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Abstract

As the costs and challenges of global clock distribution grow with each new microprocessor generation, a
Globally Asynchronous, Locally Synchronous (GALS) approach becomes an attractive alternative. One proposed
GALS approach, called a Multiple Clock Domain (MCD) processor, achieves impressive energy savings for a
relatively low performance cost. However, the approach requires separating the processor into four domains,
including separating the integer and memory domains which complicates load scheduling, and the implementation
of 32 voltage and frequency levels in each domain. In addition, the hardware-based control algorithm, though
effective overall, produces a significant performance degradation for some applications.

In this paper, we devise modifications to the MCD design that retain many of its benefits while greatly reducing
the implementation complexity. We first determine that the synchronization channels that are most responsible for
the MCD performance degradation are those involving cache access, and propose merging the integer and memory
domains to virtually eliminate this overhead. We further propose significantly reducing the number of voltage
levels, separating the Reorder Buffer into its own domain to permit front-end frequency scaling, separating the
L2 cache to permit standard power optimizations to be used, and a new online algorithm that provides consistent
results across our benchmark suite. The overall result is a significant reduction in the performance degradation of
the original MCD approach and greater energy savings, with a greatly simplified microarchitecture that is much
easier to implement.
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Globally Asynchronous, Locally Synchronous (GALS) approach becomes an attractive alternative. One proposed
GALS approach, called a Multiple Clock Domain (MCD) processor, achieves impressive energy savings for a
relatively low performance cost. However, the approach requires separating the processor into four domains,
including separating the integer and memory domains which complicates load scheduling, and the implementation
of 32 voltage and frequency levels in each domain. In addition, the hardware-based control algorithm, though
effective overall, produces a significant performance degradation for some applications.

In this paper, we devise modifications to the MCD design that retain many of its benefits while greatly reducing
the implementation complexity. We first determine that the synchronization channels that are most responsible for
the MCD performance degradation are those involving cache access, and propose merging the integer and memory
domains to virtually eliminate this overhead. We further propose significantly reducing the number of voltage
levels, separating the Reorder Buffer into its own domain to permit front-end frequency scaling, separating the
L2 cache to permit standard power optimizations to be used, and a new online algorithm that provides consistent
results across our benchmark suite. The overall result is a significant reduction in the performance degradation of
the original MCD approach and greater energy savings, with a greatly simplified microarchitecture that is much
easier to implement.

1. Introduction

Advances in semiconductor technology, novel circuit techniques, and innovation in computer architecture have

resulted in rapid improvements in microprocessor performance. Today, hundreds of millions of transistors are

successfully harnessed to build these increasingly complex devices. However, during the next two or three genera-

tions, high end microprocessor designers will face several major challenges. Without argument, one of the biggest

challenges will be to keep power dissipation to reasonable levels. Higher clock frequencies and transistor counts

have made power dissipation a major microprocessor design constraint, so much so that it threatens to limit the

amount of hardware that can be included on future microprocessors and how fast they can be clocked. Another

impending limit will be the global clock distribution design due to larger die sizes and higher clock speed. Dis-

tribution of a high frequency global clock signal with low clock skew can be prohibitively expensive in terms of

design effort, area, and power consumption under such circumstances. In addition, significant across chip and

across wafer parameter variations are added sources of concern for future microprocessors.

1



In such an environment, globally asynchronous, locally synchronous (GALS) designs provide several benefits

through their use of separate, autonomous units:

� The capability to independently configure each domain to execute at frequency/voltage settings at or below

the maximum values. This allows domains that are not executing operations critical to performance to be

configured at a lower frequency, and consequently, an GALS microarchitecture has the advantage that power

can be saved.

� Elimination of the need for careful design and fine tuning of a global clock distribution network. Through

local clock generation units, the problem of dealing with clock distribution can be confined into several

smaller domains. For example, the impact of parameter variations on clock skew will be confined within a

domain, and thus will require less design effort and cost for dealing with clock skew.

� The ability for each domain frequency to track with parameter variations. In the case of frequency, each

domain can statically run at different frequencies (increasing effective average maximum frequency) by

tracking the variations from
�����

noise, ���	�
� , as well as from temperature. For example, if one of the

domains has one sigma slow �����
� , the frequency can be lowered for that domain while the other domains

can run with a relatively higher frequency. On the contrary, if most of the domains have one sigma fast ����
� ,

the
�����

can be statically lowered for the same performance to save power.

For these reasons, there is a rapidly growing interest among high end microprocessor designers in adopting a

GALS approach for future products. One major concern regarding the GALS processor efforts proposed to date [7,

12] is increased design and verification complexity. For instance, the Multiple Clock Domain (MCD) approach

of [12] requires separating the processor into four domains (including separating the integer and memory domains

which complicates the scheduling of integer load-dependent instructions), and the implementation of 32 voltage

and frequency levels in each domain. In addition, the hardware-based control algorithm, though effective overall,

produces a significant performance degradation for some applications. In order for GALS processor designs like

MCD to be implemented in practice, complexity effective design simplifications [1] must be discovered. That is,

design modification that significantly reduce design and verification complexity, while retaining virtually all of the

original power/performance benefits, must be devised.

In this paper, we make significant simplifications to the MCD design, and discover additional optimizations

that require very minor design changes. Using the framework developed by Semeraro et al. [12, 10, 8], we evalu-

ate the performance and energy cost of modifications to the MCD design that greatly reduce the implementation

complexity. We first determine that the synchronization channels that are most responsible for the MCD per-

formance degradation are those involving cache access, and propose merging the integer and memory domains

to virtually eliminate this overhead. Perhaps more significantly, this modification greatly simplifies the integer

out-of-order scheduler, as load hit latencies are no longer subject to a domain crossing, and are thus determinis-

tic. Load-dependent integer instructions can therefore be scheduled as in a fully synchronous design. We then

propose significantly reducing the number of frequency/voltage levels, separating the Reorder Buffer into its own
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domain to permit front-end frequency scaling, separating the L2 cache to permit it to be optimized using standard

techniques, and a new online algorithm that provides consistent results across our benchmark suite. The overall

result is a significant reduction in the performance degradation of the original MCD approach with greater energy

savings, with a greatly simplified microarchitecture that is much easier to implement.

The rest of this paper is organized as follows. The concept of complexity effective design is briefly described in

Section 2, as well as how we adopt this idea to our work. The microarchitecture of the original MCD design and

potential modifications are described in Section 3. Section 4 elaborates in detail on each of our proposed MCD

design modifications and presents experimental results. Section 5 discusses in detail the related work, and we

finally conclude in Section 6.

2. Complexity-Effective Design

To our knowledge, the term complexity-effective was first used in the context of superscalar processors by

Palacharla et al. [9] to describe a proposed dependence-based microarchitecture that organized execution resources

into clusters. The goal was to permit the design to scale to a fast clock while still achieving high IPC performance.

Since then, the term has been modified for a series of workshops on Complexity-Effective Design held the

last few years at ISCA. The Introduction in the 2004 workshop proceedings states the following: “A complexity-

effective design feature or tool either (a) yields a significant performance and/or power efficiency improvement

relative to the increase in hardware/software complexity incurred; or (b) significantly reduces complexity (design

time and/or verification time and/or improved scalability) with a tolerable performance and/or power impact.”

We adopt this definition in this paper, and strive to find design features that accomplish both (a) and (b) above

for the MCD microarchitecture. Since the definition of “significant” is subject to interpretation, and there is no

known metric for “complexity”, we instead make qualitative arguments that our proposed modifications are indeed

“complexity-effective”.

3. MCD Microarchitecture and Overview of Potential Modifications

The MCD processor was first proposed by Semeraro et al. in [12]. The basic idea is to divide the chip into

multiple domains each with its own clock and voltage generators to permit tuning each domain frequency and

voltage independent of the other domains. Architectural queues that decouple different pipeline functions serve

as the interfaces between domains, and are augmented with synchronization circuitry to ensure that signals on

different time bases transfer correctly. Figure 1 shows the domain partitions proposed in [12].

Previous papers have described several control mechanisms to choose when, and to what values, to change

domain frequencies and voltages. The offline algorithm [12] post-processes an application trace to find, for each

interval, the configuration parameters that would have minimized energy, subject to a user-selected acceptable

slowdown threshold. The application trace is built up gradually when running programs in a fully synchronous

machine simulator. All primitive events (instruction fetch, decode, issue and commit) are collected with time

stamps and added into a directed acyclic graph (DAG) with edges (with lengths) enforcing various data and struc-

tural dependences. At the end of each interval the constructed DAG is analyzed to calculate all the “slacks”, and
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Figure 1. MCD architecture proposed in [12].

based on which, the final frequency settings are determined. Though impractical, this algorithm provides a target

against which to compare more realistic alternatives. A more practical control scheme is the on-line (attack/decay)

algorithm [10], which makes reconfiguration decisions dynamically during the execution of a program. However,

compared to the off-line it achieves less energy efficiency and at times produces significantly high performance

degradation.

From comparing a conventional microprocessor with an MCD design, and from reading the authors’ own self-

criticism regarding MCD [12, 10, 8], we have targeted several areas for complexity-effective design improvements:

Reducing the complexity of the online control algorithm, or improving its effectiveness. The online control

algorithm has the advantage that it is transparent to software and therefore can be effective on legacy applications

as well as new ones. Therefore, it is critical to the success of MCD, yet it is an additional complexity over the fully

synchronous design. We take the viewpoint that simplifying the online algorithm is difficult with little impact on

its effectiveness and therefore we seek to achieve the opposite: increase the algorithm’s effectiveness, in particular

its robustness across a variety of applications, with little impact on its complexity.

Reducing the number and complexity of the synchronization circuits. A second obvious complexity is the

need to synchronize signals that cross domains. Such circuits need to be carefully designed to avoid metastability,

and they also introduce considerable verification complexity. A reduction in the number of these circuits that are

needed would simplify the MCD design. We perform an analysis to determine which synchronization channels are

most responsible for the MCD performance degradation, in order to determine if they can be eliminated. Doing so

would reduce the performance overhead and reduce the required number of synchronization circuits.

Reducing the dynamic scheduler complexity. A less obvious complication in MCD is created by placing the

integer register file and execution units, and the load-store queue and L1 data cache, into separate domains. This

means that for an integer load operation, a domain crossing must be incurred after the effective address (EA) is

calculated to access the cache, and a second crossing must be made to place the data into the integer register file.

Placing dedicated EA calculation logic in the memory domain does not remove either crossing as the register
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file still needs to be accessed. The presence of these two domain crossings, together with the fact that the two

domains may run at different frequencies, complicates the scheduling of load-dependent instructions. In many

conventional synchronous designs, the out-of-order issue logic schedules load-dependent instructions assuming

that the load will hit in the cache. Because the load hit latency is constant, this is easily achieved. In MCD, this

latency is variable which requires some additional mechanism to know when a load is to return. To eliminate this

problem for integer instructions (the complication remains for floating point instructions, although one domain

crossing is removed for floating point loads), we propose to investigate the impact on MCD performance and

energy efficiency of merging the integer and memory domains.

Saving front-end power. The authors of [12, 10, 8] state that they have had little success in reducing the front-

end frequency without a large performance degradation. This leaves a considerable amount of potential power

savings untapped. We surmise that the reason for this unfavorable outcome is due to the placement of the Reorder

Buffer (ROB) in the front-end. This choice by the MCD designers means that whenever the front-end frequency

is scaled down, the commit bandwidth is also scaled commensurately. We thus propose to move the ROB out of

the front-end domain and always run it at full frequency. Because the ROB constitutes less than 1% of the total

chip power [2], if this indeed does permit the front-end to scale then significant additional power savings can be

realized with a small design change.

Separating out the L2 cache. The L2 cache by virtue of its size is a significant source of leakage power in

today’s aggressive process technologies. Many commercial designs solve this problem by using circuit-level

power saving techniques, such as the use of thick oxides and high-
���

transistors, in the L2 cache, and running at a

reduced speed, e.g., at half of the processor core speed. This reduces the L2 bandwidth but many applications are

unaffected. In effect, the L2 cache is already in its own “domain” in modern processors. We propose, therefore,

to remove the L2 cache from the memory domain and run it at half speed. Our power calculations no longer take

the L2 cache into account, as it is already low power and no longer part of the core MCD logic that we wish to

optimize.

Simplifying the dynamic frequency and control circuits. An obvious complexity in MCD is that it assumes

that voltage and frequency circuits having 32 levels can be implemented in each of its domains. Although local

PLLs can potentially be devised to meet the frequency requirement, voltage regulators for dynamic microprocessor

voltage scaling are implemented at the board level. Having four of these off-chip regulators would consume pins

and create significant OEM problems. Proposals for on chip regulators assume linear circuits which have poor

efficiency and thus would waste considerable power. We propose therefore to investigate MCD designs having

four, or preferably two, levels in each domains. If this can be accomplished while still being profitable from an

energy savings perspective, then simple voltage switch circuits, such as that proposed for drowsy caches [6], can

be adopted.

In the next section, we describe and evaluate these proposed changes in detail.
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Configuration Parameter Value
Branch predictor:

Level 1 1024 entries, history 10
Level 2 1024 entries
Bimodal predictor size 1024
Combining predictor size 4096
BTB 4096 sets, 2–way

Branch Mispredict Penalty 7
Decode/Issue/Retire Width 4/6/11
L1 Data Cache 64KB, 2–way set associative
L1 Instruction Cache 64KB, 2–way set associative
L2 Unified Cache 1MB, direct mapped
L1 cache latency 2 cycles
L2 cache latency 12 cycles
Integer ALUs 4 + 1 mult/div unit
Floating–Point ALUs 2 + 1 mult/div/sqrt unit
Integer Issue Queue Size 20 entries
Floating–Point Issue Queue Size 15 entries
Load/Store Queue Size 64
Physical Register File Size 72 integer, 72 floating–point
Reorder Buffer Size 80

Table 1. Alpha 21264–like architectural parameters.

Benchmark Simulation Window
adpcm decode entire program (11.2M)
adpcm encode entire program (13.3M)
epic decode entire program (10.6M)
epic encode entire program (54.1M)
g721 decode 0 – 200M
g721 encode 0 – 200M
gsm decode entire program (122.1M)
gsm encode 0 – 200M
jpeg compress entire program (153.4M)
jpeg decompress entire program (36.5M)
mpeg2 decode 0 – 200M
mpeg2 encode 0 – 200M
applu 650 – 850M
art 13,398 – 13,598M
equake 4,266 – 4,466M
gcc 2,000 – 2,200M
gzip 21,185 – 21,385M
mcf 1,325 – 1,525M
swim 575 – 775M
vpr 1,600 – 1,800M

Table 2. Benchmarks and simulation windows.

4. Analysis of Proposed Modifications

In this section, we analyze the proposed complexity-effective design modifications using the MCD simula-

tion framework, which is based on the SimpleScalar/Wattch toolkit [3, 4]. The simulator includes the original

online (attack/decay) algorithm and the offline algorithm proposed in [12]. We also implemented our modified

attack/decay algorithm (as described in Section 4.1). The microarchitecture parameters were chosen to match

those in prior MCD evaluations (see Table 1). In the original MCD simulator, Wattch calculated energy by adding

up the power numbers cycle by cycle. This is fine for a fully synchronous machine but may over-estimate the

energy savings in a MCD processor. In our experiments, we modified the energy accounting code to account for

the dynamically varying clock cycle time. In all experiments, the voltage change is limited to a rate of 16.7 mV

per � s.

In our experiments comparing our modified online algorithm with the original one, for convenience and fairness,

we used the same set of benchmarks and the same simulation windows (see Table 2) as what was used in [8]. We

added another benchmark (gcc) which was not used in [8], since it has much more memory references (over

65% of the total number of instructions in the simulated window) than other 7 SPEC2000 benchmark programs.

Thus, our benchmark suite consists of 12 MediaBench programs and 8 SPEC2000 programs, of which four are

floating-point programs and four are integer programs. In the other experiments, we only use the 8 SPEC2000

benchmarks.

4.1. Improving the attack/decay algorithm

The original attack/decay algorithm as proposed by Semeraro et al. in [10] periodically monitors the issue queue

occupancy. Whenever the queue occupancy changes by more than a fixed Threshold, the domain’s frequency is

changed by a fixed ReactionRatio. This is the attack part. If the queue occupancy change is within the Threshold
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Figure 2. The mismatch between the curve of the integer issue queue occupancy (upper left) and the curve of

the frequency (bottom left) selected by the original attack/decay algorithm, for adpcm decode. The horizontal

axis indicates the time intervals. Zoomed-in curves at the right side show where the mismatch starts to happen.

From Interval 30 to 33, there are two consecutive small drops in the queue occupancy, followed by a large

increase, and all these three changes are above the threshold, barely for the first two but greatly for the third.

Because the ReactionRatio is fixed, the change on frequency triggered by a large change ends up being the
same as that by a small change. As a result, at Interval 33, the frequency selected are much lower than what it

should be.

and IPC does not increase by more than the pre-specified performance degradation, then the domain’s frequency

is lowered slightly. This is the decay part.

Suppose the queue occupancy accurately reflects the program demand at different phases of execution. We

expect the frequency to change according to the variation in queue occupancy. But due to the fixed ReactionRatio,

the magnitude of the frequency change due to a very large variation in queue occupancy would be the same as due

to a smaller one which is just barely larger than the Threshold.

This uniform attack would build up the mismatch between the curves of queue occupancy and frequency grad-

ually (see Figure 2), and finally after a long period, either higher performance degradation (see adpcm decode in

Figure 3) or less energy savings would occur.

We propose to modify the attack part of the algorithm, to react differently to different queue occupancy changes.

The higher the queue occupancy changes, the greater we attack (that is, the more aggressively we adjust the

frequency).

We assume the same ReactionRatio and Threshold used in the original algorithm, and propose three options on

how to scale the actual reaction ratio, assuming V = queue occupancy change ratio / Threshold:
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� case C: the frequency changes conservatively upon the change of queue occupancy, and thus
���������
	�����
��������������������������
��������������������� �! �

;

� case M: the frequency changes moderately upon the change of queue occupancy, and thus
���������
	�����
��������������������������
��������������������� �

;

� case A: the frequency changes aggressively upon the change of queue occupancy, and thus
���������
	�����
��������������������������
��������������������� ��"

.

Figure 3 shows the effects of the modified online algorithms. On average, the modified algorithm achieves

higher energy savings with lower performance degradation (except for case A, where the performance degradation

is slightly higher than that of the original algorithm). Case M and A have almost the same energy efficiency as

what the near-optimal offline algorithm can achieve.

For benchmarks adpcm decode and epic decode where the original algorithm produces high performance

degradation, our modified schemes significantly reduced the performance degradation. Moreover, greater energy

savings is achieved for epic decode.

In comparing the three cases of the modified algorithm, Cases M and A achieve similar performance degradation

and energy savings, while Case C, due to its conservative reactions to queue occupancy change, results in a lower

performance degradation and hence lower energy savings, but is still superior to the original algorithm. Our new

algorithms are very robust across our benchmark suite. Overall, Case M achieves a 18% energy (not power)

savings for a 6% performance degradation. We favor Case M as the modified algorithm for its design simplicity,

and use it in our further investigations.

4.2. Synchronization channel analysis

Since the different domains of the MCD processor may operate at different frequencies, inter-domain crossings

incur synchronization penalties [12]. More specifically, if the data to be transferred is latched at the rising clock

edge of the transmitting domain, and the next rising clock edge of the receiving domain is too close in time, then

an extra clock cycle is assumed for the data to be latched at the receiving domain. This assumption is consistent

with the operation of inter-domain synchronization circuits [5]. To reduce design complexity, we would like to

simplify such circuits if the impact is limited. Even better, we seek to remove channels with a large performance

impact and where the energy cost is low. Therefore, in this section, we study the performance impact of each

inter-domain channel to determine the sensitivity to performance in order to focus on the most important channels.

Figure 4 shows all the synchronization channels. We use this opportunity to separate the ROB and L2 cache out

to study these effects as well. This adds two additional channels (the original MCD design has 15 synchronization

channels; see [11] for details): Channel 16, where synchronization occurs when an instruction is being dispatched;

and Channel 17, for synchronizing transfers between the L1 data cache and L2 unified cache.

Figure 5 shows what percentage of the total synchronization penalty occurs in each channel for our benchmark

suite. We place vpr in the floating point group due to its large number of floating-point loads and because its distri-

bution has a greater resemblance to the floating point benchmarks. For the floating point benchmarks, Channel 5
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Figure 3. Performance degradation (upper), energy savings (middle), and energy delay product improvement

(bottom) using the original (ad.org) and modified attack/decay (with 3 cases: C, M and A) algorithms and the

offline algorithm, on the original MCD processor. The baseline is a fully synchronous machine with the same

architectural parameters.
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Figure 4. Our proposed MCD domain partition scheme, along with all possible synchronization channels among

different domains.

is the hot spot where roughly 50% of the total synchronization penalty occurs, whereas there is no such dominant

channel for the integer benchmarks that on average contributes more than 25% of the total.

However, the magnitude of the synchronization penalties may not directly reflect the performance impact.

Rather, the tolerance of the application to added latency on each of the channels is a more significant factor. To

determine the performance impact of each channel’s synchronization penalty, we individually remove the channel

penalties and measure the resulting performance improvement. We only present those channels for which, for

at least one benchmark program, a performance impact of at least 0.5% was achieved when the synchronization

penalties were removed. Results for Channel 16 and 17 are also presented (although no benchmark program sees

more than 0.5% impact), since they are the extra channels resulted from our new domain partition scheme. As is

shown in Figure 6, Channels 6, 4, and 5 have the highest performance impact. These three channels are related to

load operations: Channel 6 for effective address transfer between the integer and memory domains, and Channels
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Figure 5. Percentage of synchronization penalties occurred in each individual channel as a percentage of the

total synchronization penalty incurred.

4 and 5 for the return of cache data to the integer and floating-point register files, respectively. The impact

of synchronization on Channels 4 and 6 has a particularly acute impact on gzip, due to its very small memory

footprint that fits into the L1 data cache. The result is that the synchronization penalty as a fraction of the average

load latency is highest for gzip, and therefore has the largest performance impact. An obvious way to greatly

reduce the MCD synchronization penalty is to merge the integer and memory domains into a single combined

domain. This has the added benefit of simplifying the scheduling of integer load-dependent instructions.

Recall that Channels 16 and 17 are the extra synchronization channels introduced by separating the ROB and

L2 cache. Figure 6 shows that, although not zero, the performance impact of these penalties are relatively small

compared with those on Channels 3, 4, 5 and 6. There is therefore the potential for significant gains in moving the

ROB and L2 cache.
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Figure 6. Performance improvement (compared to a realistic MCD processor) when channel x’s penalties are

removed (chx.sp free).

4.3. Dynamically scaling the front-end frequency and separating the L2 cache

The MCD designers found that the frequency of the front-end could not be scaled without incurring a large

performance degradation [12]. This indicates that a hardware unit within this domain always lies in the critical

path of program execution. We conjecture that this critical structure is the Reorder Buffer (ROB) for the following

reasons. The ROB connects the front-end and back-end of the execution pipeline. When an instruction is dis-

patched from the front-end, a free ROB entry needs to be allocated; when an instruction finishes execution and

is ready to commit, the ROB needs to commit the architectural state changes made by this instruction. Since at

any moment the execution bottleneck must be in either the front-end or the back-end, the ROB is always the key

structure that needs to be run at the full frequency to maintain high performance.

Based on this conjecture, we propose to remove the ROB from the front-end domain and make it a new stand-

alone domain always running at the full frequency. We have already observed in the prior section that doing so

should have little performance impact. The effect on energy of not being able to scale the ROB should be small as

well, as it comprises about 1% of the total chip power [2]. Thus, we create a five domain MCD processor called

5d in the following discussion.

Figure 7 shows the frequency curves in the front-end domain before and after separating the ROB out, for Swim,

using the offline algorithm. We find that, while the frequency curves are almost identical in the other domains (due

to space limit, we did not include the frequency curves for the other domains here), more opportunities are exposed

for scaling the frequency of the front-end domain with the separation of the ROB. Thus, the simple design change

of making the ROB a full-frequency standalone domain should yield even greater MCD savings. Although we do

not evaluate the energy savings of removing the L2 from the memory domain (as it uses a different energy saving

approach than MCD), the prior section showed that the performance impact would be minor. We call the resulting

six domain MCD processor 6d.
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Figure 7. The frequency curves in the front-end domain, before and after separating the ROB out, for Swim, with

the offline algorithm.

Figure 8 compares the effects of separating out the ROB and L2 cache using the modified online algorithm. The

overall performance impact as expected from prior results is small in both cases, and is somewhat impacted by the

online algorithm taking advantage of the ability to scale the front-end domain. As expected, the energy savings

improves with the separate ROB, but to a small degree. This is due to the fact that, in our simulation model,

the power consumption of the front-end is only about 12% of the total chip power. Thus, the new algorithm is

recouping a large fraction of this potential savings. The potential impact is higher for designs that have greater

front-end power. Finally, there is a small performance and energy cost for separating out the L2 cache, but this

would be easily overridden by the ability to use thick oxides and high-
� �

transistors.

4.4. Merging the integer and memory domains

Recall that we have three major motivations for exploring the merging of the integer and memory domains.

First, we found that the channels between these domains that involve cache access were those that had the highest

contribution to the MCD performance degradation. Second, removing those channels reduces the number of

synchronization circuits. Finally, merging the domains removes a major source of MCD complexity: the issue

complications of scheduling dependent instruction base on a load that makes two domain crossings and is therefore

non-deterministic.

Figure 9 shows the effects of merging these domains using the modified online algorithm. Note that the online

algorithm needs to monitor queue occupancy to make reconfiguration decisions. In the merged domain, we have

two queues – the integer and load store queues. In our experiment we formed the new queue occupancy by adding

the two occupancies together with each weighted by 0.5. We experimented with weightings between 0 and 1 and

found that equally accounting for both queues gave the best result. As is shown in Figure 9, merging greatly

reduces the performance degradation as expected from our prior results, with a small enough reduction on energy

savings to maintain a similar energy delay product. Note that the worst case performance degradation for these

benchmarks is reduced from 6.5% to 4.7%. With the obvious impact on the MCD design, merging the domains is

a very complexity-effective design decision.
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Figure 8. Performance degradation (upper), energy savings (middle) and energy delay product improvement

(bottom), for 4, 5 and 6-domain MCD schemes, using the modified (Case M) attack/decay algorithm. The

baseline is a fully synchronous machine with the same architectural parameters.
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Figure 9. Performance degradation (upper), energy savings (middle) and energy delay product improvement

(bottom), for 6-domain MCD schemes, before (org) and after (merged) merging the integer and memory domains,

using the modified online algorithm. The baseline is a fully synchronous machine with the same architectural

parameters.
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Based on the analysis above, we propose to partition the chip into the following 5 domains:

� ROB domain — always running at full frequency;

� L2 cache domain — always running at half frequency;

� fetch domain — same as the original MCD design, except ROB;

� floating-point domain — same as the original MCD design;

� integer and memory domain — same as combining the integer and memory domains in the original MCD

design, except the L2 cache.

4.5. Simpler frequency scheme

The original MCD design uses 32 different frequencies evenly distributed from 250 MHz to 1.0 GHz – which

requires a complicated scheme to generate and switch among these 32 frequency levels, as well as the accompa-

nying voltages. In this section, we study how much energy efficiency would be compromised by simpler, more

easily implementable schemes, requiring only a few frequencies/voltages.

Assuming all 32 frequencies are equally important, we conducted experiments using 7 evenly-spaced frequen-

cies (from 250 MHz, with step of 125 MHz, all the way up to 1.0 GHz). However, we find that the 32 frequencies

are not equally important. For frequencies that are below 500 MHz, only the lowest (250 MHz) is heavily used

when there are no activities in one domain (like the floating-point domain when an integer benchmark is running);

the other low frequency values are seldom used. Based on this observation, we then conducted experiments on

using only 4 frequencies: 250 MHz, 500 MHz, 750 MHz and 1.0 GHz.

Figure 10 compares the effects of using full-range frequency and using a fewer number. A 4-frequency scheme

achieves much the same energy efficiency as the full-frequency scheme, without seriously degrading performance.

As expected, the energy savings is reduced as the algorithm identifies less opportunity for energy savings. How-

ever, such a small number of frequencies and voltages could be generated using simple switches as with drowsy

caches [6], making the design much easier to realize.

Two frequencies, however, are not enough to yield significant improvements in both performance and energy.

The performance degradation is reduced, but this is only because the offline algorithm is unable to find many

opportunities for energy savings with only two frequencies. For vpr, applu and equake, the energy-delay product

is even worse than that of the full frequency scheme.

4.6. Putting it all together

Figure 11 compares the original MCD with the online algorithm of [10] with our modified MCD that separates

the ROB and L2, combines the integer and floating point domains, uses four frequencies in each of the three

domains (front-end, int+mem, and floating point), and the modified online algorithm. The overall performance

degradation is reduced from roughly 2.9% to 2.5%, and the energy savings increases from 10% to 18%, with our

proposed modifications. The performance degradation to energy (not power) savings ratio of the new scheme
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Figure 10. Performance degradation (upper), energy savings (middle) and energy x delay product improve-

ment (bottom), for 6-domain MCD schemes, with the offline algorithm, using full range frequency and simpler

frequency schemes. The baseline is a fully synchronous machine with the same architectural parameters.

17



0%

1%

2%

3%

4%

5%

6%

7%

applu art equake gcc gzip mcf swim vpr average

org mod

0%

5%

10%

15%

20%

25%

30%

35%

40%

applu art equake gcc gzip mcf swim vpr average

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

applu art equake gcc gzip mcf swim vpr average

Figure 11. Performance degradation (upper), energy savings (middle) and energy x delay improvement (bottom),

over a fully synchronous machine with the same architectural parameters. org stands for the original MCD

design with the original online algorithm using full-frequency scheme; mod stands for the new domain partition

scheme with our modified online algorithm and four frequencies/voltages.
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is a very favorable 7.2. Furthermore, our approach requires fewer synchronization circuits due to merging two

domains, much simpler dynamic frequency and voltage scaling circuitry (only four levels), and a simpler integer

instruction scheduler. Moreover, the modest changes that we proposed to the MCD microarchitecture (moving the

ROB and modifying the online algorithm) have yielded significant benefits.

5. Related Work

A GALS approach to processor microarchitecture was proposed by Semeraro et al. in [12] and Iyer and Mar-

culescu in [7]. Our work is built on the design presented in [12]; we propose a new domain partition scheme that

achieves the same energy efficiency with lower performance degradation.

The performance impact of synchronization has been studied in [12, 7], and it has been demonstrated that a

MCD processor with an out-of-order superscalar core would be more capable of tolerating the performance effects

of synchronization penalties than with an in-order issue core [11]. While these works studied the overall impact of

all the synchronization penalties occurred in all synchronization channels, our work identified the most important

channels where the penalties occurred would have the biggest performance impact (though their amount is not

necessarily the highest). We proposed to remove those penalties by domain merging and showed the new domain

partition scheme achieves essentially same energy savings but with lower performance degradation, compared to

the original design.

A number of schemes have been devised to control a MCD processor. In [12], an offline algorithm is proposed.

It analyzes program trace built from execution on a fully synchronous machine and makes decisions on when

and to what value the frequency should change. Though not practical in some application environments, it sets

an optimal limit against which more practical schemes can be targeted. We used this algorithm in our work to

see the effects of our modified algorithm and to test the effects of implementing fewer frequencies. Magklis et

al. proposed a more practical profile-based control scheme [8], which applies the offline algorithm only to those

“important” procedures and loop nests identified by profiling runs. These two approaches are both software-based.

The first hardware-based approach—the attack/decay algorithm is proposed by Semeraro et al. in [10]. In Sec-

tion 4.1, we analyzed the potential problems with this algorithm and proposed modifications which better bound

the performance degradation while saving additional energy. Another hardware-based approach was recently pro-

posed by Wu et al. [13]. They use a PI controller to make reconfiguration decisions. The input to the controller

is the difference between the previous interval queue occupancies and the pre-specified target queue occupancy.

The pre-publication version of this paper did not appear in enough time for us to make a comparison with our

own improved algorithm. However, in addition to a new control algorithm, we propose a number of additional

modifications to the MCD microarchitecture that improve its effectiveness while simplifying the overall design.

6. Conclusions

In this paper, we presented our work towards achieving a more complexity-effective MCD design. We first

presented our modification to the original attack/decay algorithm, which remedies the problem of high perfor-

mance degradation in some cases of the original algorithm and achieves better energy efficiency, while adding
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little complexity to the control circuitry. We then studied the domain partition problem and proposed to separate

the ROB and L2 cache, which results in a dynamically scalable front-end domain, and the freedom to use standard

L2 cache low-power techniques. Based on the new domain partition scheme, we studied the performance sen-

sitivity to synchronization penalties on every channel and found that, the channel involving cache access are the

ones for which performance is the most sensitive. Based on this observation we proposed to merge the integer and

memory domains to remove these hot channels. Finally, we found that a simpler 4-frequency scheme reaps most

of the energy efficiency that could be achieved with the 32-frequency scheme. A 4-frequency designing greatly

simplifies the implementation of the frequency and voltage controller. We finally compared our new MCD de-

sign (new domain partitioning, the modified online algorithm and a simpler 4-frequency scheme) with the original

MCD design and found that, the new approach improves both performance and energy efficiency. The net result of

all these optimizations is a design with more compelling performance and energy results yet which is much more

implementable as compared to the original MCD design.
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