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ON A MATRIX INEQUALITY AND ITS APPLICATION TO THE
SYNCHRONIZATION IN COUPLED CHAOTIC SYSTEMS

CHAI WAH WU∗

Abstract. We study a matrix inequality problem which was found to be useful in deriving
a sufficient condition for the synchronization in arrays of coupled chaotic systems. We consider
classes of matrices for which this problem has an exact solution and solve the general case by solving
sequentially a series of semidefinite programming problems.
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1. Introduction. Recently, synchronization in arrays of coupled chaotic sys-
tems has received considerable attention [3–5, 8]. In [7, 8], a sufficient condition for
synchronization was obtained by means of a quadratic Lyapunov function. In [6] it
was shown that this condition is reduced to a condition which depends on the smallest
nonzero eigenvalues of the symmetric part of the coupling matrix. On the other hand,
considering the case of coupled linear systems, one gets a condition which depends on
the eigenvalues of the coupling matrix. Since the eigenvalues of a matrix can differ
quite a bit from the eigenvalues of its symmetric part, the question is whether we
can bridge the gap between these two sets of eigenvalues. We show that this ques-
tion can be answered by solving an optimization problem with nonlinear semidefinite
constraints. In this paper, we will solve this problem by solving a sequence of linear
semidefinite programming problems.

We say a real matrix G is positive (semi-)definite if its symmetric part 1
2 (G+GT )

is positive (semi-)definite, i.e. xT (G + GT )x > 0 (≥ 0) ∀x �= 0. We denote this by
G � 0 (G � 0). This is equivalent to saying that the eigenvalues of G + GT are
positive (nonnegative).

2. Synchronization in coupled arrays of chaotic systems. Definition

2.1. Let W be the set of real matrices with zero row sums and all off-diagonal elements
nonpositive. Let Ws be the set of irreducible symmetric matrices in W .

Definition 2.2. A function f(y, t) is P -uniformly decreasing if (y−z)T P (f(y, t)−
f(z, t)) ≤ −c‖y − z‖2 for some c > 0 and all y, z, t.

It is easy to show that matrices in Ws have a simple eigenvalue 0 [8]. We begin
with the synchronization result in [5, 8]:

Theorem 2.3. A coupled array of n identical chaotic systems described by the
state equation:

ẋ = (f(x1, t), . . . f(xn, t))T + (G⊗D)x(2.1)

where x = (x1, . . . , xn)T synchronizes in the sense that ‖xi − xj‖ → 0 as t→∞ if:
• f(y, t) + αDy is P -uniformly decreasing for some symmetric P � 0;
• there exists a matrix U ∈Ws such that U(G− αI)⊗ PD � 0.

In Eq. (2.1), the matrix G describes the coupling topology between systems
whereas the matrix D describes the coupling term between two systems. The term
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αDy is the amount of feedback needed to stabilize ẏ = f(y, t). Theorem 2.3 motivates
us to define the following quantity:

Definition 2.4. Let µ(G) be the supremum of the set of real numbers µ such
that U(G− µI) � 0 for some U ∈ Ws.

Using this definition, it is easy to show that the array in Eq. (2.1) synchronizes
if there exists a symmetric matrix P � 0 such that f(y, t) + µ(G)Dy is P -uniformly
decreasing and PD = DT P � 0 [7].

This suggests that µ(G) is a measure of how well the topology of the coupled
array is amenable to synchronization. The larger µ(G) is, the smaller D needs to be
and the easier it is to synchronize the array.

Theorem 2.3 is obtained via Lyapunov’s direct method and can be a global result.
There exists another class of synchronization criteria based on the computation of
Lyapunov exponents. These results are local in nature and are mathematically less
rigorous. In these criteria, the least1 nonzero eigenvalue of G is important. Under
certain conditions, by Corollary 3.8 this eigenvalue is larger than the smallest nonzero
eigenvalue of the symmetric part of G. Studying µ(G) allows us to find out what the
gap is between the applicability of these two classes of methods2.

3. Properties of µ(G). Since matrices in Ws are positive semidefinite, the set
of real numbers such that U(G − µI) � 0 for some U ∈ Ws is an interval, i.e. if
U(G− µI) � 0 for some U ∈Ws, then U(G− λI) � 0 for all λ ≤ µ.

Lemma 3.1 ([8]). If A ∈Ws and either AD � 0 or AD � 0, then D has constant
row sums.

Lemma 3.1 implies that µ(G) is only defined when the matrix G has constant row
sums. Furthermore, since a matrix with constant row sums can be made into a matrix
with zero row sums by adding a multiple of the identity matrix, for the purpose of
finding µ(G) we can assume without loss of generality that G has zero row sums. In
other words, adding αI to G shifts µ(G) by α. Therefore we will focus on the set
of zero row sums matrix. For a matrix with zero row sums, 0 is an eigenvalue with
eigenvector e = (1, . . . , 1)T .

The next theorem shows that the quantity µ(G) exists for zero row sum matrices
and gives a lower bound.

Theorem 3.2. If G has zero row sums, then µ(G) exists, i.e. there is a real
number µ and a matrix U ∈ Ws such that U(G− µI) � 0. Furthermore,

µ(G) ≥ β(G) ≥ λmin

(
1
2
(G + GT )

)

where β is defined as β(G) = minx⊥e,‖x‖=1 xT Gx.
Proof. Let J be the n by n matrix of all 1’s and let Q = I − 1

nJ . It is clear that
Q ∈ Ws. Let U = Q. Define the symmetric matrix H = 1

2 (U(G − µI) + (U(G −
µI))T ) = 1

2 (G + GT ) − µQ − 1
2n (JG + GT J). Since Je = ne and Ge = Qe = 0,

it follows that He = 0. Let x⊥e with ‖x‖ = 1. This means that Qx = x. Then
xT Hx = 1

2xT (G+GT )x−µ− 1
2nxT (JG+GT J)x. Since x · e = 0, this implies Jx = 0

and thus xT Hx = 1
2xT (G+GT )x−µ which means that H � 0 if µ ≤ 1

2xT (G+GT )x.

Note that β(G) = min‖Kx‖=1 xT KT GKx = λmin

(
1
2KT (G + GT )K

)
where K is

an n by n−1 matrix whose columns form an orthonormal basis of e⊥, the orthogonal

1In the sense of the smallest real part.
2See [7] for further discussion between these two classes of results.
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complement of e. Furthermore, by the Courant-Fischer min-max theorem, β(G) is
less than or equal to the second smallest eigenvalue of 1

2 (G + GT ).
Definition 3.3. For a matrix G with zero row sums, let L(G) denote the eigen-

values of G that do not correspond to the eigenvector e.
Corollary 3.4. If G is a real matrix with zero row sums and zero column sums,

then µ(G) ≥ λs
2(G) where λs

2(G) is the smallest eigenvalue in L(1
2 (G + GT )).

Proof. Since e is an eigenvector of 1
2 (G+GT ), we have λs

2(G) = β(G). The result
then follows from Theorem 3.2

Corollary 3.5. If G ∈ W and has zero column sums, then µ(G) ≥ β(G) ≥ 0.
If in addition G + GT is irreducible, then µ(G) ≥ β(G) > 0.

Proof. For a symmetric matrix G ∈ W , λ2(G) ≥ 0. For a matrix G ∈ Ws,
λ2(G) > 0 [8]. The theorem then follows from the fact that G + GT ∈W .

Next we show an upper bound for µ(G). Let RE(λ) denote the real part of a
complex number λ.

Definition 3.6. For a real matrix G with zero row sums, define µ2(G) as:

µ2(G) = minλ∈L(G)RE(λ)

Theorem 3.7. If G is a real matrix with zero row sums, then µ(G) ≤ µ2(G).
Proof. This is a generalization of Theorem 3 in [7] and the proof is similar.

Let λ ∈ L(G) with corresponding eigenvector v. Let U ∈ Ws be such that U(G −
µI) � 0 for some real number µ. The kernel of U is spanned by e. By definition
of L(G), v is not in the kernel of U . Since (G − µI)v = (λ − µ)v, this implies that
v∗U(G − µI)v = (λ − µ)v∗Uv. Positive semidefiniteness of U(G − µI) implies that
RE(v∗U(G − µI)v) ≥ 0. Since U is symmetric positive semidefinite and v is not in
the kernel of U , v∗Uv > 0. This implies that RE(λ) − µ ≥ 0.

The following result may be of independent interest.
Corollary 3.8. If G is a real matrix with zero row sums, then

λmin

(
1
2
(G + GT )

)
≤ β(G) ≤ µ2(G).

Proof. Follows from Theorems 3.2 and 3.7.
Theorems 3.2 and 3.7 show that β(G) ≤ µ(G) ≤ µ2(G). Next we present two

classes of matrices for which there is a closed form expression for µ(G). In particular,
for normal real matrices, the lower bound is equal to the upper bound:

Theorem 3.9. If G is a real normal matrix with zero row sums, then β(G) =
µ(G) = µ2(G).

Proof. First note that by normality G has zero column sums (see for example [8]).
Furthermore, for a real normal matrix, the eigenvalues of 1

2 (G+ GT ) are just the real
parts of the eigenvalues of G [2]. This implies that µ2(G) = λs

2(G). The result then
follows from Corollary 3.4 and Theorem 3.7.

Another class of matrices for which µ(G) = µ2(G) is the class of triangular zero
row sums matrices [7]. In the next section, we show that for matrices in W the value
of µ(G) is in fact very close to µ2(G).

4. Computing µ(G) via semidefinite programming. In this section we show
how µ(G) can be computed by solving a sequence of semidefinite programming (SDP)
problems.
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First we note that by Theorems 3.2 and 3.7, µ(G) can be bounded in the interval
[β, µ2]. Next we show that for a fixed µ, finding U ∈ Ws such that U(G− µI) � 0 is
a feasibility SDP problem.

Clearly U(G − µI) � 0 is a linear matrix inequality. A matrix U is in Ws if and
only if:

1. U is symmetric;
2. all off-diagonal elements of U are nonpositive;
3. each row of U sums to zero;
4. zero eigenvalue of U has multiplicity 1, i.e. 0 �∈ L(G).

The first three requirements can clearly be cast as matrix constraints for a SDP
problem. As for the 4th requirement, it is easy to show that it is equivalent to the
linear matrix inequality KT UK � 0 where K is as defined in Section 3. To ensure
that we do not get a very small U , we use the constraint KT UK � I instead. It is
clear that this does not affect the value of µ(G). Thus the feasiblity SDP problem we
need to solve is:

Find U = UT such that U(G− µI) � 0, Ue = 0, Ui,j ≤ 0 ∀i �= j and KT UK � I.
(4.1)

Since the set of values of µ such that U(G − µI) � 0 for some U ∈ Ws is an
interval, we can compute µ(G) by using the bisection method to successively refine
µ and then solving the corresponding SDP problem in Eq. (4.1). This is shown in
Algorithm 1 where ub is initially set to µ2(G) and lb is initially set to β(G).

Algorithm 1 Compute µ(G)
µ← ub
if Problem (4.1) is infeasible then

while |ub− lb| > ε do
µ← 1

2 (ub + lb)
if Problem (4.1) is infeasible then

ub← µ
else

lb← µ
end if

end while
end if
µ(G)← µ

In recent years, there have been many free and commercial programs available for
solving SDP problems. The reader is referred to http://www-user.tu-chemnitz.
de/~helmberg/sdp_software.html for a list. We have elected to use CSDP 4.7 [1]
with the YALMIP 3 MATLAB interface (http://control.ee.ethz.ch/~joloef/
yalmip.msql) to solve the SDP problem.

4.1. Zero row sums matrices. Our computer results are summarized in Table
4.1. Zero sums matrices of small order are generated and their values of µ(G) are
computed. For each order n, 5000 zero row sums matrices are chosen by generating
the off-diagonal elements independently from a uniform distribution in the interval
[− 1

2 , 1
2 ]. The matrices are categorized into two groups depending on whether all their
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eigenvalues are real or not. For each group, the mean and the standard deviation of
the quantities 0 ≤ i(G) = µ(G)−β(G)

µ2(G)−β(G) ≤ 1 and r(G) = µ(G)
µ2(G) are listed.

Only real eigenvalues Real and complex eigenvalues
i(G) r(G) i(G) r(G)

Order mean std mean std mean std mean std
3 0.9862 0.0621 1.0166 1.2065 0.8672 0.1724 2.1340 34.0588
4 0.9766 0.0777 1.0227 0.9181 0.5251 0.4002 0.2362 56.8556
5 0.9715 0.0809 1.0113 0.0589 0.3191 0.3353 3.0385 133.0064
10 0.9731 0.0894 1.0060 0.0214 0.1451 0.1095 -2.8780 424.5138

Table 4.1

Statistics of i(G) =
µ(G)−β(G)
µ2(G)−β(G)

and r(G) =
µ(G)
µ2(G)

for zero row sum matrices.

We see quite a difference between the behavior of i(G) and r(G) for matrices
with only real eigenvalues and for matrices with complex eigenvalues. In particular,
we see that i(G) is close to 1 for matrices with only real eigenvalues which implies that
µ(G) is close to µ2(G) in this case. On the other hand, for matrices with complex
eigenvalues, the statistics of i(G) show that µ(G) is usually significantly less than
µ2(G).

4.2. Matrices in W . Our computer results for matrices in W are summarized
in Table 4.2. For each order n, 5000 zero row sums matrices are chosen by generating
the off-diagonal elements independently from a uniform distribution in the interval
[−1, 0]. The matrices are categorized into two groups depending on whether all their
eigenvalues are real or not. For each group, the mean and the standard deviation of
the quantities i(G) and r(G) are listed.

Only real eigenvalues Real and complex eigenvalues
i(G) r(G) i(G) r(G)

Order mean std mean std mean std mean std
3 0.9862 0.0612 0.9984 0.0084 0.8663 0.1698 0.9777 0.0337
4 0.9816 0.0658 0.9977 0.0095 0.9196 0.1389 0.9875 0.0246
5 0.9758 0.0770 0.9971 0.0112 0.9307 0.1292 0.9901 0.0211
10 0.9818 0.0260 0.9987 0.0020 0.9333 0.1097 0.9936 0.0123

Table 4.2

Statistics of i(G) =
µ(G)−β(G)
µ2(G)−β(G)

and r(G) =
µ(G)
µ2(G)

for matrices in W .

In contrast to general zero row sums matrices, the behaviors of µ(G) for matrices
in W with only real eigenvalues and for matrices in W with complex eigenvalues are
similar. Furthermore, µ(G) is very close to µ2(G), especially for matrices with only
real eigenvalues. It remains to be seen whether the small discrepancy between µ(G)
and µ2(G) is real or an artifact of the numerical algorithm.

5. Conclusions. We have studied a quantity µ(G) of a matrix G which char-
acterizes the coupling topology in arrays of coupled chaotic systems. This quantity
is useful in determining a synchronization criterion for an array of coupled chaotic
systems. We derive upper and lower bounds for µ(G), give closed form expressions of
µ(G) for some subclasses of matrices and present an algorithm for determining µ(G)
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using semidefinite programming. The computer results suggest that µ(G) is close to
the upper bound µ2(G) when

1. G ∈ W or
2. G is a zero row sums matrix with only real eigenvalues.

An interesting question for further investigation is what are the (non-normal) matrices
for which β = µ2?

REFERENCES

[1] B. Borchers, CSDP: a C library for semidefinite programming, Optimization methods and
Software, 11 (1999), pp. 613–623. http://www.nmt.edu/~borchers/csdp.html.

[2] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University Press, 1985.
[3] L. Pecora, T. Carroll, G. Johnson, D. Mar, and K. S. Fink, Synchronization stability

in coupled oscillator arrays: solution for arbitrary configurations, International Journal of
Bifurcation and Chaos, 10 (2000), pp. 273–290.

[4] X. F. Wang and G. Chen, Synchronization in small-world dynamical networks, International
Journal of Bifurcation and Chaos, 12 (2002), pp. 187–192.

[5] C. W. Wu, Synchronization in coupled chaotic circuits and systems, World Scientific, 2002.
[6] , Perturbation of coupling matrices and its effect on the synchronizability in arrays of

coupled chaotic circuits, Physics Letters A, 319 (2003), pp. 495–503.
[7] , Synchronization in coupled arrays of chaotic oscillators with nonreciprocal coupling,

IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications, 50
(2003), pp. 294–297.

[8] C. W. Wu and L. O. Chua, Synchronization in an array of linearly coupled dynamical systems,
IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications, 42
(1995), pp. 430–447.

6


