3 Feasibility Restoration Phase

A key ingredient of the filter line-search method is the feasibility restoration phase (see Step A-
9). The task of the restoration phase is to compute a new iterate acceptable to the augmented
filter Fk+1 by decreasing the infeasibility, whenever the regular backtracking line-search procedure
cannot make sufficient progress and the step size becomes too small (see Step A-5.10). In addition,
as mentioned in Section 3.1, the method switches to the restoration phase whenever the linear
system (13) is very ill-conditioned and cannot be factorized successfully despite modifications of
the iteration matrix. In summary, the feasibility restoration phase is very important in the sense
that it is invoked whenever the progress to the solution becomes difficult, and hence it needs to be
very robust.

The feasibility restoration phase has another significant purpose, namely to detect (local) infea-
sibility. Infeasible problems arise, for example due to modeling errors, and a user should be notified
quickly of a badly-posed problem. If the problem is infeasible, the algorithm is ultimately not able
to generate sufficient progress in the regular backtracking line-search procedure and reverts to the
restoration phase. We would then want the restoration phase to converge to a non-zero minimizer
of the constraint violation (in some norm), and in this way to provide an indication of infeasibility.

We note that for the global convergence proof of the filter line-search method in [24] it is
assumed that, in the neighborhood of feasible points, the gradients of the active constraints are
linearly independent. It is shown in [24] that as a consequence the algorithm does not switch to the
feasibility restoration phase at (almost) feasible points. However, in practice this assumption might
be violated, and the restoration phase might be called at a point with a very small (or zero) value
of θ. Since further reduction of the infeasibility might then be difficult and not lead to progress

12

in the optimization process, the current implementation of the algorithm terminates with an error
message, if the restoration phase is called at a point xk with θ(xk) < εtol.

Our “regular” restoration phase algorithm is described next. An alternative method is discussed
in Section 3.3.2. These algorithms are also iterative methods. In order to avoid confusion, we use
overbars (such as x̄) to denote quantities referring to the restoration phase and use the subscript t
for the restoration phase iteration counter.

3.3.1 Minimization of the Constraint Violation

In this section we describe the first algorithm for the restoration phase. The goal of this method
is to return a new iterate xk+1 > 0 with xk+1 6∈ Fk+1 for Step A-9, or to converge to a non-zero
minimizer (or at least a stationary point) of some norm of the constraint violation. The restoration
phase algorithm applies the primal-dual interior-point filter line-search algorithm outlined in the
previous sections to a smooth reformulation of the optimization problem

min
x̄∈

�
n

‖c(x̄)‖1 +
ζ

2
‖DR(x̄− x̄R)‖22 (29a)

s.t. x̄ ≥ 0. (29b)

Here, a term is included in the objective function that penalizes the deviation from a reference
point x̄R, where ζ > 0 is the weighting parameter, and the scaling matrix DR is defined by

DR = diag(min{1, 1/|x̄(1)
R |}, . . . ,min{1, 1/|x̄(n)

R |}).

The reference point x̄R is chosen to be the iterate xk at which the restoration phase is called in
Step A-9. In this way, we seek to decrease the constraint violation but try to avoid a large deviation
from x̄R and an undesired significant increase in the barrier objective function ϕµj

.
A smooth reformulation of (29) is obtained by introducing non-negative variables p̄, n̄ ∈ R

m

that capture the positive and negative parts of the constraints,

min
x̄∈

�
n,p̄,n̄∈

�
m

m
∑

i=1

(

p̄(i) + n̄(i)
)

+
ζ

2
‖DR(x̄− x̄R)‖22 (30a)

s.t. c(x̄)− p̄ + n̄ = 0 (30b)

x̄, p̄, n̄ ≥ 0. (30c)

This nonlinear optimization problem is of the form (2). We can therefore apply the “regular”
interior-point algorithm described in the earlier sections and solve a sequence of barrier problems

min
x̄∈

�
n,p̄,n̄∈

�
m

ρ

m
∑

i=1

(

p̄(i) + n̄(i)
)

+
ζ

2
‖DR(x̄− x̄R)‖22 − µ̄

n
∑

i=1

ln(x̄(i))− (31a)

µ̄

m
∑

i=1

ln(p̄(i))− µ̄

m
∑

i=1

ln(n̄(i))

s.t. c(x̄)− p̄ + n̄ = 0 (31b)

with the filter line-search procedure. We introduced the additional scaling parameter ρ > 0 in order
to allow a relative scaling of the overall objective function (31b) with respect to the constraints
(31b). By default, the parameter ρ is chosen to be 1000, which seems to work well in practice.

13

Note that if the regularization parameter ζ > 0 is chosen sufficiently small, the optimization
problem (30) is the exact penalty formulation [12] of the problem “find the feasible point that is
closest (in a weighted norm) to the reference point x̄R,”

min
x̄∈

�
n

‖DR(x̄− x̄R)‖22
s.t. c(x̄) = 0, x̄ ≥ 0.

This appears to be an intuitive goal for the restoration phase. An additional desired consequence of
the penalty term is that the optimal solution of (30) is usually a strict local solution, which makes
this nonlinear optimization problem easier to solve. This would usually not be the case for the
choice ζ = 0, because then all points in the manifold defined by “c(x) = 0” would be minimizers.
Since a sufficiently small value of the regularization parameter ζ is not known before a solution of
(29) is determined, we choose ζ =

√
µ̄, so that ζ is driven to zero together with µ̄.

In addition to the original variables x̄, the barrier problem (31) contains the variables p̄ and
n̄, and the corresponding primal-dual equations (similar to (4)) include their accompanying dual
variables, say z̄p and z̄n. Search directions for the line search are, as before, obtained by linearization
of these equations. Some straight-forward algebraic manipulations show that they can be computed
from (omitting the iteration index t for simplicity)

[

W̄ + ζD2
R + Σ̄ ∇c(x̄)

∇c(x̄)T −Σ̄−1
p − Σ̄−1

n

](

d̄x

d̄λ

)

= −
(

ζD2
R(x̄− x̄R) +∇c(x̄)λ̄− µX̄−1e

c(x̄)− p̄ + n̄ + ρZ̄−1
p (µe− p̄) + ρZ̄−1

n (µe− n̄)

)

,

(32)
where W̄ =

∑m
i=1 λ̄(i)∇2

xxc(x̄), Σ̄p = P̄−1Z̄p, and Σ̄n = N̄−1Z̄n. Subsequently, d̄p, d̄n, d̄zp and d̄zn

are obtained from

d̄p = Z̄−1
p (µ̄e + P̄ (λ̄ + d̄λ)− ρ p̄) d̄zp = µ̄P̄−1e− z̄p − Σ̄pd̄

p

d̄n = Z̄−1
p (µ̄e− N̄(λ̄ + d̄λ)− ρ n̄) d̄zn = µ̄N̄−1e− z̄n − Σ̄nd̄n,

and d̄z from
d̄z = µ̄X̄−1e− z̄ − Σ̄d̄x.

Note that the structure of the nonzero elements of the linear system in (32) is identical to the one
in (13), which allows us to use the same code (and symbolic factorization) in the step computations
as for the regular iteration, including the Hessian correction mechanism described in Section 3.1.
Here, we keep δc = 0 at all times since the Jacobian of the constraint (31b) cannot be rank-deficient.
We note that second-order corrections as described in Section 2.4 have not been implemented for
the restoration phase.

The filter line-search method applied to (31) might itself revert to a restoration phase. If this
occurs, we compute the optimal solution of (31) for a fixed value of x̄ (namely the current iterate
x̄t) and use this as the “result” of the restoration phase within the restoration phase. Since (31)
then becomes separable, this can easily be done by solving a quadratic equation for each (p̄(i), n̄(i))
pair, that is

n̄(i) =
µ̄− ρ c(i)(x̄)

ρ
+

√

(

µ̄− ρ c(i)(x̄)

ρ

)2

+
µ̄ c(i)(x̄)

2ρ
p̄(i) = c(i)(x̄)− n̄(i). (33)

Since the gradients of the constraints (31b) always have full rank, the analysis in [24] shows that
the restoration phase (within the restoration phase filter algorithm) is not invoked at a feasible
point (for (31)).

14

At the beginning of the restoration phase algorithm, the first barrier parameter µ̄0 is chosen
to be the maximum of the current barrier parameter, µj, of the regular iteration and ‖c(xk)‖∞.
The initial value for x̄0 is simply chosen as the regular iterate xk at which the restoration phase

is called (identical to x̄R). To initialize the dual variables we set λ̄0 = 0 and z̄
(i)
0 = min{ρ, z

(i)
k },

for i = 1, . . . , n. Furthermore, p̄0 and n̄0 are computed from (33), and their dual variables are
initialized as z̄p,0 = µ̄(P̄0)

−1e and z̄n,0 = µ̄(N̄0)
−1e. In this way, the optimality conditions for the

variables added for the restoration phase problem are all satisfied at the starting point, so that the
first restoration phase step usually tends to reduce θ(x) = ‖c(x)‖1 without being “distracted” by
the introduction of the new variables.

The restoration phase is discontinued as soon as (i) the current restoration phase iterate, say
x̄t, is acceptable for the augmented regular filter (i.e. x̄t 6∈ Fk+1, see Step A-9) and (ii) θ(xt) ≤
κrestoθ(x̄R) for some constant κresto ∈ (0, 1) (κresto = 0.9 in our implementation). The motivation for
the second condition is to ensure that once the restoration phase is activated, reasonable progress
toward feasibility is achieved; this has proven advantageous in our numerical experiments. The
regular method is then resumed from xk+1 = x̄t. Note, that because an interior-point algorithm
is used to solve (30), it is guaranteed that x̄t > 0. In order to compute a step for the bound
multipliers z after the return to the regular method, we pretend that the entire progress during the
restoration phase was one single step, dx

k := xk+1−xk, and obtain zk+1 from (12), (14c) and (15b).
The equality constraint multipliers are re-initialized as described in Section 3.6 below.

On the other hand, if the termination criterion (6) for the restoration phase problem is satisfied
before the regular method is resumed, the proposed algorithm terminates with the message that
the problem is locally infeasible.

3.3.2 Reducing the KKT Error

As mentioned earlier in Section 3.2, “historic” information in the filter Fk originating from points in
a different region of R

n can prevent fast progress in the neighborhood of a local solution (x∗, λ∗, z∗).
The heuristics in Section 3.2 might not always be able to overcome this difficulty, so that eventually
the restoration phase might be invoked. However, the regular iteration steps are Newton(-type)
steps for the primal-dual equations, and should therefore be taken close to (x∗, λ∗, z∗).

Therefore, we do not immediately revert to the algorithm described in Section 3.3.1 when the
restoration phase is called in Step A-9. Instead, we try to achieve reduction in the norm of the
primal-dual equations, using the regular iteration steps (as proposed in [24, Remark 8]). In the
following description of this procedure, Fµ(x, λ, z) denotes the nonlinear system of equations on
the left hand side of (4).

Algorithm KKT Error Reduction.
Given: Constant κF ∈ (0, 1) (κF = 0.999 in our implementation).

R-0. Initialize the restoration phase iteration counter t← 0 and choose the current “regular” iterate
as starting point: (x̄0, λ̄0, z̄0) = (xk, λk, zk).

R-1. Compute a search direction (d̄x
t , d̄λ

t , d̄z
t) using the regular iteration matrix from (11)–(12) (with

the appropriate substitutions). The modifications described in Section 3.1 are applied. Note
that for t = 0 this search direction has already been computed in the regular iteration.

R-2. Apply the fraction-to-the-boundary rule

β̄t := max
{

β ∈ (0, 1] : x̄t + βd̄x
t ≥ (1− τj)x̄t and z̄t + βd̄z

t ≥ (1− τj)z̄t

}

15

R-3. Test whether
∥

∥Fµ

(

x̄t+1, λ̄t+1, z̄t+1

)∥

∥

1
≤ κF

∥

∥Fµ

(

x̄t, λ̄t, z̄t

)∥

∥

1

with
(

x̄t+1, λ̄t+1, z̄t+1

)

=
(

x̄t, λ̄t, z̄t

)

+ βt

(

d̄x
t , d̄λ

t , dz
t

)

.

If the evaluation of the functions at the trial point results in an error, or if this decrease
condition is not satisfied, discard the trial point and switch to the robust restoration phase
algorithm described in Section 3.3.1.

R-4. If (θ(x̄t+1), ϕµj
(x̄t+1)) 6∈ Fk+1, return (xk+1, λk+1, zk+1) := (x̄t+1, λ̄t+1, z̄t+1) as the result of

the restoration phase, and continue the regular interior-point method. Otherwise, set t← t+1
and continue with Step R-1.

In the neighborhood of a strict local solution satisfying the second-order sufficient optimality con-
ditions for the barrier problem, the projection of the Hessian Wt + Σt onto the null space of the
constraint Jacobian ∇c(x̄t)

T is positive definite, and therefore no modification of the iteration ma-
trix, as described in Section 3.1, is applied. As a consequence, the search directions computed from
(11)–(12) are the Newton steps for (4), so that the above procedure will accept those steps and
quickly converge toward this solution, if it is started sufficient close.

Since the norm of the KKT conditions is decreased by at least a fixed fraction, κF , it is guar-
anteed that the method eventually either resumes the regular procedure, Algorithm A, or reverts
to the restoration phase described in Section 3.3.1.

The above algorithm is not attempted, if the restoration phase is triggered in the regular method
because of numerical problems during the solution of the linear system (11) in Step IC-6. In that
case, the method immediately proceeds to the restoration phase described in the previous section.

3.4 General Lower and Upper Bounds

For simplicity, the algorithm has been described for solving optimization problems of the form
(2), but it is straight-forward to generalize the procedures outlined so far to the more general
formulation (1). In particular, the resulting barrier problem then becomes

min
x∈

�
n

ϕµj
(x) = f(x)− µ

∑

i∈IL

ln
(

x(i) − x
(i)
L

)

− µ
∑

i∈IU

ln
(

x
(i)
U − x(i)

)

(34a)

s.t. c(x) = 0 (34b)

where IL = {i : x
(i)
L 6= −∞} and IU = {i : x

(i)
U 6=∞}. Bound multipliers z

(i)
L and z

(i)
U are introduced

for all finite lower and upper bounds, and the primal-dual Hessian Σk of the barrier terms is defined
as the sum of ΣL

k = diag(σL
k,1, . . . , σ

L
k,n) and ΣU

k = diag(σU
k,1, . . . , σ

U
k,n), where

σL
k,i =

{

z
(i)
L,k/

(

x
(i)
k − x

(i)
L

)

if i ∈ IL

0 otherwise
, σU

k,i =

{

z
(i)
U,k/

(

x
(i)
U − x

(i)
k

)

if i ∈ IU

0 otherwise
.

For completeness, we define z
(i)
L,k = 0 for i 6∈ IL and z

(i)
U,k = 0 for i 6∈ IU .

If the given lower and upper bounds for a variable are identical, this component of x is fixed to
this value for all function evaluations and removed from the problem statement.

16

3.5 Handling Problems Without a Strict Relative Interior

As a barrier method, the proposed algorithm relies on the existence of a strict relative interior of
the feasible region, i.e. of points x with xL < x < xU and c(x) = 0, since otherwise a solution to the
barrier problem (34) does not exist. However, this assumption can easily be violated in practice,

for example if the equality constraints implicitly imply x(i) = x
(i)
L for some i-th component. In

such a case, in the process of trying to find a feasible point for a fixed value of µj, the algorithm

might generate a sequence of iterates where x
(i)
k − x

(i)
L becomes very small. This in turn can lead

to numerical difficulties during the solution of the linear system (11), because the corresponding

entry in Σk, which is of the order of µj/(x
(i)
k − x

(i)
L)2 (see (17)), becomes very large.

As a remedy, we found it helpful to slightly relax the bounds before solving the problem by

x
(i)
L ← x

(i)
L − 10−8 max{1, |x(i)

L |} (35)

(similarly for xU), in order to avoid an empty relative interior from the very beginning. Since this
perturbation is of the order of the termination tolerance, we believe that this does not constitute
an unwanted modification of the problem statement.

Furthermore, the lower bound on x(i) is slightly relaxed by 10εmach max{1, x(i)
L }, whenever

x
(i)
k − x

(i)
L < 10−40, where εmach ≈ 10−16 is the machine precision. An analogous procedure is

applied for very small slack to upper bounds. Even if these corrections are applied repeatedly,
the changes are so small that the problem statement is essentially not modified, but the numerical
difficulties are usually avoided.

3.6 Initialization

Since the algorithm requires the iterates to strictly satisfy the bound constraints (1c), it is often
necessary to modify the user-provided initial point so that it is sufficiently away from the boundary.
For this purpose, each component i of the initial point, which has only one (say, a lower) bound, is
modified by

x
(i)
0 ← max

{

x
(i)
0 , x

(i)
L + κ1 max{1, |x(i)

L |}
}

for a constant κ1 > 0 (similarly for variables only bounded above). The initial value of a variable

x(i) bounded on two sides is projected into the interval [x
(i)
L +p

(i)
L , x

(i)
U −p

(i)
U] with the perturbations

p
(i)
L := min{κ1 max{1, |x(i)

L |}, κ2(x
(i)
U − x

(i)
L)}

p
(i)
U := min{κ1 max{1, |x(i)

U |}, κ2(x
(i)
U − x

(i)
L)},

for some κ2 ∈ (0, 1
2). The default choices in our implementation are κ1 = κ2 = 10−2.

The dual variables corresponding to the bound constraints are initialized to one component-wise.
Finally, using the possibly modified initial point x0 and the initial bound multipliers, the multipliers
λ0 for the equality constraints are obtained as least-square solutions for the dual infeasibility (4a),
i.e. by solving the linear system

[

I ∇c(x0)
∇c(x0)

T 0

](

w
λ0

)

= −
(

∇f(x0)− zL,0 + zU,0

0

)

, (36)

where w is discarded after this computation. However, if λ0 obtained in this way is too large, i.e.
if ‖λ0‖∞ > λmax (with λmax = 103 in our implementation), the least square estimate is discarded
and we set λ0 = 0. In practice this seems to avoid poor initial guesses for λ0 in cases where the

17

constraint Jacobian is nearly linearly dependent at the initial point. This procedure for estimating
the equality constraint multipliers is also used after the restoration phase algorithm described in
Section 3.3.1 reverts to the regular method.

3.7 Handling Unbounded Solution Sets

In some cases, the set S∗ of optimal points for (1) does not consist of isolated points, but contains
an unbounded connected component. Then, the objective function of the corresponding barrier
problem (34) for a fixed value of µj is unbounded below over the feasible set, since a log-barrier
term converges to −∞ as its argument goes to infinity. As a consequence, the method for solving
the barrier problem might fail to converge, even though the original problem is well-posed.

In order to prevent this behavior, linear damping terms for all variables with exactly one finite
bound are added to the barrier objective function (34a), which then becomes

ϕµj
(x) = f(x)− µj

∑

i∈IL

ln
(

x(i) − x
(i)
L

)

− µj

∑

i∈IU

ln
(

x
(i)
U − x(i)

)

+κdµj

∑

i∈IL\IU

(

x(i) − x
(i)
L

)

+ κdµj

∑

i∈IU\IL

(

x
(i)
U − x(i)

)

for a positive constant κd > 0 independent of µj (κd = 10−4 in our implementation). In this
way, divergence of variables that have only one bound is penalized. On the other hand the effect
of the damping term is reduced as µj decreases. This corresponds to a permutation of the dual
infeasibility (4a) by δµje. In our numerical tests, this modification led to improved robustness.

3.8 Automatic Scaling of the Problem Statement

The Newton steps for the primal dual equations (4) computed from (11) are invariant to scaling of
the variables, the objective and constraint functions, i.e. to replacing x, f , and c by x̃ = Dxx,
f̃(x) = dff(x) and c̃(x) = Dcc(x) for some df > 0 and positive definite diagonal matrices

Dx = diag(d
(1)
x , . . . , d

(n)
x), Dc = diag(d

(1)
c , . . . , d

(m)
c). However, the overall optimization algorithm

with its initialization procedures, globalization strategy and stopping criteria usually behaves very
differently for different scaling factors, particularly if the scaling factors are very large or very small.
In addition, numerical difficulties due to finite precision are more likely to arise if the occurring
numbers are of very different orders of magnitude.

Automatic scaling of optimization problems has been examined in the past, but it is not clear
how in the nonlinear case, the variables and functions should be scaled in order to obtain good
efficiency and robustness (where the sensitivities of functions with respect to changes in variables
might vary drastically from one iteration to another).

In the context of this paper we take the perspective that ideally we would like to scale the
variables and functions so that changing a variable by a given amount has a comparable effect on
any function which depends on this variables, or in other words, so that the non-zero elements of
the function gradients are of the same order of magnitude (say, 1).

We experimented with applying an equilibration algorithm (implemented in the Harwell [19]
subroutines MC19 and MC29) to the first derivative matrix

J0 =

[

∇xc(x0)
T

∇xf(x0)
T

]

18

to obtain scaling matrices Dx and Dcf = diag(Dc, df) so that the nonzero elements in DcfJ0D
−1
x

are of order one (as proposed in [6]). Similarly, we computed scaling factors so that the matrix

[

D−1
x 0
0 Dc

][

∇2
xxf(x0) ∇xc(x0)
∇xc(x0)

T 0

][

D−1
x 0
0 Dc

]

has non-zero entries close to one. While these strategies seem to work well in some instances, the
overall performance on the considered test set became worse. Nevertheless, these procedures are
available to users of our implementation as options.

The automatic scaling procedure finally used by default in the proposed method is rather conser-
vative and assumes that usually the given problem is well scaled and does not require modification,
unless some sensitivities are large. Given a threshold value gmax > 0 (100 in our implementation),
we choose the scaling factors according to

df = min{1, ‖∇xf(x0)‖∞/gmax}, d(j)
c = min{1, ‖∇xc(j)(x0)‖∞/gmax}, j = 1, . . . ,m

and we set Dx = I. Note that this will never multiply a function by a number larger than one,
and that all gradient components in the scaled problem are at most of the size gmax at the starting
point.

The scaling factors are computed only at the beginning of the optimization using the starting
point after the modifications described in Section 3.6.

3.9 Handling Very Small Search Directions

In a few instances we observed that the search directions dx
k generated from (13) become very small

compared to the size of the iterate xk itself. This can for example occur if the primal variables are
already very close to their final optimal value, but the dual variables have not yet converged. We
also observed this situation for very ill-scaled problems. Performing the regular backtracking line-
search procedure can then be unsuccessful due to rounding errors, and can result in an unnecessary
switch to the restoration phase. In order to prevent this, we allow the algorithm to take the full

step with αk = αmax
k whenever max{|(dx

k)(i)|/(1 + |x(i)
k |) : i = 1, . . . , n} < 10εmach. If this is true

for two consecutive iterations, the algorithm assumes that the current barrier problem has been
solved as well as possible given the finite precision, and reduces the barrier parameter in A-3. If µj

is already very small (εtol/10), the algorithm terminates with a warning message.

3.10 Numerical Issues

In our implementation of the proposed algorithm, the linear systems (13) and (32) are solved by
the Harwell routine [19] MA27, after they have been equilibrated with the scaling routine MC19.
As default pivot tolerance for MA27 we specify εpiv = 10−8. In our experience it is very important
to use iterative refinement in order to improve robustness of the implementation and to be able to
obtain highly accurate solutions. Whereas iterative refinement on the linear systems of the form
(13) itself provides somewhat better search directions than using no iterative refinement, we found
that a considerable gain in robustness and precision can be achieved by applying iterative refinement
on the unreduced non-symmetric Newton system (such as (9), but including the perturbations δw

and δc). Here, we still use (13) and (12) to solve the linear system, but compute the iterative
refinement residual for the larger linear system (9). This appears to be particularly important for a
numerically robust implementation of the restoration phase, where iterative refinement only on (32)
seems not sufficient to solve the restoration phase problem to the default tolerance, even for very

19

large pivot tolerances εpiv. We believe that this is partly due to the fact that the diagonal elements
in the smaller matrices are obtained by adding numbers that may be very different in magnitude,
which may lead to severe rounding error. For example, if a variable with two bounds converges to
one of its bounds, then the corresponding entry in Σk is obtained by adding two numbers, on of
which converges to zero, and the other one goes to infinity in the limit.

In addition, if the linear systems cannot be solved sufficiently well despite iterative refinement,

the algorithm increases the pivot tolerance for the linear solver by εpiv ← max{10−2, ε
3/4
piv }. Here,

the pivot tolerance it increased at most once per iteration. If an increase in the pivot tolerance
does still not lead to a sufficiently small residual, the search direction is used as is.

In order to handle round-off error in the acceptance criteria, such as (18) and (20), we relax
those slightly based on the machine precision εmach. For example, (20) is replaced in the code by

ϕµj
(xk,l)− ϕµj

(xk)− 10εmach|ϕµj
(xk)| ≤ ηϕαk,l∇ϕµj

(xk)
T dx

k.

4 Numerical Results

In the following sections we examine the practical behavior of the algorithm proposed in this paper.
Our implementation, called IPOPT, is written in Fortran 77 and available as open source3. The
numerical results have been obtained on a PC with a 1.66 GHz Pentium IV microprocessor and 1
GB of memory running RedHat Linux 9.0. The executables were generated with the Intel Fortran
compiler version 7.1, using the flags “-O3 -mp -pc64”. The source code for the required BLAS
and LAPACK routines have been obtained from www.netlib.org and compiled with the rest of
the code.

For the numerical comparison we use the CUTEr test set [18] (as of Jan 1, 2004). Here,
problems with general inequality constraints of the form “dL ≤ d(x) ≤ dU” are reformulated into
the formulation (1) by adding slack variables dL ≤ s ≤ dU and replacing the inequality constraint
by “d(x)− s = 0.” The initial point for the slack variables is chosen as s0 = d(x̃0), where x̃0 is the
starting point given by CUTEr for the original problem formulation.

The test problems initially used in our experiments were all 979 problems with analytical twice
continuously differentiable functions that have at least as many free variables as equality constraints,
after the reformulation of the general inequality constraints. For problems with variable size we
used the default size, except for 46 cases where we decreased the number of variables in order to
allow a solution within the given time limit4. The problems vary in size from n = 2, . . . , 125, 000
variables and m = 0, . . . , 125, 000 constraints (after the introduction of slack variables).

IPOPT was run for the test set using the default options and a termination tolerance of εtol =
10−8 with a CPU time limit of 1 hour and an iteration limit of 3000. (The iteration count includes
the iterations in the restoration phase algorithms.) Based on those results, we removed 11 problems
from the test set used later, because they appeared unbounded below5. The problems S365 and
S365MODwere excluded because the constraint Jacobian could not be evaluated at the starting point.

3The source code for IPOPT is available at http://www.coin-or.org/Ipopt. In addition, readily available BLAS
and LAPACK routines as well as certain subroutines from the Harwell library are required to compile the IPOPT

executable.
4The problems with altered problem size are CATENARY, CHARDIS1, CONT5-QP, CONT6-QQ, CVXQP1, CVXQP2,

CVXQP3, DRCAV1LQ, DRCAV2LQ, DRCAV3LQ, DRCAVTY3, EG3, EIGENA, EIGENALS, EIGENB, EIGENB2, EIGENBCO,

EIGENBLS, EIGENC, EIGENC2, EIGENCCO, EIGENCLS, FLOSP2HH, FLOSP2HL, FLOSP2HM, FMINSURF, GAUSSELM,

HARKERP2, LUBRIF, LUBRIFC, NCVXQP[1-9], NONCVXU2, NONMSQRT, POWER, SCURLY30, SPARSINE, SPARSQUR.
5IPOPT failed to converge and was able to produce iterates with very small constraint violation and at the same

time very large negative values of the objective function for the following problems: FLETCBV3, FLETCHBV, INDEF,

LUKVLE2, LUKVLE4, LUKVLI2, LUKVLI4, MESH, RAYBENDL, RAYBENDS, STATIC3.

20

In addition, VANDERM4was removed since at the initial point ‖c(x0)‖ ≈ 1063, and numerical problems
occurred. Finally, we excluded 11 problems on which IPOPT with default options terminated at a
point x̃∗ satisfying the termination criterion for the feasibility restoration phase problem (29) (for
the tolerance εtol = 10−8) with ‖c(x̃∗)‖1 >

√
εtol, and for which also the optimization codes KNITRO

and LOQO (see Section 4.2 below) both failed. These problem might truly be infeasible6. We note
that IPOPT was able to converge to a point satisfying the convergence tolerance for the restoration
phase problem within the given iteration limit, therefore producing a user message indicating that
the problem seems locally infeasible, whereas the other methods (except in two cases) exceeded the
iteration limit.

Of the remaining 954 problems, which are those used in the comparisons in the next sections,
IPOPT was able to solve 895 problems. This corresponds to a success rate of 93.8%. In 7 cases,
it failed to converge within the time limit7, and in 24 cases the iteration limit was exceeded.
Furthermore, IPOPT aborted in 3 problems because it reverted to the restoration phase when the
constraint violation was already below the termination tolerance, and in 21 problems because the
restoration phase algorithm encountered points where the infeasibility was below the convergence
tolerance, but the point was not acceptable to the (regular) filter. Finally, in 3 cases IPOPT

converged to a stationary point for the infeasibility (but at least one of the codes LOQO and
KNITRO was able to solve the problem), and in one case the evaluation of the constraints was
repeatedly unsuccessful (producing the IEEE numbers Inf or NaN).

For the comparisons in the next sections we make use of the Dolan-Moré performance profiles
[9]. Given a test set P containing np problems, and ns runs (e.g. obtained with different solver
options) for each problem, these profiles provide a way to graphically present the comparison of
quantities tp,s (such as number of iterations or required CPU time) obtained for each problem p
and each option s. For this, the performance ratio for a problem p and option s is defined as

rp,s :=
tp,s

min {tp,s : 1 ≤ s ≤ ns}
. (37)

If the option s for problem p leads to a failure, we define rp,s :=∞. Then,

ρs(τ) :=
1

np
card {p ∈ P : rp,s ≤ τ}

is the fraction of the test problems that were solved by the option s within a factor τ ≥ 1 of the
performance obtained by the best option. The performance plots present ρs for each option s as a
function of τ ; in this paper we use a logarithmic scale for the τ -axis.

Since the considered optimization methods only try to find local solutions of the problems, it
can easily happen that two different options converge to different local solutions. In an attempt to
avoid comparisons of runs to different local solutions, we exclude those problems for which the final
values of the objective functions f(x1

∗), . . . , f(xns
∗) were not close, that is we discard those problems

from a performance plot for which

fmax
∗ − fmin

∗

1 + max{|fmin
∗ |, |fmax

∗ |} > 10−1, (38)

where fmax
∗ = max{f(x1

∗), . . . , f(xns
∗)} and fmin

∗ = min{f(x1
∗), . . . , f(xns

∗)}, with the objective
functions values of unsuccessful runs omitted.

6Those problems were: CONT6-QQ, DRCAVTY3, FLOSP2HH, FLOSP2HL, FLOSP2HM, HIMMELBD, JUNKTURN,

LUBRIF, LUBRIFC, MODEL, WOODSNE.
7The sizes of those problems could not be altered; except for the problems LUKVLE15 and LUKVLI10, the size of

which we lift unchanged because the time limit was not exceeded for the other problems in the LUKVL* family.

21

4.1 Comparison of Different Line-Search Options

In this section we examine the practical performance of the proposed filter method in comparison
with an approach based on the exact penalty function

φν(x) = ϕµj
(x) + ν‖c(x)‖. (39)

The update rule and step acceptance criteria chosen for the comparison in this paper has been
proposed recently by Waltz et. al. in [25] as part of a hybrid trust region and line-search interior-
point method. We chose this option since the algorithm in [25] is in many aspects similar to the
method proposed here, and since its practical behavior seems promising (in particular, it performs
considerable better than the penalty function approach used in our earlier comparison [23]). In
the following we only briefly state the algorithm; its motivation can be found in [25]. We should
point out, however, that the algorithm proposed in [25] is more complex and, in particular, reverts,
under certain circumstances, to a trust region approach, ensuring global convergence (in contrast
to the penalty function option using only a backtracking line-search procedure).

For the penalty function based option, the search direction is computed from (13) in an iteration
k, and the maximum step sizes are obtained from (15). After this, the penalty parameter is updated
according to the formula

νk :=

{

νk−1 if νk−1 ≥ ν+
k

ν+
k + 1 otherwise

,

where

ν+
k =

∇ϕµj
(xk)

T dx
k + ςk

2 (dx
k)T (Wk + Σk + δwI)dx

k

(1− ρ)‖c(xk)‖ ,

for ρ ∈ (0, 1), with ρ = 0.1 in our implementation. The scalar ςk is set to one if (dx
k)T (Wk +

Σk + δwI)dx
k > 0, and zero otherwise. After this, a backtracking line-search procedure with αk,l =

2−lαmax
k is performed. For each trial step size αk,l the predicted reduction of the merit function is

computed as

predk(αk,ld
x
k) = −αk,l∇ϕµj

(xk)
T dx

k − α2
k,l

ςk
2

(dx
k)T (Wk + Σk + δwI) dx

k +

νk

(

‖c(xk)‖ − ‖c(xk) + αk,l∇c(xk)
T dx

k‖
)

and compared with the actual reduction

aredk(αk,ld
x
k) = φνk

(xk)− φνk
(xk + αk,ld

x
k).

If
aredk(αk,ld

x
k) < η predk(αk,ld

x
k), (40)

for a constant η ∈ (0, 1
2), then the trial step size αk = αk,l is accepted and the iterates are updated

according to (14). Otherwise a shorter trial step size is tried. It can be shown that dx
k is a descent

direction for φνk
, so that eventually a sufficiently small trial step size is accepted. At the beginning

of the optimization and after each decrease of the barrier parameter µj, the penalty parameter νk

is set to 10−6.
In order to achieve a fair comparison between the filter method and this approach, all comparable

constants (such as η) are set to the same values, so that the methods behave identically on problems
without equality constraints. In addition, the details described in Section 3 are identical (including
a second-order correction for the merit function method), unless they pertain specifically to the
filter method, such as the restoration phase. In particular, the Hessian correction scheme described

22

0 1 2 3 4 5 6
50

55

60

65

70

75

80

85

90

95

100

not more than 2x−times worse than best solver (log
2
(τ))

%
 o

f p
ro

bl
em

s
(1

00
 ρ

)

Filter (default)
Filter (no heuristics)
Penalty Function
Full Step

PSfrag replacements

Figure 1: Comparing iteration count for different line-search options

in Section 3.1 is also used for the line-search algorithm using (39), with the exception that δc is
always kept at zero to ensure that the generated search direction dx

k is always a descent direction
for the exact penalty function. As a consequence, this line-search option aborts, when a point with
rank-deficient constraint Jacobian is reached and no search direction can be computed, because the
linear system (13) is singular.

We first compare the default filter method (labeled “Filter (default)”) with the penalty
function approach just described (“Penalty Function”) in terms of iteration counts. However,
since default filter procedure includes a few heuristics that are not used in the penalty function ap-
proach, we also include the option “Filter (no heuristics)”, for which the heuristics described
in Section 3.2 have been disabled, and for which δc = 0 in (13) all the time. Finally, we also include
the option “Full Step”, for which the backtracking line-search procedure has been disabled, i.e.
in every iteration the step size αk = αmax

k is chosen.
The performance plot presented in Figure 1 summarizes the comparison on 932 problems (22

were omitted because their final objective function values were different, see (38)) As one can see,
the filter option is indeed more robust than the penalty function method, even when the heuristics
are disabled. We can also conclude that the introduction of the heuristics in Section 3.2 and the
relaxation δc ≥ 0 in (13) increases the robustness of the method. Finally, the comparison with
the “Full Step” option seems to indicate that the safeguards of the filter and penalty function
method, which have been introduced to guarantee global convergence, do overall not interfere with
the efficiency of Newton’s method. Note that the “Full Step” option still does relatively well
in terms of robustness (86.1% of the problems solved); this might indicate that in many cases
Newton’s method does not require a safeguarding scheme (note that second derivatives are used in
the computation of the search directions), or alternatively, that many problems in the test set are
not very difficult.

On the other hand, the different options do not seem to differ very much in terms of efficiency. If

23

0 1 2 3 4 5 6
80

85

90

95

100

105

not more than 2x−times worse than best solver (log
2
(τ))

%
 o

f p
ro

bl
em

s
(1

00
 ρ

)

Filter (no heuristics)
Penalty Function

PSfrag replacements

Figure 2: Comparing iteration count for problems solved by “Filter (no heuristics)” and
“Penalty Function”

we compare the number of iterations for the “Filter (no heuristics)” and “Penalty Function”
only for those 814 problems, in which both options were able to find a solution with comparable
final objective function values, then the performance plots turn out to be very similar, see Figure 2
(note that the range of the vertical axis starts at 80%). The filter option seems to be only slightly
more efficient for those problems.

4.2 Comparison with Other Interior-Point Codes

In this section we present a comparison of IPOPT with the optimization codes KNITRO [3, 26]
(version 3.1.1) and LOQO [22] (version 6.06), both well regarded and recognized software packages
for large-scale nonlinear optimization. Like IPOPT, they are based on interior-point approaches.
Tables with detailed results for every test problem and each solvers can be downloaded from the
first author’s home page8.

The comparison presented here is not meant to be a rigorous assessment of the performance
of these three algorithms, as this would require very careful handling of subtle details such as
comparable termination criteria etc, and would be outside the scope of this paper. In addition, all
three software packages are continuously being improved, so that a comparison might quickly be
out of date. The main purpose of the comparison here is to give an idea of the relative performance
of IPOPT, and to encourage readers to consider IPOPT as a potential candidate when looking for
a practical nonlinear optimization code.

All three optimization codes were run with their default options on the 954 problems of our
test set on the same machine as used to obtain the IPOPT results. Again, a CPU time limit of
1 hour and an iteration count limit of 3000 was imposed. The default termination tolerance for

8http://http://www.research.ibm.com/people/a/andreasw

24

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

not more than 2x−times worse than best solver (log
2
(τ))

%
 o

f p
ro

bl
em

s
(1

00
 ρ

)

Ipopt
Ipopt (no scaling)
Knitro 3.1
Loqo 6.06

PSfrag replacements

Figure 3: Comparing solvers (iteration count)

KNITRO and LOQO is “10−6”, whereas we still chose εtol = 10−8 for IPOPT. The termination
criteria are not directly comparable, for example due to different scalings of various entities and
different reformulations of the problems, but we believe that on average the chosen termination
criterion for IPOPT is tighter than those for the other two codes. We include a run for IPOPT, for
which the automatic problem scaling procedure described in Section 3.8 has been disabled, since
the other codes do not perform any scaling of the problem statement.

As mentioned earlier, IPOPT in default mode terminated successfully for 895 out of the 954
problems, whereas only 872 could be solved when the scaling was disabled. KNITRO terminated
successfully in 829 cases, and LOQO for 847 problems. Figure 3 presents a performance plot for the
iteration count, and Figure 4 compares the number of function evaluations9. Here, 75 problems were
excluded because the final objective function values were too different. IPOPT appears to be more
efficient in both measures compared to LOQO, and comparable to KNITRO in terms of iteration
counts. However, KNITRO is a trust region method, and the computational costs per iteration
are usually not comparable; each unsuccessful trial point in KNITRO is counted as one iteration.
Looking at Figure 4, KNITRO seems to require overall less function evaluations than IPOPT for
the given test set. These figures also show that the scaling procedure proposed in Section 3.8 does
indeed improve IPOPT’s robustness and efficiency.

Finally, Figure 5 presents a comparison of the CPU time10. Since the CPU time is measured in
0.01s increments on the machine used for obtaining the results, we excluded the 444 test problems
from the graph, for which the CPU time for the fastest solver was less than 0.05s, as well as 48

9LOQO appears to compute the function value for each accepted iterate twice, so that a minimum of two function
evaluations is observed per iteration. To correct for this, the function evaluation count for LOQO has been decreased
by the number of iterations for the performance plots.

10Like IPOPT, KNITRO is written in Fortran and has been compiled with the same compiler and compiler options.
LOQO is written C, and we used the default Linux library available at the LOQO website.

25

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

not more than 2x−times worse than best solver (log
2
(τ))

%
 o

f p
ro

bl
em

s
(1

00
 ρ

)
Ipopt
Ipopt (no scaling)
Knitro 3.1
Loqo 6.06

PSfrag replacements

Figure 4: Comparing solvers (function evaluations)

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

not more than 2x−times worse than best solver (log
2
(τ))

%
 o

f p
ro

bl
em

s
(1

00
 ρ

)

Ipopt
Ipopt (no scaling)
Knitro 3.1
Loqo 6.06

PSfrag replacements

Figure 5: Comparing solvers (CPU time)

26

additional problems with different final objective function values. As can be seen, IPOPT seems to
perform well compared to the other solvers.

5 Conclusions

We presented a detailed description of an interior-point nonlinear programming algorithm based
on a filter line search. Attention has been paid to a number of algorithmic features including the
incorporation of second-order corrections and an efficient and robust feasibility restoration phase.
Further implementation details include inertia correction of the linear system that determines the
search direction, treatment of unbounded solution sets, two acceleration heuristics, as well as auto-
matic problem scaling. The resulting algorithm is implemented in the IPOPT open source software
package. The performance of the code has been demonstrated with a detailed numerical study based
on 954 problems from the CUTEr test set. An evaluation of several line-search options has been
presented, indicating increased robustness due to the filter approach. Also, a comparison has been
provided with the LOQO and KNITRO codes. These results demonstrate favorable performance of
IPOPT.

Acknowledgments

The authors would like to thank Richard Waltz and Jorge Nocedal, as well as Hande Benson and
Robert Vanderbei for their help and providing a copy of their optimization codes KNITRO and
LOQO, respectively. We further thank Arvind Raghunathan for insightful comments on different
aspects of the algorithm, Carl Laird for his help in obtaining the numerical results, and Dominique
Orban for support on CUTEr issues. We are also very grateful to Andrew Conn and Jorge Nocedal,
whose comments on the manuscript greatly helped to improve the exposition of the material.

References

[1] H. Y. Benson, D. F. Shanno, and R. J. Vanderbei. Interior-point methods for nonconvex nonlinear
programming: Filter methods and merit functions. Technical report, Operations Research and Financial
Engineering, Princeton University, Princeton, NJ, USA, December 2000.

[2] R. H. Byrd, J. Ch. Gilbert, and J. Nocedal. A trust region method based on interior point techniques
for nonlinear programming. Mathematical Programming, 89:149–185, 2000.

[3] R. H. Byrd, M. E. Hribar, and J. Nocedal. An interior point algorithm for large-scale nonlinear pro-
gramming. SIAM Journal on Optimization, 9(4):877–900, 1999.

[4] R. H. Byrd, G. Liu, and J. Nocedal. On the local behavior of an interior point method for nonlinear
programming. In D. F. Griffiths and D. J. Higham, editors, Numerical Analysis 1997, pages 37–56.
Addison–Wesley Longman, Reading, MA, USA, 1997.

[5] R. M. Chamberlain, C. Lemarechal, H. C. Pedersen, and M. J. D. Powell. The watchdog technique
for forcing convergence in algorithms for constrained optimization. Mathematical Programming Study,
16:1–17, 1982.

[6] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT: a Fortran package for large-scale nonlinear
optimization (Release A). Number 17 in Springer Series in Computational Mathematics. Springer Verlag,
Heidelberg, Berlin, New York, 1992.

[7] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. SIAM, Philadelphia, PA, USA,
2000.

27

[8] A. R. Conn, N.I.M. Gould, D. Orban, and Ph. L. Toint. A primal-dual trust-region algorithm for
non-convex nonlinear programming. Mathematical Programming, 87(2):215–249, 2000.

[9] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles. Mathe-
matical Programming, 91(2):201–213, 2002.

[10] A. S. El-Bakry, R. A. Tapia, T. Tsuchiya, and Y. Zhang. On the formulation and theory of the Newton
interior-point method for nonlinear programming. Journal of Optimization Theory and Application,
89(3):507–541, 1996.

[11] A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Unconstrained Minimization
Techniques. John Wiley, New York, USA, 1968. Reprinted by SIAM Publications, 1990.

[12] R. Fletcher. Practical Methods of Optimization. John Wiley and Sons, New York, USA, second edition,
1987.

[13] R. Fletcher, N. I. M. Gould, S. Leyffer, Ph. L. Toint, and A. Wächter. Global convergence of a
trust-region SQP-filter algorithms for general nonlinear programming. SIAM Journal on Optimization,
13(3):635–659, 2002.

[14] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function. Mathematical Program-
ming, 91(2):239–269, 2002.

[15] R. Fletcher, S. Leyffer, and Ph. L. Toint. On the global convergence of a filter-SQP algorithm. SIAM
Journal on Optimization, 13(1):44–59, 2002.

[16] A. Forsgren, P. E. Gill, and M. H. Wright. Interior methods for nonlinear optimization. SIAM Review,
44(4):525–597, 2002.

[17] N. I. M. Gould, D. Orban, A. Sartenaer, and Ph. L. Toint. Superlinear convergence of primal-dual
interior point algorithms for nonlinear programming. SIAM Journal on Optimization, 11(4):974–1002,
2001.

[18] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEr (and SifDec), a constrained and unconstrained
testing environment, revisited. Technical Report TR/PA/01/04, CERFACS, Toulouse, France, 2001.

[19] Harwell Subroutine Library, AEA Technology, Harwell, Oxfordshire, England. A catalogue of subroutines
(HSL 2000), 2002.

[20] J. Nocedal and S. Wright. Numerical Optimization. Springer, New York, NY, USA, 1999.

[21] M. Ulbrich, S. Ulbrich, and L. N. Vicente. A globally convergent primal-dual interior-point filter method
for nonconvex nonlinear programming. Technical Report TR00-12, Department of Computational and
Applied Mathematics, Rice University, Houston, TX, USA, April 2000. Revised March 2003.

[22] R. J. Vanderbei and D. F. Shanno. An interior-point algorithm for nonconvex nonlinear programming.
Computational Optimization and Applications, 13:231–252, 1999.

[23] A. Wächter. An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Applications in
Process Engineering. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA, January 2002.

[24] A. Wächter and L. T. Biegler. Line search filter methods for nonlinear programming: Motivation and
global convergence. Technical report, Department of Chemical Engineering, Carnegie Mellon University,
2003.

[25] R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban. KNITRO-Direct: A hybrid interior algorithm for
nonlinear optimization. Technical report, Optimization Technology Center, Northwestern University,
Evanston, IL, USA, 2003.

[26] R. A. Waltz and J. Nocedal. KNITRO user’s manual. Technical Report OTC 2003/05, Optimization
Technology Center, Northwestern University, Evanston, IL, USA, April 2003.

[27] H. Yamashita. A globally convergent primal-dual interior-point method for constrained optimization.
Optimization Methods and Software, 10:443–469, 1998.

28

