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ABSTRACT
Performance modeling has become increasingly important
in the design, engineering and optimization of Information
Technology (IT) infrastructures and applications. However,
modeling work itself is time consuming and requires a good
knowledge not only of the system, but also of modeling tech-
niques. One of the biggest challenges in modeling com-
plex IT systems consists in the calibration of model pa-
rameters, such as the service requirements of various job
classes. We present an approach for solving this problem in
the queueing network framework using inference techniques.
This is done through a mathematical programming formu-
lation, for which we propose an efficient and robust solution
method. The necessary input data are end-to-end measure-
ments which are usually easy to obtain. The robustness of
our method means that the inferred model performs well in
the presence of noisy data and further, is able to detect and
remove outlying data sets. We present numerical experi-
ments using data from real IT practice to demonstrate the
promise of our framework and algorithm.

1. INTRODUCTION
Performance modeling has been of great theoretical and
practical and importance in the design, engineering and op-
timization of computer and communication systems and ap-
plications for several decades. A modeling approach is par-
ticularly efficient in providing architects and engineers with
qualitative and quantitative insights about the system under
consideration.

However, as Information Technology (IT) matures and ex-
pands in the scope of available applications, IT systems in-
crease at a fascinating rate in both size and complexity. For
example, today, a typical Web service hosting center may
have hundreds of nodes and dozens of different applications
simultaneously running on it. Each of the nodes in turn has
often multiple processors and layered caches. These nodes
make use of both local and shared storage systems. The size
and complexity of such systems make performance modeling

much more difficult, if at all tractable. Detailed modeling,
fine tuning and accurate analysis can be carried out only on
very small systems or very small components in a system.

In addition, due to the rapid evolution of hardware technol-
ogy, components in these systems are upgraded at a much
higher pace than in the recent past, in order to meet demand
and to improve the Quality of Service (QoS) parameters
of performance and availability. Similarly, software compo-
nents are upgraded with new versions and/or patches more
and more frequently, not only so as to add new features,
but also for security reasons. Hence, performance modeling
must be done in a very short time frame in order for the
model and analysis to be relevant.

These constraints made performance modeling work on mod-
ern IT systems very expensive, and oftentimes un-affordable.
In order to obtain relatively accurate performance evalua-
tion results with a short turnaround time, i.e., before the
system under consideration becomes obsolete, heavy invest-
ments are necessary in human and compute power.

On the other hand, IT systems have become critical in most
businesses. Losses of millions of dollars per minute when a
company’s IT system goes down are well-documented. Thus,
it is natural that users impose more and more stringent QoS
requirements on their systems. In the case of IT outsourcing,
service-level agreements (SLA) signed between the parties
stipulate, among other things, the service quality guaran-
tees, often with associated penalties in case of violations.
As a consequence, predictive modeling is truly vital in the
capacity planning and QoS management of such systems.

It is therefore urgent that researchers develop performance
modeling methodologies that can cope with large systems in
an efficient and effective way. In this paper, we propose one
such method based on queueing networks. Queueing net-
work models have been and continue to be the most popular
paradigm for the performance analysis of such systems, cf.
e.g. [8, 11]. When one uses queueing networks for the per-
formance modeling, the first thing to do is to specify the sys-
tem configuration and component dependence relationship
using a network of queueing stations with an appropriate
number of servers and service disciplines in the queues. The
customers in the queueing network represent the jobs pro-
cessed by the system components. These queueing stations
can model both hardware resources (such as routers, ma-
chines or cache, etc.) and software elements such as threads



or thread pools. Depending on the desired level of modeling
detail, this step of queueing network specification will be
more or less complex. Once the queueing network is built,
performance predictions and what-if analyses can be done
through analytical approaches or simulations by varying the
queueing network parameters such as traffic intensity, ser-
vice time requirements, number of servers, queueing disci-
plines, etc.

While many parameters, such as the queueing discipline, the
number of servers in a queueing station, buffer size, etc., of
the queueing network can be easily set by the modeler, the
service requirements (i.e. job processing times) of customers
are much more difficult to estimate. However, without an ac-
curate estimation of the service requirements, performance
predictions can vary wildly. In other words, a principal dif-
ficulty in building a valid queueing network of an IT system
is the fine tuning of the service requirements. This step
requires benchmarking of the real system followed by an
adjustment of the queueing parameters in order to obtain
coherency between measurement and predictions. However,
in many cases, measuring job processing times is technically
difficult, because of the multitasking in the system, and/or
very intrusive; as a result, measurement data are generally
noisy or biased. In short, determining service requirements
is probably the greatest impediment to using queueing net-
works for the performance modeling of IT systems.

In this paper, we propose an optimization-based inference
technique to tackle this important yet highly challenging
problem. It is formulated as a parameter estimation prob-
lem using a general (Kelly-type, [7]) queueing network. We
consider the case where aggregate and end-to-end measure-
ment data (i.e. system throughput, utilization of the servers,
and end-to-end response times) are available. Note that such
data are typically easy to obtain.

Our contribution in this paper is three-fold. First, we formu-
late the overall problem as a set of tractable, quadratic pro-
grams, one for each set of end-to-end measurements. (Each
set of measurements, that is a set of service requirements in
which the working environment (load, scripts,. . . ) is con-
stant, is referred to henceforth as an experiment). Then,
based upon that formulation, we present a novel and highly
robust method for solving the problem, the self-adjusting
nested estimation procedure, which makes explicit use of the
underlying problem’s structural properties. In particular,
we use the non-uniqueness of the solution to each quadratic
program and the presence of multiple experiments, to ob-
tain queueing network parameters that maintain a repre-
sentation of the entire set of solutions to the data. The
robustness of the method means the model performs well
in the presence of noisy data, and further is able to de-
tect and remove outlying experiments within the procedure
itself. This robustness comes at a very low computational
cost. Finally, we show that for data coming from real IT sys-
tem measurements, typically subject to measurement errors
and other bias, the methods we propose here are superior to
other available methods for obtaining parameter values from
multiple, multi-dimensional experiments. In particular, we
compare our algorithm with an adaptation of the bundle-
adjustment method used in 3-D image reconstruction to the
queueing network inference setting; our method is shown to

be clearly more robust and yet it requires a only modest
increase in computation time.

Earlier work on queueing parameter estimation can be found
in [12] and [14]. In [12], a tandem queueing network with
First-Come-First-Serve (FCFS) servers was considered. Var-
ious equations were established relating different queueing
variables (such as queue length and response times). In [14],
a tandem queueing network with two queueing stations was
considered, one with FCFS discipline and the other with
Processor-Sharing (PS) discipline. Other related inference
work can be found in the network tomography research area,
see e.g. [10, 5, 4, 2, 15]. Most work has focused on designing
smart probing schemes and using statistical methods such
as EM algorithms or Monte Carlo methods to infer either
the network loss probability or the delay distribution.

In the next section, we present background on the relevant
characteristics of IT systems, followed by the nature of the
queueing model we shall derive, and the inference problem.
In Section 3, the queueing dynamics are defined. Section
4 presents the derivation of the mathematical program for
a single experiment, multiple experiments, and its prop-
erties. Section 5 introduces our algorithm, its theoretical
basis, characteristics, and a comparison with a related al-
gorithm from the 3-D image reconstruction literature. In
Section 6, we demonstrate the workings of our algorithm on
both constructed and real data sets, and compare it with
the related algorithm described in Section 5. Conclusions
and suggestions for further work on the topic can be found
in Section 7.

2. THE MODELING FRAMEWORK
2.1 Background on IT Systems
Rapid development in e-business and information technol-
ogy has made today’s IT environment quite complex. As il-
lustrated in Figure 1, a typical IT system has multiple inter-
connected layers composed of many software and hardware
components, such as networks, caching proxies, routers, load
balancers, high-speed links, firewalls, and various types of e-
business servers .

Figure 1: A Typical IT Environment

The e-business servers are often organized to have a multi-
tiered architecture. Each tier has a cluster of machines and
may handle a particular set of functions. There are two
tiers in Figure 1, for example. The first tier is composed of



Web and authentication servers, referred to as the Portal.
The second tier, referred to as the Commerce tier, is com-
posed of a cluster of application servers that process most of
the business transactions. Incoming requests are routed to
the Portal or the Commerce tier based on their functional
requirements. Within the Commerce (or Portal) cluster,
again there are multiple layers, a front-end layer with several
servers working in parallel, and a back-end layer composed
of one or several database servers. The front-end servers are
responsible for obtaining static/dynamic pages for clients.
The back-end database server(s) handles database transac-
tions. A network dispatcher (eND) is commonly used to
route incoming requests in a weighted round robin fashion,
so as to evenly distribute the load to the parallel front-end
servers. The processed pages are usually returned directly
to the clients.

The e-business workload, composed of transactions and re-
quests to the e-business servers, is also quite complex. Con-
sider for example a typical enterprise online shopping sce-
nario. It contains authentication transactions such as lo-
gin, and business transactions such as browsing the catalog,
searching for products, adding items to a shopping cart,
proceeding to check out, etc. Each of these transactions
uses the site’s resources differently. Transactions such as
browsing may only involve the front-end application server
to fetch static pages, which is relatively inexpensive, while
other transactions such as searching or checking out may
involve composition of a dynamic page or multiple queries
to the database that require a large amount of processing
time and involve both the front-end application server and
the back-end database server. In addition, user navigational
patterns vary dramatically from person to person. Some
users may spend all their time browsing and searching, while
some frequent buyers may directly jump in for buying.

It is thus a challenging task to assess an IT system’s capa-
bility of delivering end-to-end performance assurance across
the entire IT environment, given the variety of system ar-
chitectures, numerous applications with different functions,
and the vast diversity in user behaviors.

2.2 Queueing Model
In order to ensure the feasibility of the modeling framework
yet still capture the fundamentals of the complex e-business
infrastructure, we require the queueing model to be neither
too detailed nor too general, and to rely on a controllable
number of parameters.

We therefore use a high-level multi-class queueing network
model. This form of model captures major resource and de-
lay effects and provides good traceability between the per-
formance measures and the system architecture. Each re-
source component that incurs non-negligible delays will be
modeled by a generic service station with queueing effect.
Such a generic service station could have anywhere from one
to an infinite number of servers. For example, if we think the
delay incurred at the firewall is constant and non-negligible,
one could then model the firewall as an infinite server station
with constant service time.

The next step is to characterize and profile the transac-

tions into different classes, so that requests within each class
would follow similar paths through the various server sta-
tions and require similar service demands at each station
along the path. Such profiling can be based on prior en-
gineering knowledge or after careful workload analysis. For
example, a login transaction is normally different from a buy
transaction and they would visit different set of server sta-
tions and make different resource demands. Figure 2 shows
the queueing network model corresponding to the IT envi-
ronment in Figure 1.

Figure 2: An Example of Queueing Network Model

Suppose there are I generic service stations, and J different
job classes in the corresponding queueing model. We assume
the routing matrix P = {pij} is known, where pji denotes
the probability of a class j job visiting station i. However,
the arrival rate of a particular job class may or may not be
known.

We define the end-to-end delay of a particular job (or trans-
action) to be the total response time that a user experiences
from the time she issues that transaction to the time she
receives the complete response as desired. For example, if a
buy transaction traverses the firewall, network dispatcher,
transaction server, database server, and the network, its
end-to-end delay is the sum of the delays incurred at each
hop along the path.

To make the model tractable, we assume the generic service
stations are either delay centers with infinite capacity (which
can be modeled as infinite server queues), or finite capacity
service stations operated under the processor-sharing (PS)
service discipline. For example, we can model user think
time between two consecutive transactions as a delay cen-
ter. For the application servers, processor-sharing queues
are used to model the multi-threaded and time-shared pro-
cessing/computing environment. Processor-sharing can be
considered as a limiting approximation to time sharing in
which the quantum length tends to zero. Hence, if there are
n jobs in the system, they each simultaneously receive 1/n
of the resource.

2.3 The Inference Problem
One of the biggest challenges in modeling complex IT sys-
tems using queueing network models consists in the calibra-
tion of the queueing network parameters, such as the service
requirements of the various job classes at each station. The
ideal way to capture these parameter values is to directly
measure the resource consumption of each class at each de-
vice. In real IT systems, however, it is very difficult to



measure the actual service time, without queueing delay, of
a job. For example, in the Apache HTTP server, a job may
be admitted, but then it actually stays in the accept queue,
waiting to be picked up by a server thread. Because there
are many such queueing effects inside a computer system, it
is impossible to measure each service time in detail.

We therefore have to rely on performance metrics that are
measurable and are also relatively inexpensive. For example,
it is relatively easy to collect server utilization data or sys-
tem throughput. End-to-end delay, defined as the time from
initiation of a request from the user until the time that the
user receives a response, can also be measured easily. In fact,
quite often end-to-end delays are continuously monitored in
order to make sure that the service level delivered in ac-
cordance with service-level agreement (or service contract).
Usually such contracts stipulate performance (such as end-
to-end delay) guarantees. Server utilization information is
another metric frequently used for IT system performance
monitoring.

In practice, experiments are often set up to collect above
end-to-end measurements. These experiments could be aimed
at measuring the performance under different load combina-
tions, or different load intensity. Each of these experiments
can be expensive and time consuming, requiring both efforts
in setting up the experiments and data collection. There-
fore one cannot afford to carry out too many of these exper-
iments.

Given that such experiments are carried out under differ-
ent conditions (in terms of the traffic intensity, transaction
flows, system configuration, or system maintenance), nat-
urally there are some experiments more trustworthy than
others. We will refer to the less trustworthy experiments as
outliers as they would simply produce inconsistent conclu-
sions thus needed to be filtered out. In addition, we consider
the fact the measurement data within a particular experi-
ment may be noisy.

In what follows, we will refer to an experiment as a set of
end-to-end measurements collected under a particular load
combination. We assume we have a finite and limited num-
ber of such experiments. Using these N different set of
experiments as input, we present a tractable, optimization
framework to infer the optimal set of service requirement
parameters so that the resulting performance predicted by
the model is the closest to the end-to-end measurements.
That is, for given measurements (Em, ρm) where Em de-
notes the end-to-end delay measurements, and ρm denotes
the observed server utilization, the optimal parameter set-
ting will produce an estimation (Ee, ρe) that is closest to
the measured under certain distance metric:

min ‖(Em, ρm) − (Ee, ρe)‖
Here the distance metric ‖ · ‖ is quite general, e.g. absolute
difference, maximum difference, weighted sum of absolute
differences, or weighted sum of least square errots,etc.

3. QUEUEING DYNAMICS
In this section, we describe the queueing model and the un-
derlying dynamics in more detail. Consider an open network

with I service stations and J different job classes. Jobs of
class j visit the stations along a deterministic path

h(j, 1), h(j, 2), · · · , h(j, Lj). (1)

If h(j, l) = i, we say that a class j job visits station i at
hop l. In total, a job j makes Lj hops before it exits the
system. Let H(j) be the set of all server stations that class
j jobs visit. Denote vji the number of times that a class j
job visits station i.

We assume that the J different job classes have independent
Poisson arrival processes, with rate λj for class j jobs. In
addition, suppose jobs of class j incur i.i.d. random service
demands Sji at station i, where Sji is a general distribution,
with mean sji = E[Sji]. Let Rji be the mean response time
of class j jobs at station i. Denote by Ej the mean end-to-
end delay of a class j job after it visits all of the stations
along its path (1).

Denote λji = vjiλj as the arrival rate of class j jobs at
station i. Then, the total job arrival rate at station i is

λ(i) =

J∑
j=1

λji i = 1, ..., I.

Similarly, let ρji = λjisji. Then, total traffic intensity ρi at
station i is

ρi =
J∑

j=1

ρji

=
J∑

j=1

vjiλjsji, i = 1, ..., I. (2)

Throughout the paper, we shall assume that

ρi < 1, for all i = 1, ..., I,

so that the queueing network is stable.

Since all service stations are assumed to be either infinite
server (IS) or processor-sharing(PS) stations, (both are sym-
metric queues), the underlying queueing network is a quasi-
reversible network [7]. We further have the following prop-
erties:

a) The state variables for each station are independent of
those for other stations; hence the product form holds;

b) The arrival process for every class of jobs at each station
has the PASTA property.

It is shown in [13] (§6-8 Theorem 26) that the number of
jobs at PS station i has the same distribution as that of
the corresponding M/M/1 queue. Moreover, the probability
that a job belongs to class-j is ρji/ρi. Hence, the mean
number of jobs Li at PS station i is

Li =
ρi

1 − ρi
,

and the mean number of class-j jobs Lji at PS station i is

Lji =
ρji

1 − ρi
.



Applying Little’s law, the mean response time Rji for class
j jobs at station i is then given by

Rji =
Lji

λji
=

sji

1 − ρi
. (3)

Clearly if station i is an IS queue (i.e. a delay center), we
have that

Rji = sji. (4)

Therefore, the end-to-end delay for class j jobs can be de-
rived as follows,

Ej =
∑

i∈H(j),i∈IS

sji +
∑

i∈H(j),i∈PS

sji

1 − ρi
.

4. A QUADRATIC PROGRAM
4.1 Notation
Here we summarize the notation we use in the queueing
inference problem. The following input parameters and per-
formance measures are assumed to be given

J :=number of job classes;

I :=number of service stations;

λj :=arrival rate for class j jobs;

vji :=number of times that a class j job visits station i;

Em
j :=measured end-to-end delay of class j jobs;

ρm
i :=measured utilization of service station i.

The following parameters and performance metrics are to
be estimated:

sji :=mean service requirement of class j jobs at station i;

Rji :=mean response time of class j jobs at station i;

Tji :=vjiRji, total mean response time of class j

jobs (sum of multiple visits) at station i;

Ee
j :=estimated end-to-end delay of class j jobs;

ρe
i :=estimated utilization of service station i.

Denote further in matrix format that:

Λ = {λj}J×1; (Arrival Rate)

S = {sji}J×I ; (Service Times)

T = {vjiRji}J×I ; (Multiple-visit Response Time Matrix)

Em = {Em
j }J×1; (Measured End-to-end Delay)

Ee = {Em
j }J×1; (Estimated End-to-end Delay)

ρm = {ρm
i }I×1; (Measured Server Utilization)

ρe = {ρm
i }I×1; (Estimated Server Utilization)

4.2 Single Experiment
We shall focus on a single experiment first in order to derive
the corresponding quadratic parameter inference program.
The extension to multiple experiments is presented below.

Let us suppose that the matrices Λ, ρm, Em are given. We
can estimate the total response times (sum of multiple visits)
for a class-j job at a PS-station i as follows:

Tji = vji · sji

1 − ρm
i

, if i is a PS-station. (5)

Similarly, the total response times (sum of multiple visits)
for a class-j job at an IS-station i is given by

Tji = vji · sji, if i is an IS-station. (6)

We define β = {βi}I×1, where

βi =

{ 1
1−ρm

i
, if i is a PS-station

1, if i is an IS-station

Let us define further: Z = {zji}J×I where

zji = vjisji.

Therefore, zji = 0 whenever vji = 0. Then in matrix format
we have

T = Z · D(β),

where D(β) stands for the diagonal matrix of β.

Therefore the estimated total end-to-end delay is given by

Ee = T · 1I×1 = Z · D(β)1I×1 = Z · β. (7)

Similarly, based on the fact that ρe
i =

∑J
j=1 λjvjisji, we

have that the estimated server utilization is:

ρe = (Λ)T ZD. (8)

The parameter estimation optimization problem is to thus
to find the service requirements S = {sji} such that the
weighted least squared error is minimized. We have rewrit-
ten this problem so that the the differences between mea-
sures and estimated values of the parameters appear in the
definitional constraints, and we minimize the sum of squared
deviations from those differences. In other words, we solve
a quadratic program subject only to non-negativity con-
straints on the service requirements, sji, i.e.,

min
s

J∑
j=1

wjδ
2
j +

I∑
i=1

ε2i (9)

s.t. ρe
i (s) − ρm

i = εi, i = 1, ..., I. (10)

Ee
j (s) − Em

j = δj , j = 1, ..., J, (11)

sji ≥ 0, j = 1, ..., J ; i = 1, ..., I. (12)

Here we use the weighted least square as our distance metric

in this paper, where wj =
λj∑J

j=1 λj
, ∀j, define the weights

over the job classes based on the arrival rates. Denote in
matrix format

W = {wj}J×1 =
Λ

ΛT 1J×1
.

Note that both Ee(s) and ρe(s) are linear in s, and that
the variables ε and δ are unrestricted in sign, as we are
minimizing the squared values.



Let us now define a new labeling of the unknowns, which we
shall refer to as x, where

x =


 x̃

ε
δ


 ,

and x̃ is a column vector form for S, i.e. x̃k := sji if k =
(j − 1) ∗ I + i. ε = {εi} and δ = {δj}. The optimization
problem can then be re-stated as the following quadratic
program in standard form:

(QP) min
1

2
xT Hx (13)

s.t. Ax = b; (14)

xk ≥ 0, k = 1, ..., I × J. (15)

where

H =


Hs 0 0

0 Hε 0
0 0 Hδ




with

Hs = 0IJ×IJ

Hε = 2II×I

Hδ = 2D(W ),

with W being the matrix of arrival weight rates, and

A =


 As

Aε

Aδ


 , b =


 bs

bε

bδ


 .

Let L be the total number of vji’s such that vji = 0. Then,

Aεik =




λjvji, i = 1, ..., I ; k = (j − 1) × I + i
−1, i = 1, ..., I ; k = I × J + i
0, o.w.

Aδjk =




Tji, j = 1, ..., J ; k = (j − 1) × I + i
−1, j = 1, ..., J ; k = I × J + I + j
0, o.w.

Aslk =

{
1, l = 1, ..., L; k = (j − 1) × I + i and vji = 0
0, o.w.

bεi = ρm
i , i = 1, ..., I

bδj = Em
j , j = 1, ..., J

bsl = 0, l = 1, ..., L.

4.3 Multiple Experiments: General Formula-
tion

The previous subsection showed that the inference, or pa-
rameter estimation, problem may be reduced to that of min-
imizing the sum of squared deviations from the measured
parameter values. For any particular set of experimental
results, the above model may be solved, to obtain the ap-
propriate parameter set for that experiment.

However, as is the case with any parameter estimation prob-
lem arising from a series of experiments, it is insufficient to
simply solve the above quadratic inference problem for a sin-
gle experiment. In practice, typically, multiple experiments
can be carried out (e.g. under different load conditions). It

is thus important to include the entire set of experiments
in the parameter estimation step to obtain as much data on
the full range of the parameters as possible, especially in the
presence of nonlinear queueing effects.

Suppose that we have data from N experiments, each pro-
viding an estimate of the matrix, Hn and constraint values,
Xn, based on the input parameters given within that exper-
iment, ρn, En,. . . .

The goal of the inference problem over the set of multiple ex-
periments is therefore to find a robust vector of parameters,
x that best represents the parameters obtained by solving
the inverse parameter estimation problem for each experi-
ment, yet is able to detect and eliminate outlying experi-
ments.

For notational simplicity, we shall make the following sim-
plifying assumption, although our method applys in general
without this assumption.

Assumption 1. The network configuration, in terms of
servers present (used), is identical across all experiments.

The problem of reconstructing a 3-D scene from multiple 2-D
images shares many features with the problem of queueing
network parameter inference, in that the multiple images,
like the multiple experiments here, each contain some infor-
mation on the true value (location) of each 3-D point based
on a different 2-D configuration (camera angle).

In the context of computer vision, a method called bun-
dle adjustment is widely used to find the set of 3-D points
that best corresponds to all of the 2-D images. Bundle ad-
justment proposes a single least-squares framework in which
the distance from the observed and the measured positions
of each point is minimized. In effect, all of the 2-D im-
ages are treated together, and both the best 3-D positions
of each point and the best 2-D-to-3-D projection matrix are
determined simultaneously. (See, for example, [9]).

The analog to bundle adjustment in the context of queue-
ing network parameter inference is to combine, in a single
quadratic program, the data from all N experiments.

Bundle-adjustment-type algorithm: A single, large
QP.

(single-QP) min
1

2
xT

N∑
n=1

Hn x

s.t. Anx = bn; n = 1, · · · , N

xk ≥ 0, k = 1, ..., I × J.

We use this single, large QP approach that combines all
experiments into a single data set as a benchmark in our
numerical experiments, comparing it with our algorithm in
terms of solution accuracy, robustness to noise and outlying
experiments, and computation time.



Before we present the algorithm, let us first examine the
properties of the model.

4.4 Properties of the model
We have the following properties of the queueing-based quadratic
parameter inference problem.

Lemma 1. The Hessian matrix H is symmetric and pos-
itive semi-definite for all x.

Proof. Notice that H is diagonal and Hkk ≥ 0 for any
k. Thus, for any x, we have

xT Hx =
∑

Hkkx2
k ≥ 0

and H is positive semi-definite.

Note that the objective function of (QP) is convex in x and
the constraint set is convex and closed. The (QP) is there-
fore a convex program. It is well known, however, that the
following property holds for convex programs.

Theorem 1. Consider any convex minimization problem,
min f(x) where x ∈ X ⊂ Rn, f is a finite convex function
and X a closed, convex, nonempty set. Then, the set of
solutions of the convex minimization problem is convex and
any local solution is a global solution.

Proof. The set of solutions S to min f(x) over x ∈ X
is given by

S = {x : x ∈ X, f(x) ≤ f(x∗)}, (16)

which is a convex set, since f and X are convex, and the
intersection of convex sets is convex.

Corollary 1. The solution set, S, given by (16), where
f is given by (13) and X by (14)–(15), defines a set of linear-
quadratic equalities and inequalities.

Proof. Follows from the definitions of X, and f(x).

Consider the optimization problem for an individual exper-
iment, and recall that the optimal solution is non-unique.
Without any a prior knowledge, it is hard to tell whether
one solution would be better than any other. However, as
the data set includes multiple experiments, and therefore
multiple solution sets for the parameter values, we have ad-
ditional information by which to reduce the size of the opti-
mal solution set. For example, consider two optimal differ-
ent solutions (parameter vectors) for experiment 1. We can
say that one solution is ’better’ than another if it produces
better objective value when used in conjunction with data
from experiment 2, and so on.

In other words, we can use the optimality condition from
Theorem 1 to devise a nesting procedure for solving succes-
sively the quadratic minimization programs from each ex-
periment, incorporating at each minimization the set of fea-
sible and optimal solutions from the previous experiment(s).

Before doing so, however, note from the Corollary above
that the solution set (16) is comprised of linear-quadratic
inequalities and equalities, as opposed to the original feasi-
ble set, X. The following result shows that we can express
the optimal solution set for the quadratic program without
sacrificing the linearity of the constraints.

Theorem 2. Consider as before any convex minimiza-
tion problem, min f(x) where x ∈ X ⊂ Rn, f is a finite
convex function and X a closed, convex, nonempty set. Let
x∗ be some optimal solution. Then, the set of solutions of
the convex minimization problem is convex and can be char-
acterized by

S = {x : x ∈ X,∇f(x∗)T (x − x∗) = 0, ∇f(x∗) = ∇f(x)}.
(17)

Proof. See [1][Thrm. 3.4.4].

Corollary 2. The solution set, S, given by (17), where
f is given by 13 and and X by 14–15, defines a set of linear
equalities and inequalities. That is, we have that when f
is quadratic and given by f(x) = 1

2
xT Hx + hT x, and the

feasible set X is polyhedral, the set of optimal solution set
to min f(x), x ∈ X is polyhedral, and is given by

S = {x : x ∈ X, H(x − x∗) = 0, hT (x − x∗) = 0}.

Proof. Substitute the gradient ∇f(x) into the solution
set defined in (17). See also [1][Corr 3.4.4.2].

This latter characterization of the optimal solution set of
each experiment’s inference problem will be of direct use
in defining the algorithm for obtaining a robust parameter
vector from the set of multiple experiments.

5. THE SELF-ADJUSTING NESTED OPTI-
MIZATION METHOD

The algorithm that we propose is based upon a nesting of
successive solution sets for the parameter values across ex-
periments. Indeed, as mentioned above, the solution vec-
tor for any experiment, n, here referred to as (xn)∗, need
not be unique, although the value of the quadratic program
at that solution, f((xn)∗), is unique. This nonuniqueness
makes the combination of experimental results across ex-
periments quite challenging since, at each experiment, a set
of optimal parameter values exists. What we would like
therefore is that, once we solve for one such set of optimal
values from one experiment, we consider, in the next exper-
iment, not only those parameter vectors that are optimal
(and feasible) for that next experiment, but also the full



set of solutions that are optimal from the first experiment.
This idea serves three objectives: on the one hand, we im-
pose coherence across the multiple experiments, in terms of
the parameter vectors that they produce from their infer-
ence problems, and, on the other hand, we successfully re-
duce the size of each solution set at successive experiments,
by adding additional constraints to each inference problem.
Lastly, we are provided with an inexpensive way in which
to detect (and therefore remove) outlying experiments. The
additional constraints are precisely the optimality of the pa-
rameter vector to all (or some) of the previous experiments’
inference problems.

5.1 Basic Idea of the Method
The fundamental idea of the nested procedure is that we
would like to nest the solution sets, one after the other,
in the successive parameter estimation problems, so that in
each experiment, n > 1, we consider a subset of the set of
solutions to problem n+1. The subset that we are interested
in is precisely the intersection of set of feasible solutions to
the current n+1st problem and the set of optimal solutions
to the previous, nth, problem, and so on.

Proceeding in this manner, while the solution set for the final
experiment, that is the N th parameter set, may still not be
a singleton, it will be considerably reduced in size through
the intersection with all other optimal solution sets. In addi-
tion, it will be both optimal and feasible for all experiments.
Furthermore, we will have guaranteed coherence across the
multiple experiments’ solutions.

Hereafter, for the n-th experiment’s quadratic minimization
problem, n = 1, . . . , N , we refer to the feasible set as Xn, the
optimal solution set as S∗

n, and the optimal solution value
as f∗

n.

For simplicity in motivating the algorithm, let us first make
an additional assumption to ensure feasibility of the results
of performing the nesting procedure. We shall relax this
assumption in the when we present the complete algorithm.

Assumption 2. The intersection of the sets of optimal
solutions to each experiment’s quadratic minimization prob-
lem, S∗

n, is nonempty, in other words, ∩n=1...NS∗
n 6= ∅.

Under Assumptions 1 and 2, we are in a position to devise
a basic, self-adjusting method for combining data from the
N experiments with the aim of obtaining a robust set of
parameters that best takes into account the results of all
experiments. Based upon Theorem 2 and Corollary 2, the
self-adjusting nested optimization method involves the ad-
dition of polyhedral constraints only, with respect to each
experiments original inference problem.

1. Solve the quadratic minimization problem from exper-
iment 1. Obtain an optimal solution, x1,∗.

2. Solve the quadratic minimization problem from experi-
ment number `, ` = 2 . . . N , adding the following linear

constraints at each iteration, `:

x ∈ ∩n=1..`X
n (18)

Hn(x − xn,∗) = 0, n = 1..` − 1. (19)

(hn)T (x − xn,∗) = 0, n = 1..` − 1. (20)

Proposition 1. Under the Assumptions 1, 2, the order
in which the experiments are considered does not change the
final solution set of the nested optimization procedure.

Proof. Suppose the above nested optimization proce-
dure is applied on N experiments in the order l = 1, . . . , N .
Denote the optimal solution set to the nested optimization
problem at step l as Ŝl. By construction of the nested
method, we have Ŝl ⊆ Xl ∩ Ŝl−1, for l = 2, . . . , N . Thus,
Ŝl = Ŝ1∩ . . .∩Ŝl. We claim that Ŝl = S∗

1 ∩ . . .∩S∗
l , for all l.

By Assumption 1 the solution set S∗
n, l = 1 . . . N exists, and

by Assumption 2, the intersection S∗
1 ∩ . . .∩S∗

N is nonempty.
It is therefore equivalent to consider the experiments in any
order, since it does not change the value of the overall in-
tersection of optimal solution sets, S∗

1 ∩ . . .∩ S∗
N . It suffices

to show the claim for l = 2. The arguments are similar for
larger numbers. Clearly, Ŝ1 = S∗

1 . For any y ∈ S∗
1 ∩ S∗

2 ,
we have y ∈ X2 ∩ Ŝ1, and f2(x) ≥ f2(y) for all x ∈ X2.

We then must have y ∈ Ŝ2. Therefore, S∗
1 ∩ S∗

2 ⊂ Ŝ2. To
show the converse, suppose on the contrary that there ex-
ists z ∈ Ŝ2 such that z 6∈ S∗

1 ∩ S∗
2 . Since Ŝ2 ⊂ Ŝ1 = S∗

1 ,
it follows that z 6∈ S∗

2 . Thus for all y ∈ S∗
1 ∩ S∗

2 , we must
have f2(z) > f2(y) = f∗

2 . Since y is also a feasible point in

X2 ∩ Ŝ1, z cannot be optimal for the nested problem, con-
tradicting to the fact that z ∈ Ŝ2. We therefore must have
Ŝ2 = S∗

1 ∩ S∗
2 .

Corollary 3. If any one of the Assumptions 1, 2 is not
satisfied, then the order of the nesting of the multiple exper-
iments has an effect on the final solution set.

Proposition 1 implies that, under Assumptions 1, 2 we may
in fact identify the intersection of all optimal solution sets
in any order, whereas when the data is significantly noisy,
or contains outliers, the ordering of the experiments will
be apparent in the outcome. It is precisely this fact that
enables the method, at a low computational surcharge, to
self-adjust, i.e. to detect (and allow removal of) outlying or
highly noisy experiments.

Indeed, the method is able to self-adjust, with minimal cost,
to significantly noisy data, outlying experiments, by moni-
toring the residual error after each level of the nesting pro-
cedure, that is, each experiment, and detecting any signifi-
cant jumps in the objective value. (Recall that the objective
value is precisely the residual error of the estimation). By
making use of a user-defined threshold, the experiment that
caused the large jump in objective value can be eliminated
from the data set and the procedure continued. The cost of
this self-adjustment to noisy data is limited to the detection
test performed, and hence is minimal.



5.2 Steps of the Self-adjusting Nested Estima-
tion Method

The self-adjusting feature of the method requires that the
user define a given tolerance, or a way to compute a toler-
ance depending upon the residual error of the estimation.
The residual error is obtained at no addition cost, as it is
precisely the objective value at each nest.

Let us refer to this (possibly state-dependent) tolerance as
τ`, for state, or nest, `.

When the Assumption 2 is not satisfied, it is necessary to
relax the feasible set, that is, to allow an optimal solution to
the nth problem to be infeasible with respect to the intersec-
tion of the optimality set number (n− 1) and the feasibility
set of the nth problem. The idea is then to minimize the
amount of this infeasibility. When a feasible solution exists,
therefore, this amount will be minimized to zero, and we
recover the original nested optimization method.

1. Solve the quadratic minimization problem from exper-
iment 1. Obtain an optimal solution value, x1,∗ and
the optimal solution, f1(x

1,∗) which we refer to as f∗
1 .

2. Solve a modified version of the quadratic minimiza-
tion problem from experiment number `, ` = 2 . . . N ,
adding the following additional linear constraints:

x ∈ ∩n=1..`X
n(y1), (21)

Hn(x − xn,∗) = y2, n = 1..` − 1, (22)

(hn)T (x − xn,∗) = y3, n = 1..` − 1, (23)

y1 ≥ 0.

where Xn(y1) is the feasibility set for experiment n,
relaxed uniformly by the scalar y1; that is, for any
general set of constraints X = {g(x) ≤ 0}, the relaxed
feasible set in y1 is given by X(y1) = {g(x) ≤ y1}. We
have thus the following dimensions for the relaxation
parameters: y1 ∈ <+ , y2 ∈ <`∗I∗J

+ , y3 ∈ <`
+ , and

the following modified quadratic objective:

RE` = min
x,y

f`(x) + y1 + y2
2 + y2

3 .

3. If, at nest ` > 2, the residual error, RE` ≥ τ`, then
experiment ` is an outlier, and is discarded. Return to
step 2 and set ` = ` + 1. If ` = 2, then set ` = ` + 1
and return to step 1.

The self-adjustment step, 3, discards an experiment whose
inclusion in the nesting procedure causes the residual error
to increase more than the tolerance, τ`. If the first or sec-
ond experiment (nest) causes this increase, it is impossible
(without further testing) to determine which of the two is
the outlier. The simplest solution, which is proposed in the
algorithm, is to simply discard both experiments 1 and 2.

5.3 Further Uses of the Characterization of
the Nested Optimality Set

Since the most common scenario in queueing network pa-
rameter inference is that the number of variables greatly
exceeds the number of measurements available, the solution

sets at each nest will likely not be singletons. In this case,
it is of great interest to have a measure of how large the so-
lution sets are, and in particular, how large the final nested
solution set is. Indeed, in practice, it is often more impor-
tant to give an optimal range of parameter values than one
single value.

Using the self-adjusting nested method, it is straightforward
to obtain a measure of the size of the final solution set (af-
ter having eliminated any outlying experiments), i.e., that
of the N th experiment, S∗

N , by solving a sequence of linear
programs with particular objectives, described below. Solv-
ing this sequence of LPs gives in effect the smallest multi-
dimensional bounding box that contains the solution set.

To do so, solve the following pair of linear programming
problems for every i = 1 . . . dim(x):

max xT ei,

min xT ei

each objective subject tox ∈ S∗, where ei = (0, . . . , 1, . . . 0)
and the 1 is in the ith row of the (column) vector, S∗ is the
solution set of the N th experiment, S∗

N , and dim(x) is the
dimension of the vector x.

This provides an outer approximation of the final intersec-
tion of all (non-outlying) optimality sets, which can be used
e.g. to provide a range of input data to the queueing net-
work, after calibration.

6. ANALYSIS AND NUMERICAL EXPERI-
ENCE

In this section, we illustrate the use of the algorithm on
both synthetic and real data. On the synthetic data, the
numerical tests demonstrate the accuracy of the estimates
produced by the method, and its robustness to both noise
and insufficient data. By insufficient data, we mean that the
number of experiments performed is quite low as compared
to the number of parameters to estimate. On the data ob-
tained from a real IT system, the tests validate the use of
the proposed queueing network inference approach.

6.1 Comparative results on synthetic data
As mentioned previously, we also compare our method with
a version of the bundle-adjustment method used widely in 3-
D image reconstruction, in which all experiments are lumped
together as a single, large data set; in that approach, the
problem is formulated as a single QP. We compare the two
approaches in terms of estimation quality and computation
time. Solution quality can be defined in a number of ways;
here we consider two such metrics: the sum of squared error
of the end-to-end measurements, and the values predicted
by the model with the estimated parameters.

To test the robustness of the algorithm, it is necessary to
vary the noise level in the data. Here, a noise level of 0
means that the (synthetic) data has no bias. A noise level
of 1% means we have generated experiments with uniform



noise throughout, at 1% deviation from the true values. The
quality of the solution is evaluated with respect to the mea-
sured data, in particular, the first quality metric is defined

by
∑N

n=1(
∑J

j=1 wj,n

(
Ee

j,n − Em
j,n

)2
+

∑I
i=1

(
ρe

i,n − ρm
i,n

)2
),

that is, the total weighted least square error across all ex-
periments. The second quality metric is measured with re-
spect to the true parameter value; since this first set of tests
have been run on generated data, we know the true val-
ues of the S. Thus we can also measure solution quality as
||Strue − Spredicted||/||Strue||, i.e., the percentage deviation
with respect to the true values of the parameters.

Several random sets of data were generated for each er-
ror level, and the solution quality obtained was averaged
over those instances with the same error characteristics. In
Figures 3 to 5, all problems were of the same size, with
I = J = 10, and therefore 100 problem variables (i.e., not
including dunny variables that permit handling infeasibil-
ity). The 6th figure illustrates the computation time for
our algorithm and the benchmark method as problem size
increases, from 9 to 625 problem variables.

Let us investigate how the the quality of the algorithm de-
grades with noise. Figure 3 gives a first indication of the
robustness of the method. When the noise level is 0 and
if we have a sufficient number of experiments, we should
be able to determine the parameters exactly, i.e., no least
squares estimation is needed in this case. Indeed, observe
that the least squares error is 0, as shown in Figure 3. Note
further that the least squares error increases very gradually
with increasing noise. Indeed, even when the measurements
are badly degraded by noise, the quality of the estimation
produced is still very good, with a residual error of less than
0.1.
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Figure 3: The auto-filtering nested algorithm scales
well in the presence of (uniform) noise

Figure 4 compares the quality of the algorithm. in terms
of the least squares error, with the single QP approach
when one of the experiments is an “outlier”, i.e., signifi-
cantly biased with respect to the other experiments. We
use a set of 6 experiments in total. The outlier has a bias of
||Soutlier−S||/||S|| = 1.5. The position of the outlier in the 6
experiments is randomized. We plot the ratio of least square
error(LSE), i.e., LSEsingleQP /LSEnestedQP . The larger the
value of the ratio is, the larger benefit we get by using the
nested method vs the single QP method. As before, the

data is averaged over several different runs to provide reli-
able statistics.

Note that outliers especially degrade the quality of the single
QP approach, since all experiments are considered simulta-
neously and it is impossible to isolate the effect of a single
bad experiment on the estimation. In this respect, the se-
quential, nested approach of our algorithm is really much
more robust, as experiments are added one-by-one and the
effect of any bad experiment is immediately visible. Further,
with the self-adjustment capability, the nested algorithm au-
tomatically removes the bad experiment resulting in a much
improved estimate. In fact, we find in these cases that the
least squares error is 2 orders of magnitude better using our
algorithm than that of the single QP, even when there is
significant noise in all of the experiments.
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Figure 4: When an outlying experiment is included
in the data, the solution quality of the auto-filtering
nested algorithm is significantly better than the sin-
gle QP approach

Figure 5 compares the robustness of the auto-filtering nested
algorithm with that of the single QP method when insuf-
ficient data is used. That is, the number of experiments
available to estimate the parameters increases from 1 to 5,
where 5 experiments provide an equal number of equations
as there are unknowns. Furthermore, note that when there
is only 1 experiment, the nested method and the single QP
are identical, as is the case, in the absence of noise, when
there is complete data (5 experiments in this example). Here
the quality of the solution is measured with respect to the
second metric, using the true parameter value.

We consider two scenarios. First, we consider an ideal sce-
nario, i.e., the measurement is not degraded by noise and
there is no outlying experiments. The second scenario is
more realistic. We generate a set of 5 experiments with
fixed 10% uniform noise and an 100% outlier, i.e., ||Soutlier−
S||/||S|| = 1.0. Again, the position of the outlier is random-
ized.

In Figure 5, the normalized difference in solution deviation
is traced as the amount of data increases. As expected, the
difference is null when there is 1 experiment for both cases
and when there is complete data for the first case. However,
of interest is what happens between those extremes; observe



that the nested algorithm gives quality improvements of up
to more than 30% for the first case and more than 60% for
the second one.

Figure 5: Normalized quality difference across the
two methods as the amount of available data in-
creases. At both extremes, the two methods are
identical, in between the auto-filtering nested algo-
rithm is superior.

Figure 6 compares the computation times of the two proce-
dures. Here we have fixed the number of experiments at 3,
and have varied the size of the optimization problem in each
experiment from 9 to 625 problem unknowns (not including
the dummy variables used to ensure feasibility). One would
expect that the single QP is faster, since solving a single
quadratic program, even if it has N times as many con-
straints and variables, would be faster than solving N sep-
arate quadratic programs; this is indeed true for the most
part. The important point to take away from Figure 6 is that
the improvement in robustness of the auto-filtering nested
algorithm comes at a very modest computational surcharge
(roughly a doubling of the computation time over the bench-
mark algorithm) yet it does not break down in the presence
of outliers and non-uniform noise. Note that this behav-
ior scales with problem size; as the problem gets larger, the
more robust, nested method remains at roughly double the
computation time of the single QP approach.

6.2 Validation Results from a real IT system
The proposed modeling framework and inference procedure
have been tested as well on measurement data collected
from a real IT environment with similar architecture to that
shown in Figure 1.

Figure 7 and Figure 8 illustrate the corresponding results. In
both figures, dots represent the true measurements and the
curves are those predicted by the model. Two different sce-
narios were considered and different workload percentages
(relative to the normal workload) were tested. Note that
the values on the y-axis have been suppressed for reasons of
confidentiality.

We have obtained the model parameters based on the mea-
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Figure 6: Computation times (in seconds) across
methods on noise-free data as problem size in-
creases. The second figure shows that the ratio of
computation times of the two methods remains con-
stant with increasing problem size.

surements of three experiments (i.e., the three left-most
points in the figures) when the system is experiencing 50%,
100% and 150% of its average workload. The input measure-
ment data used for each experiment includes the end-to-end
response times of all requests and utilization numbers at the
different layers of the Web service architecture. Based on the
inferred model, we then plot as a function of the percentage
of workloads, the mean response time curves for different job
classes in Figure 7, and the corresponding resource utiliza-
tion curves at various servers in the Web service architecture
in Figure 8. One can observe that the model captures well
the overall trend and, furthermore, matches well to the re-
mainder of the true measurements even though they were
not used for calibration of the model.
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Figure 7: Comparison with measured end-to-end de-
lays

7. CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

We have presented a formulation for estimating the param-
eters of queueing networks with processor sharing queues,
using a quadratic programming framework. Based upon the
properties of the quadratic program, we proposed a novel
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Figure 8: Comparison with measured utilization

and robust algorithm for obtaining the best parameter val-
ues across a set of possibly incompatible experiments. The
method is validated, compared, and contrasted on a number
of problem instances, and against a benchmark algorithm
used widely for the related problem of 3-D image reconstruc-
tion. It is demonstrated that at a modest computational
surcharge, it is possible to get significantly more robust es-
timates through the proposed algorithm. The approach of
using queueing network models to infer parameters of a typi-
cal IT system is validated on data coming from such systems,
as they are used in practice.

Several areas for potentially valuable future research have
emerged from this work. One such direction is an explo-
ration into the use of the outer approximation presented in
5.3. The advantage of being able to describe each solution
set in terms of simple box constraints is that any point can
be very quickly said to lie inside or outside the box. Thus,
very rapid heuristics may be developed based upon that rep-
resentation of the parameter solution sets, and of their inter-
section. Note that these methods are clearly heuristic since
there are points in the boxes that are not in the true solution
sets. For the purpose of practical studies, however, this ap-
proximation would be sufficient, and would allow very rapid
analysis.

Observe that our work can readily be extended to the case
of general Kelly type networks with possibly FCFS queues.
More generally, it can be extended to networks where the
end-to-end delays can be decomposed to local delays. An-
other direction of research is the inference of higher moments
of the service requirements, or even their distributions. For
this, there will be needs of more detailed measurement data
including higher moments of end-to-end response times.
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