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Abstract. A continuation method (sometimes called path following) is a way to compute
solution curves of a nonlinear system of equations with a parameter. We derive a simple algorithm for
branch switching at bifurcation points for multiple parameter continuation, where surfaces bifurcate
along a singular curves on a surface. It is a generalization of the parallel search technique used in
the continuation code AUTO, and avoids the need for second derivatives and a full analysis of the
bifurcation point.

The one parameter case is special. While the generalization is not difficult, it is non-trivial, and
the geometric interpretation may be of some interest. An additional tangent calculation at a point
near the singular point is used to estimate the tangent to the singular set.

1. Background and basic result. A continuation method (sometimes called
path following) is a way to compute solution curves of a nonlinear system of equations
with a parameter. For an introduction to these methods see, for example, the books
by Allgower and Georg [1], Garcia and Zangwill [6] and more recently Govaerts [7],
Beyn et al. [3], and papers by Doedel [5] and Seydel [14].

In [9] the author described a generalization of these methods to problems with
more than one parameter, where the solution manifolds are surfaces instead of curves.
One practical issue that was not addressed there is how to generalize the second-
derivative-free parallel search branch switching algorithm that is used in codes like
AUTO, [11], [10]. The one parameter case is special. While the generalization is not
difficult, it is non-trivial, and the geometric interpretation may be of some interest.

Suppose Γ0 is a regular connected component of the solution manifold of

F(u) = 0, u ∈ IRn F : IRn → IRn−k

containing the initial point u0 and restricted to some computational domain Ω ⊂ IRn.
That is, a point v is in Γ0 if there is a continuous curve u(s), s ∈ [0, 1], of regular
solutions of F = 0 connecting v to u0 through Ω (see Figure 1.1)

F(u(s)) = 0, u(s) ⊂ Ω,
rank(Fu(u(s))) = n− k.
u(0) = u0, u(1) = v.

If F is smooth, Γ0 is a k dimensional manifold with a boundary, and the boundary
is made up of (k − 1) dimensional manifolds (again with boundaries) which either lie
on δΩ, or are such that the Jacobian Fu is of rank n− k − 1.

Consider a point u∗ on the singular boundary of Γ0 (see Figure 1.2). This point
can be found by monitoring an indicator function χ(u), which changes sign or jumps
when evaluated for points on opposite sides of a singular curve. (See [3] for a de-
scription of indicator functions for various bifurcations.) Bisection or a root finding
algorithm may then be used to locate u∗ in the interval [ua,ub] where the indicator
function changes. The aim of branch switching is to find points near u∗ that are
interior to the other regular connected components containing u∗ (Figure 1.3).
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Fig. 1.1. A regular connected component Γ0 of F = 0 in Ω. For every point v in Γ0 there is a
path u(s) of regular solutions connecting it to u0.
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Fig. 1.2. The singular boundary of a regular connected component. Points on this boundary,
like u∗, are found by monitoring a test function which changes between points on opposite sides of
the boundary (ua and ub). Bisection or a root finding algorithm may be used to locate u∗.

1.1. The geometry of the solution manifold near a singular point. The
tangent space of Γ0 at the singular boundary point can be found by interpolation
between the tangent spaces at ua and ub (which are regular points and have unique
tangent spaces). We can therefore find an orthonormal basis {φ0, ..., φk−1} for the
k-dimensional tangent space of Γ0 at u∗

Fu(u∗)φi = 0
φT

i φj = δij

If u∗ is interior to the singular boundary, the rank of Fu(u∗) will be n−k− 1, and so
there is a right null vector φk ∈ IRn, and left null vector ψ ∈ IRn−k of the augmented
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Fig. 1.3. The regular connected components sharing a point u∗ on their singular boundaries.
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Fig. 1.4. (left) The parallel search branch switching algorithm used in AUTO. A bifurcation
point u∗ is located between ua and ub, and the null vector of the augmented Jacobian φ1 is used as
a tangent for the next step. (right) A sketch of the corresponding s-space, showing the four roots of
the ABE.

Jacobian

Fu(u∗)φk = 0 ψT Fu(u∗) = 0
φT

i φk = 0 (i 6= k)
φT

k φk = 1 ψTψ = 1

To study the geometry of the bifurcation we use a Lyapunov-Schmidt decompo-
sition. Let

u = u∗ +
k∑

i=0

φis
i + η, φT

i η = 0,

and consider first the projection of F onto the range of the Jacobian

(I − ψψ∗)F(u∗ +
k∑

i=0

φis
i + η) = 0

φT
i η = 0
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as a system for η. The Jacobian at the solution si = 0, η = 0 is nonsingular, so using
the Implicit Function Theorem (IFT) there is a unique function η(s0, ..., sk) which
satisfies the projected equations in a neighborhood of si = 0. At si = 0 we have

η = 0, η,si = 0

(I − ψψ∗)
(
Fuη,si,sj + Fuuφiφj

)
= 0

φT
l η,si,sj = 0

(Similar equations can be written for the higher derivatives of η by repeated differen-
tiation.)

To satisfy F = 0 one further scalar equation must be satisfied (the Bifurcation
Equation Eq. (1.1))

ψ∗F(u∗ +
k∑

i=0

φis
i + η(s0, ..., sk)) = 0.(1.1)

The linearization of this is zero at s = 0, and we can remove this so that the IFT can
be used by introducing a small number ε –

1
ε2
ψ∗F(u∗ + ε

k∑
i=0

φis
i + η(εs0, ..., εsk)) = 0,

sisi = 1.

A Taylor series (in ε) of this begins:

1
ε2
ψ∗F =

∑
i,j

ψT Fuuφiφjs
isj + ε

∑
i,j,l

(
ψT Fuuuφiφjφls

isjsl + ψT Fuuφlη,si,sjsl
)

+ ...

If the Algebraic Bifurcation Equation (ABE) Eq. (1.2)

ψT Fuuφiφjs
isj = 0(1.2)

is satisfied and the first order term is non-zero

ψT Fuuuφiφjφls
isjsl + ψT Fuuφlη,si,sjsl 6= 0.

Using the IFT, a set of functions si(ε) with si(0) = si exists in a neighborhood of
ε = 0. Each solution of the ABE therefore corresponds to a curve (parameterized by
ε) on the solution surface through u∗. Varying the si subject to the ABE traces out
the surface.

We know one set of solutions – any vector s with sk = 0. (This is because we
chose the first k null vectors to be a basis for the tangent space of Γ0.) The ABE is
therefore of the form

sk

(
k∑

i=0

ψT Fuuφiφks
i

)
= 0, or sk

(
k∑

i=0

Nis
i

)
= 0.
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Therefore N ∈ IRk+1 is orthogonal to the bifurcating branch, and Ni = ψT Fuuφiφk.
The tangent space of the singular boundary is

sk = 0,
k∑

i=0

Nis
i = 0

Let {σ0, ..., σk−2} be an orthonormal basis for this k − 1 dimensional tangent space.
The tangent space to the bifurcating sheet includes the additional vector σk−1 =
(NkN0, ..., NkNk−1,−

∑k−1
0 NiNi). This is orthogonal to both N and the other σi.

(It is not normalized.)

1.2. Special case: k = 1. When k = 1 the singular set is a point (see Figure
1.4). We have

(N0, N1) = (ψT Fuuφ0φ1, ψ
T Fuuφ1φ1),

and the tangent (not normalized) of the bifurcating branch in s–space is

σk−1 = N0(N1,−N0)

1.3. Special case: k = 2. The vector (s0, s1, s2) gives a point in the k + 1 = 3
dimensional null space of Fu(u∗) (in the basis φ0, φ1, φ2) (Figure 1.5). We have

(N0, N1, N2) = (ψT Fuuφ0φ2, ψ
T Fuuφ1φ2, ψ

T Fuuφ2φ2).

The branch corresponding to Γ0 (and Γ2) is s2 = 0

u∗ + ε
(
φ0s

0 + φ1s
1
)

+ η(εs0, εs1, 0),

s0s0 + s1s1 = 1

The other branches (Γ1 and Γ3) are

u∗ + ε
(
φ0s

0 + φ1s
1 + φ2s

2
)

+ η(εs0, εs1, εs2),

N0s
0 +N1s

1 +N2s
2 = 0

s0s0 + s1s1 + s2s2 = 1

See Figure 1.5. The tangent to the singular set is, in s–space and IRn

σ0 = (−N1, N0, 0) ↔ −N1φ1 +N0φ0

and the tangent vector (not normalized, and in s–space) to the bifurcating branch
orthogonal to the singular set is

σ1 = (N0N2, N1N2,−N0N0 −N1N1)

1.4. Parallel search branch switching. These quantities can be computed,
and the tangent to the bifurcating components found directly. However, in many
instances the second derivatives are not available, and we need a branch switching
algorithm which does not assume they are.
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Fig. 1.5. (left) The basis for the right null space of Fu(u∗). The first two (k− 1) basis vectors
lie in the tangent plane of Γ0 (and Γ1. The third is orthogonal to the first two. (right) Solutions to
the ABE’s in s-space. Circle C0 is s2 = 0, s0s0 + s1s1 = 1. Circle C1 lies in the plane N.s = 0,
where N = (ψT Fuuφ0φ2, ψT Fuuφ1φ2, ψT Fuuφ2φ2). The singular set is N.s = 0, sk = 0.
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Fig. 1.6. (left) The perturbed surface F(u) = F(u∗ + ε∆φk). (right) The same surface in the
s-space defined by the unperturbed problem.

The goal is to find a point on the bifurcating component which can be used as
an initial point to compute the component. To project a point v onto a regular
component, a system of the form

F(u) = 0
Φ̃T (u− v) = 0

is used. As long as the projection of the k vectors Φ̃ (the columns) onto the null space
of the Jacobian at u spans the null space this is a non-singular system. As the name
parallel search implies, we choose Φ̃ orthogonal to the tangent to Γ0. The condition
that the augmented Jacobian be non-singular is that the bifurcation be transverse to
Γ0.

For k = 1, φ1 has a non-zero projection onto the tangent to the bifurcating curve
N1φ0−N0φ1 if N0 6= 0 (the non-transverse case). So a point on the bifurcating branch
may be found by solving

F(u) = 0

φT
1 (u− (u∗ + ∆sφ1)) = 0

This is the technique used in AUTO (described in [3] and [11]).
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For k > 1 we need to find a k dimensional subspace whose projection onto the
tangent space of the bifurcating sheet spans that tangent space. For k = 1 we pro-
jected orthogonal to φk. This defines a k − 1 dimensional curve on the bifurcating
sheet, and so if k 6= 1 we need additional constraints to define a unique point on the
bifurcating sheet. The tangent to the singular set lies in both tangent spaces, and we
need to project orthogonal to that as well.

To estimate the tangent to the singular set we use a perturbation

F̃(u) = F(u)− F(u∗ + ε∆φk).

For this (as before Ni = ψ∗Fuuφiφk)

1
ε2
ψT F̃ =

k∑
i=0

Nis
isk −Nk∆2 +O(ε).

In s-space solutions of this perturbed equation are a pair of hyperbolic sheets which
asymptote to the solutions of the unperturbed equation.

Suppose σ is any vector in the tangent space of the singular set. That is

k∑
i=0

Niσ
i = 0 σk = 0

By construction, we know one point on the perturbed surface, u∗ + εφk, which corre-
sponds to the point (0, ..., 0,∆) in the s-space since it is a solution of

k∑
i=0

Nis
isk = ∆2Nk.

This equation is invariant to a shift in the σ direction, so σ lies in the tangent space
of the perturbed system at the known point (0, ..., 0,∆). This gives us a way to
compute the tangent space of the singular set: it is the common k − 1 dimensional
subspace of the tangent to Γ0 and the tangent of the perturbed system (the null space
of fu(u∗ + εφk).

2. Statement of the algorithm.
Detection – Locate a pair of points ua and ub on F = 0 such that χ(ua) 6= χ(ub).
Location – Using bisection, or a root finding method locate the point u∗ on F = 0

in the interval at which χ(u) changes. Use the tangent spaces at ua and ub

to interpolate (φ0, ..., φk−1), an orthonormal approximation to a basis for the
tangent space of Γ0 at u∗.

Branch Switching –
1. Find the right null vector φk, φT

k φk = 1

Fu(u∗)φk = 0

φT
i φk = 0, i = 0, ..., k − 1

2. Find an orthonormal basis Φ̃ of the k-dimensional null space of

Fu(u∗ + ε∆φk)φ̃i = 0

φ̃T
i φ̃j = δij
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3. Find an orthonormal basis {σ0, ..., σk−2} for the common subspace of
Φ and Φ̃. Since φk is orthogonal to Φ this is the subspace φT

k Φ̃ = 0,
so the Gram-Schmidt algorithm can be used on the set of k + 1 vector{
φk, φ̃0, ..., φ̃k−1

}
to find the subspace (the first will be φk, and the last

will be zero the ones in between are the σi).
4. Find points on the bifurcating sheets by solving

F(u) = 0

σT
i (u− (u∗ + ∆sφk)) = 0, i = 0, ..., k − 2

φT
k (u− (u∗ + ∆sφk)) = 0

With ∆s > 0 we get a point on Γ1, and ∆s < 0 gives a point on Γ3. For
the point on Γ2 we can use ub, which was found in the detection step.

Notes:
• ∆ controls the shape of the hyperbola in s-space, and ε is small relative to

the norm of u∗. Therefore ε∆ should be something like 10−3|u∗|.
• There is a technique, described in [1] which perturbs the problem in order to

switch branches. This approach does that in some sense by using the tangent
of a perturbation.

• For Hopf and other bifurcations the null vector φk at the singular point is of a
different class than the other null vectors. For example, φ0, .., φk−1 may be in
IRn, while φk is in IRn×S1. All this means is that the other null vectors must
be promoted to the larger space, since the tangent space Φ̃ at the perturbed
point is in the larger space.

3. Examples.

3.1. Cusp. Our first example is a complexified cusp [8].

(x+ iy) ∗ ((x+ iy)2 + λ) = µ.

This is n = 4, k = 2, and we can easily find an initial solution x0 = y0 = 0 at µ0 = 0,
λ0 = 1. Figure 3.1 shows x + y as a function of (λ, µ). The single initial point,
with the branch switching algorithm described in the preceding section were sufficient
to compute the four regular connected components. Note that the blue components
(y = 0) are the cusp catastrophe.

3.2. (2, 4) cell interaction model. Our second example is a model of the (2, 4)
cell mode interaction in Taylor-Couette flow ([12] pages 106–110). It is based on an
analysis of a two eigenvalue bifurcation by Andreichikov [2], with coefficients computed
by Bolstad [4]. The computation of the coefficients is as described in [13]. At radius
ratio η = 0.615 and a 12× 48 grid the bifurcation point was found to be at Reynolds
number R = 78.53836, aspect ratio λ = 2.881799. The model is

x(x2 + a1y
2 − f1 + b1y) = 0

y(a2x
2 + y2 − f2) + b2x

2 = 0
8



Fig. 3.1. A computation of solutions of u(u2 − λ) = µ. The projection used for rendering is
(µ, λ, x+ y). (left) Γ0, the regular component connected to the initial point. (right) all components
(y 6= 0 is red, y = 0 is blue).

where

a1 = 3.67
b1 = −0.0975− 0.00392∆R+ 0.0543∆λ
f1 = 0.00117∆R− 0.0137∆λ− 0.00000427∆R2 − 0.000407∆R∆λ+ 0.00106∆λ2

a2 = 1.19
b2 = 0.0331 + 0.000476∆R− 0.00546∆λ
f2 = 0.000681∆R+ 0.00955∆λ− 0.0000026052 − 0.000216∆R∆λ− 0.004925∆λ2.

The solution manifold consists of three pieces with different symmetries:
x = 0, y = 0 – The trivial solutions.
x = 0, y 6= 0 – The 4-cell solutions. y2 − f2(∆R,∆λ) = 0.
x 6= 0, y 6= 0 – The mixed 2-cell/4-cell solutions.
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