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Abstract
While past studies of relatively simple Java benchmarks like
SPECjvm98 and SPECjbb2000 have been integral in advanc-
ing the server industry, this paper presents an analysis of a
significantly more complex 3-Tier J2EE (Java 2 Enterprise
Edition) commercial workload, SPECjAppServer2004. Under-
standing the nature of such commercial workloads is critical to
develop the next generation of servers and identify promising
directions for systems and software research.

In this study, we validate and disprove several assumptions
commonly made about Java workloads. For instance, on a
tuned system with an appropriately sized heap, the fraction of
CPU time spent on garbage collection for this complex work-
load is small (<2%) compared to commonly studied client-side
Java benchmarks. Unlike small benchmarks, this workload has
a rather “flat” method profile with no obvious hot spots. There-
fore, new performance analysis techniques and tools to identify
opportunities for optimizations are needed because the tradi-
tional 90/10 rule of thumb does not apply.

We evaluate hardware performance monitor data and use
insights to motivate future research. We find that this workload
has a relatively high CPI and a branch misprediction rate. We
observe that almost one half of executed instructions are loads
and stores and that the data working set is large. There are
very few cache-to-cache “modified data” transfers which lim-
its opportunities for intelligent thread co-scheduling. We note
that while using large pages for a Java heap is a simple and
effective way to reduce TLB misses and improve performance,
there is room to reduce translation misses further by placing
executable code into large pages.

We use statistical correlation to quantify the relationship be-
tween various hardware events and an overall system perfor-
mance. We find that CPI is strongly correlated with branch
mispredictions, translation misses, instruction cache misses,
and bursty data cache misses that trigger data prefetching. We
note that target address mispredictions for indirect branches
(corresponding to Java virtual method calls) are strongly cor-
related with instruction cache misses. Our observations can be
used by hardware and runtime architects to estimate potential
benefits of performance enhancements being considered.

1 Introduction

Understanding the characteristics of commercial workloads is
vital to the development of hardware and software for future
servers. As systems grow more complex, the interactions

across different system components become increasingly dif-
ficult to understand, predict, and model. To gain insights into
how these complex systems work, we need to evaluate real-
istic commercial workloads and to study the behavior across
the software and hardware layers. The data gathered from a
running system often reveals the intricacies of system behavior
that can be missed on a simulator.

This paper analyzes a commercial server workload,
SPECjAppServer2004[1] (jas2004), running on a high-end
server. jas2004 exercises the entire execution stack: software
components, such as a web server, an application server, and a
database; and hardware components, such as a processor, net-
work, memory, and a disk subsystem. This study provides in-
sights into the characteristics of a commercial workload that
future system models can target and identifies avenues for im-
proving system performance.

There were several studies of small Java benchmarks to un-
derstand Java workload characteristics and identify promising
hardware and software optimizations[2, 3, 4, 5, 6, 7]. While
using simple benchmarks is convenient, it is important to un-
derstand the differences between the characteristics of small
benchmarks and large commercial workloads when devising
hardware and software optimizations for new servers.

This paper makes the following contributions:
1. It presents a detailed characterization of a complex server

workload, including high-level insights and findings on
the runtime behavior across the entire execution stack.

2. It debunks common misconceptions about bottlenecks
specific to Java-based workloads (such as managed mem-
ory overheads), while evaluating the significance of dif-
ferent software and hardware components to the overall
performance of a properly tuned system.

3. It identifies bottlenecks and opportunities for performance
improvement in software and hardware and guides further
optimization efforts. It identifies performance optimiza-
tions that would be less effective and points out challenges
of optimizing a system for such commercial workloads.

We observe that unlike commonly studied simple Java
benchmarks, jas2004 is characterized by a large multi-
megabyte code footprint and a flat runtime profile, in which
no single method or function is responsible for more than a
small fraction (1-2%) of the overall CPU time. The jas2004
workload is not intended to stress only the JVM and JIT (Just-
In-Time) compiler, and we observe a much smaller percent-
age of runtime spent in both of these components. Because
the CPU time is spread across a wide range of functions and



software components, it is not feasible to devise optimizations
that target specific application “hot spots” and expect signifi-
cant performance benefit. Rather, it will be necessary to de-
velop new optimizations and architectural changes that show
benefit across the hardware and software stack. We find that
jas2004 like other commercial workloads exhibits a relatively
high CPI (cycles per instruction) which we attribute to large in-
struction and data working sets, a large proportion of memory
instructions, and fairly high branch misprediction rates espe-
cially for indirect branches. However, unlike in other transac-
tional workloads like TPC-C, the share of cache-to-cache trans-
fers in jas2004 is insignificant and this characteristic would
make intelligent thread co-scheduling less useful.

This paper continues with an overview of the benchmark
workload and the description of our experimental methodol-
ogy. In Section 4 we describe our experimental results. Sec-
tion 5 discusses related work, followed by conclusions in Sec-
tion 6 and ideas for future work in Section 7.

2 Workload: SPECjAppServer2004

jas2004, a multi-tier J2EE (Java 2 Platform Enterprise Edi-
tion) benchmark, stresses major components of an enterprise
system. Rather than focusing on a single aspect of a sys-
tem like many past Java server- and client-side benchmarks
(e.g., SPECjbb2000, SPECjvm98), jas2004 is a realistic server
application. It incorporates a web container, enterprise Java
beans, and it exercises the entire underlying execution stack,
including the application server, JVM, database, network and
disk I/O, and processors.

As shown in Figure 1, there are two main components of
the jas2004 benchmark, the “Driver” and the “System Under
Test” (SUT). The Driver simulates system users and provides
benchmark’s load, while the SUT is the actual system that is
tested by the workload.

The SUT is made up of a web server, an application server,
and a database. In our studies, all of the SUT components re-
side on a single system. The driver sends web requests to the
SUT’s web server and RMI1 requests directly to the SUT’s ap-
plication server. The J2EE application server is a sophisticated,
large-scale Java application that runs on top of a Java Virtual
Machine (JVM) that includes a Just-In-Time Compiler (JIT).
The jas2004 benchmark code executes inside of the applica-
tion server environment, and one can view jas2004 as a control
application that instructs the application server how to respond
to incoming requests.

The driver is run on a separate system, and does not fac-
tor into the performance or results of the benchmark. The
rate at which the driver sends requests to the SUT is called
an “Injection Rate” (IR), which is preconfigured and is con-
stant throughout execution. Because busier servers tend to
have larger data sets, the IR also controls the size of the ini-

1Remote Method Invocation: A Java technology that facilitates the creation
of distributed systems by allowing for the methods of remote objects to be
invoked from other JVMs

tial database on the test system. A higher IR requires higher
network bandwidth between the driver and the SUT.

The benchmark performance metric is jAppServer2004 Op-
erations per Second (JOPS). On a tuned system, there are
approximately 1.6 JOPS executed per IR. JOPS is the work-
load specific performance metric, and cannot be compared to
JOPS from past SPECjAppServer benchmarks or results from
other transaction processing benchmarks. For a benchmark run
to “pass”, the run must meet certain response time require-
ments [1]. Namely, 90% of web and RMI requests need to
be satisfied in under 2 seconds and 5 seconds, respectively.

As shown in Section 4.1.2, relatively little CPU time is spent
in the benchmark code. Instead, the workload tests the soft-
ware and hardware infrastructure. This behavior is different
from that of benchmark programs in the SPECint and SPECfp
suites, where most of the runtime is spent in the benchmark’s
compiled code. The behavior also differs from past Java bench-
marks such as SPECjbb2000 and the SPECjvm98 suite, which
were intended to stress a JVM rather than provide a realistic
whole-system workload.

3 Experimental Setup

3.1 System Hardware and Software

We analyze jas2004 workload on a SUT consisting of a sin-
gle server (Figure 1). Such a configuration is well-suited for
high-end servers that can run all of the workload software com-
ponents (a web server, an application server, and a database
server) on a single system or even a single logical partition
(LPAR)[8]. A single server deployment is considerably eas-
ier to manage and this configuration tends to deliver excellent
performance.

Our SUT is an IBM System p server[9] running the AIX
operating system, a JVM, a web server, the WebSphere appli-
cation server, and the DB2 DBMS (Figure 1). We use a 1GB
Java heap – a reasonable heap size for business class servers
that tend to have a lot of memory (16GB in our case). The AIX
and the JVM have been configured to use large pages (16MB
compared to the default size of 4KB) for the Java heap and se-
lected garbage collector data structures. Large pages improve
performance of long-running Java applications with a variety
of heap sizes and especially applications with multi-Gigabyte
heaps (by 10%). Many official jas2004 results submitted to
SPEC by IBM, Sun, and other vendors use large pages. Our
JVM uses a flat-heap non-generational mark-sweep-compact
garbage collector that is optimized for throughput. In our ex-
periments, because of a small number of hard disks, we pri-
marily use an operating system managed RAM disk to hold the
database files, but we also cross-checked out data on the same
system by adding more disks to ensure our observations still
hold.

J2EE application execution requires an application server.
We use WebSphere Application Server (WAS)[10]. The ap-
plication server and J2EE applications that execute in its en-
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Figure 1: System Setups

vironment run on top of a Java Virtual Machine (JVM) that
incorporates a Just-In-Time (JIT) compilation framework (for
code optimization), a garbage collector (for memory manage-
ment), and other components. This paper focuses on a recently
released IBM JVM (J9 1.4.2). In the course of our study, we
also evaluated another IBM JVM (Sovereign 1.4.1). While per-
formance characteristics of these two JVMs are not identical,
the general trends that we present in this paper resemble closely
those that we have seen with Sovereign JVM.

The application server code interfaces with a database to
provide data for web requests and RMI. We use the most cur-
rent version of IBM DB2[11] database. The database and
the underlying file system need to timely provide the data to
achieve high system utilization. To collect meaningful data
from hardware performance monitor counters, it is necessary
to realize close to 0% I/O wait and idle times. On our system,
we could accomplish this by using a RAM disk or by adding
more disks to hold the database data.

3.2 Data Collection Tools

Data from various components of the system and its software
stack have been collected using a suite of standard performance
tools. For example, vmstat provides a high-level view of sys-
tem performance with information about CPU utilization and
memory.

The hardware performance monitor (HPM) of the POWER4
processor along with the hpmstat tool make it possible to col-
lect accurate, sampled hardware data from counters that simul-
taneously track various processor events. The data presented
in this paper correspond to user-level processes only, where the
application server, database, and benchmark execute.

Another tool used in this study, tprof, in conjunction with
information emitted at runtime by the JIT compiler, provides
function-level runtime profiling. This allows for the identifica-
tion of potential bottlenecks and “hot spot” sections of code. It
also reveals which components of the software stack are impor-
tant and can help one gauge the potential of future optimization
efforts. Finally, the JVM had an instrumentation for collecting
garbage collection statistics (using the verbosegc flag).

3.3 Experimental Methodology

We first tuned the system and removed “spurious” bottlenecks.
We initially looked at the high-level characteristics across the
hardware and software layers. Tuning WebSphere, DB2, and
filesystem parameters, helped us get a better understanding of

the high-level bottlenecks and characteristics of the workload.
When tuning, we strived for a higher throughput, lower GC
time, and lower idle and I/O times. We then used hpmstat
to gain further insights into the low-level hardware characteris-
tics of the system. We paid close attention to how the trends we
observed in low-level hardware data mapped back to the high-
level system behavior. In Section 4, we present the information
in the order that we evaluated it – starting with the high-level
information and then looking deeper at the low-level character-
istics with careful attention to how they provide insights into
our initial observations. Finally, we use statistical correlation
to more accurately understand the relationships between differ-
ent hardware events and CPI[12, 13].

Much of the hardware performance counter data presented
in the following section were collected during a single long
benchmark execution, but not at the same time – the HPM fa-
cility of POWER4 allows for a group of eight hardware coun-
ters to be active at any given time. The runtime profile of the
workload is fairly constant so the collected data is represen-
tative of the entire run. Because only one group of counters
can be collected at once, one cannot correlate the data across
different groups of counters.

Experiments were performed during benchmark runs of at
least 30 minutes. The system profiles tend to stabilize after
less than 5 minutes; therefore, it is possible to collect steady-
state data relatively quickly. The experiments presented here
were done on the J9 JVM at IR40. The experiments had a 5
minute ramp-up time and a 2 minute ramp-down time. The
paper presents only steady state data.

4 Results and Observations
4.1 High-level Characteristics

At IR47, we could maintain a close to 100% CPU utilization
when using a RAM Disk for the DB2 database, with 80% of
the CPU time spent in user-level code and 20% in the operat-
ing system.2 In hard-disk based runs, we used hard disks for the
database, but because of our limited disk resources (2 disks), it
was not possible to achieve high system utilization because the
“I/O wait times” (i.e., an idle CPU with an outstanding I/O re-

2At IR40, a system running with J9 JVM experiences a load level of 90%.
This setting of IR is used so that (1) we can compare J9 JVM performance with
that of Sovereign JVM (the latter has a higher CPU utilization at the same IR)
and (2) so that the overhead of tprof does not overload the system, which
could lead to the benchmark workload not meeting response time deadlines.
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Figure 2: Benchmark Throughput

quest) would grow dramatically, causing the response time to
grow and the benchmark to fail. We confirmed experimentally
that having multiple hard disks for the database was equivalent
to using a RAM disk for the data that we collected, and contin-
ued to use a RAM disk. The workload tends to enter a steady
state within 5 minutes. After that, the hardware characteristics,
including the system load, are roughly constant with the excep-
tion of a periodic behavior that can be correlated (as we have
verified) to garbage collections.

Figure 2 shows transaction throughput rates during a 60
minute run. The graph shows that the transaction rate for
each of the four different types of requests stabilizes rela-
tively quickly, and remains fairly constant throughout execu-
tion. This behavior makes it possible to gather meaningful
HPM data over time.

4.1.1 Garbage Collection

Figure 3 shows the characteristics of the GC for J9 JVM during
a 60 minute run. Each data point represents one GC run. Note
that the order of the lines corresponds to the order that they
appear in the legend. Whether we use J9 JVM or Sovereign
JVM, little CPU time is spent on garbage collection (GC). We
used a reasonably large heap size (1GB), which is common for
server-side workloads, but much larger than heap sizes used in
many past studies with benchmarks like SPECjvm98.

The most interesting observation is the short garbage col-
lection time. Some proponents of unmanaged code argue that
a GC is unacceptably inefficient and causes major performance
degradations. On the contrary, in this very complex and large-
scale workload less than 2% of the CPU time is spent in GC,
with collections occurring infrequently and for only a short
amount of time.

Of the time spent performing GC, the “mark” phase (which
identifies all reachable objects in the heap region being col-
lected), is the most significant one, representing over 80% of
the GC time. The other 20% of the GC time is spent in the
“sweep” phase, which identifies the free storage. During the 60
minutes studied, there was no “compaction”, which is usually
performed to reduce memory fragmentation. Considering that
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Figure 3: Garbage Collection Statistics

much of GC time is spent on marking, a traversal order that re-
spects locality during marking can reduce GC pause times and
is a viable opportunity for optimization.

At the end of a 60 minute benchmark run, less than 200MB
(20%) of the heap contained reachable objects. However, the
amount of used heap memory is still increasing at ∼1MB per
minute. The mark and sweep phases of garbage collection do
not collect very small chunks of memory that are actually free.
Such chunks of memory, which are termed “dark matter,” are
freed either in a compaction phase or when neighboring objects
are freed (resulting in a larger chunk of free space). It appears
that the “live” heap size grows largely due to this relatively
insignificant fragmentation. Because the heap was not highly
fragmented, and because much of the heap could be reclaimed
by just performing the mark and sweep phases, there was no
compaction.

Interestingly, GCs occur at a fairly predictable rate – once
every 25-28 seconds. This is a convenient characteristic, as it
allows us to easily correlate periodic spikes of different sam-
pled runtime events with garbage collections. We will use this
observation in Section 4.2 to evaluate how system characteris-
tics change during GC.

4.1.2 Method Profile

Using the tprof tool we can compare CPU requirements of dif-
ferent software components since they all execute on the same
system. This also gives us some guidance for capacity plan-
ning for a larger scale system. On our system, the WebSphere
application server consumes twice as many CPU cycles as a
web server and DB2 combined.

Figure 4 shows the breakdown of CPU cycles and is based
on the data collected during the last 5 minutes of a 60 minute
long run. Such a long run was necessary to ensure that
most “important” WebSphere and jas2004 Java methods had
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a chance to be profiled by the JVM runtime and then be JIT-
compiled into machine code at high optimization levels. The
compiler performed fairly aggressive method inlining. The two
WAS related sections in Figure 4 – “WAS non JITed” and
“WAS JITed” – correspond to the Java process running the
WebSphere Application Server (much of which is written in
Java). This process includes JITed Java code, interpreted Java
code, other library code, and kernel time related to the process.
We drill down into the statistics for the JITed code to get further
details.

It appears that only 2% of CPU cycles was spent executing
code from the jas2004 benchmark itself. Therefore, the perfor-
mance of the application code itself is relatively unimportant
to the overall system performance. What is significant is how
it utilizes application server features.

The method profile is very flat – the “hottest” method, a char
to byte conversion method, accounted for <1% of the overall
execution time. Approximately 50% of the JITed code execu-
tion time is spent in 224 methods (out of the 8500 methods).
Considering that the profile is so “flat” (i.e., there is no rela-
tively small number of methods that are responsible for 90%
of execution time – so the 10/90 rule does not apply) it is not
feasible to optimize a handful of methods, or to have very tar-
geted JIT compiler optimizations in order to achieve sizeable
performance gains with jas2004. Hence, new approaches for
analyzing common patterns of instructions across methods are
needed to identify opportunities for improving the quality of
JIT compiled code.

About 76% of the JIT compiled code is made up of Web-
Sphere, Enterprise Java Services, and Java Library code.
The Java Library profile is not as flat as the overall pro-
file but still does not contain any obvious hot spots. Be-
cause the “important-at-runtime” code is available to the sys-
tem providers prior to deployment, this presents an opportunity
for potential pre-compilation and optimization prior to execu-
tion. Unlike in many past Java application server benchmarks,
half of the WAS runtime was spent running code that was not
JIT compiled. This includes time in the OS code, DB2 and
Message Queue library code, and the J9 VM (including the JIT
itself). Hence, optimizations across software components can
be beneficial.

4.2 Low-level Characteristics

One of the most important characteristics of a workload that
hardware designers pay attention to is CPI (processor cycles
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per instruction). Figure 5 shows relatively high CPI (∼3) on
a tuned, loaded system. The idle system has CPI of ∼0.7 (not
shown). One contributing factor to the high CPI is a high spec-
ulation rate (shown as Instructions Dispatched / Completed).
Namely, for every 5 instructions dispatched, only slightly more
than 2 are retired. This high speculation rate is not entirely
due to branch mispredictions, which cause wrong-path execu-
tion and misspeculation; high CPI also incorporates instruc-
tions being dispatched multiple times before their execution.
For example, in POWER4, a load instruction is retried every
7 cycles on a DERAT miss until the translation information is
available in the TLB. Therefore, high DERAT and TLB miss
rates can also lead to higher speculation rates and, as a result,
higher CPI.

One may expect to see different levels of CPI during
garbage collection: possibly higher due to the size of the mem-
ory region examined by GC, or possibly lower because of better
GC code locality. Generally, we do not see a strong correlation
between CPI or speculation rates and GCs.

4.2.1 Branch Prediction

One of the major culprits for high CPI and speculation rates in
superscalar processors have been branch mispredictions. De-
spite the advanced branch prediction hardware of POWER4
processors, Figure 6 shows a misprediction rate of approxi-
mately 6% on the conditions of branches and of 5% on the
targets of indirect branches. It shows more branches and fewer
mispredictions on a periodic rate that matches up with Garbage
Collection. This result is consistent with the nature of GC
codes, which tend to contain tighter loops and more predictable
branches.

Polymorphism, an important feature of Java and other
object-oriented languages, results in compilation of object-
based methods with virtual method tables and indirect
branches. If virtual method calls on varying object types are
unpredictable in a dynamic instruction stream, one would ex-
pect to see many target mispredictions in the BTB. A large
instruction working set may contain more branches than the
prediction hardware can maintain, resulting in more mispre-
dictions and higher CPI. We find that there is a strong cor-
relation between target address mispredictions and instruction
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Figure 6: Branch Prediction

cache misses. Target address mispredictions can cause useless
instructions to be fetched into caches and useful instruction to
be evicted. Consequently, a compiler optimization that reduces
the number of call sites with indirect branches by converting
them to relative branches (in common cases) can improve per-
formance.

Poor branch prediction can result in spurious loads, which
can evict useful data from caches, resulting in reduced memory
subsystem performance. However, Figure 5 shows no correla-
tion between the speculation rate and the L1 performance. This
is further confirmed by using statistical correlation – a correla-
tion of only 0.1 (Section 4.3).

4.2.2 Address Translation

The POWER4 processor (PowerPC architecture) utilizes three
different types of addresses:

• Effective (EA): application’s address space,
• Virtual (VA): unified address space, and
• Real (RA): used to access physical memory.

To perform fast EA to RA translation, there exist two effective-
to-real address translation (ERAT) tables (separate for instruc-
tions and data) that are accessed in parallel with processor’s L1
caches. The L1 caches are indexed on EA and tagged on RA.
ERAT misses trigger TLB reads, which, along with a segment-
lookaside buffer lookup, take at least 14 cycles to translate EA
to RA.

Figure 7 shows the ratios of Data and Instruction ERAT and
TLB misses per instruction. The top two lines correspond to
DERAT and IERAT, while the bottom two lines correspond to
DTLB and ITLB. Lower ratios yield better performance.

One cause of high CPI can be a relatively high DERAT miss
rate. For jas2004, more than 100 instructions retire between
DERAT misses. Upon a DERAT miss, the TLB is able to sat-
isfy requests in 75% of cases. Hence, there are some pages in
a translation working set that the ERAT cannot maintain

During GC, we see 2-3 orders of magnitude fewer ITLB and
DTLB misses per instruction. Note that the graph in Figure 7
has been fitted using Bezier smoothing, and the peaks that are
shown actually correspond to events that last for 0.2 to 0.3 sec-
onds – the time for running GC.
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The data presented here is for a JVM that uses 16MB large
pages for the Java heap, along with standard 4K pages for the
rest of memory (instructions and data). Enabling large pages
increases DTLB hit rates by 25%, and because of the reduced
pressure on the unified TLB, ITLB hit rates also increase by
15%. This demonstrates that the usage of large pages can have
a significant effect on the TLB performance of this workload.

While the address translation performance is relatively
good, there is room for improving ERAT hit rates by imple-
menting object locality optimizations. Increasing the sizes of
ERATs so that they could better maintain working sets could
further improve overall performance. We will see later that the
address translation performance is correlated to the CPI of the
system. Therefore, improvements in this area will likely result
in higher system performance. Further, utilizing large pages
for JIT compiled code and other components of execution the
stack will lead to additional performance improvements.

4.2.3 The Memory Hierarchy

We observe that for approximately every 2 instructions that are
retired, either a load or store is sent to the L1 cache. In other
words, there is a L1 cache access every 6 cycles. There are 4.5
retired instructions per store, and 3.2 retired instructions per
load. Hence, jas2004 is a memory-intensive workload.

The L1 DCache on POWER4 is a 2-way, 32KB cache with
a FIFO replacement policy. The L1 DCache is a subset of the
L2 cache (the coherence point in the system) and has a a write-
through policy. L1 store misses do not evict L1 lines; rather,
they write data to the L2 cache. This prevents stores from evict-
ing “useful” data from the L1 DCache.

Figure 8 shows the L1 load and store miss rates over time.
The L1 DCache misses about once every 12 loads and about
once every 5 stores, averaging about a 14% miss rate overall.
This is similar to miss rates on modern integer benchmarks, but
is much higher than past Java benchmark results[14]. During
GC, we observed a lower miss rate for stores but relatively no
change to load miss rates. There is also no significant corre-
lation between the rates of memory operations to GC activity
(data not shown).
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Figure 8: L1 Data Cache Performance

On our POWER4-based server[9], two processor cores
(“siblings”) reside on a chip and share an on-chip L2 cache.
Four such chips (i.e., 8 processor cores) can reside on a single
multi-chip module (MCM)[15], each of which has an L3 cache
attached to it (L3 is off-chip while its directory and control are
on-chip). Each processor can request and receive data residing
in other non-sibling processor’s L2s. If the data is loaded from
off-chip L2 residing on the same MCM, it is labeled as loaded
from L2.5. Similarly, if the data is loaded from L2 residing on
a different MCM, it is labeled as coming from L2.75. Shared
and Modified refer to the MESI state that a cache line was in
when it was read.3 The L3.5 cache is a L3 cache attached to a
different MCM.

There are approximately 1 in 7 loads that miss in L1
DCache. Figure 9 shows where the loads that miss in the L1
are satisfied from. In the experiment, ∼109 instructions are re-
tired per 0.1 second sampling period. Due to limitations in the
HPM system[16], it is not possible to collect L1 statistics at the
same time as those shown in these graphs.

This graph illustrates that L2 cache is stressed by this work-
load and has only a 75% hit rate. The majority of the remaining
hits come from L3 and memory, with some hits coming from
from L2.75 shared and L3.5. There is very little L2.75 modi-
fied traffic.

jas2004 exhibits very little modified traffic across threads.
Further, the data suggest that there may be little benefit from in-
telligent co-scheduling of threads. Reducing the data footprint
of the workload could reduce pressure on L2 cache. A big-
ger L2 could provide some performance boost. Alternatively,
a lower latency to L3 could also deliver sizeable performance
benefits.

4.2.4 Locking, Contentions, and SYNC Cost

To achieve high performance in a multi-threaded application, it
is essential to limit contentions for executing critical blocks of
code. POWER4 has two instructions that can be used for per-
forming locking operations – LARX and STCX – called “load

3On our 4 CPU (4 cores) benchmark system, there are 2 MCMs, each hav-
ing a two core processor enabled (with a single L2 cache shared by the 2 cores)
and one L3 cache. Because our system has only a single “live” L2 on each
MCM, we see no L2.5 traffic.
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and reserve” and “store conditional”, respectively.4 These
instructions are used to implement an atomic “read-modify-
write” operation. A LARX instruction is a load operation that
also creates a reservation on a memory location from which it
loads data. The reservation is to be used by a STCX instruction
that follows.

A LARX instructions is executed about once every 600 in-
structions of user-level code. While 0.16% of instructions may
not appear to be significant, the overhead due to locking can be
noticeable. Assuming each LARX instruction is surrounded
by 20 additional instructions for performing a lock acquisi-
tion, one can estimate that ∼3% of instructions are spent ac-
quiring locks. This number could be even higher because of
spinning on contended locks. The amount of time spent in the
pthread mutex lock function is a good estimate for lock con-
tentions in a system. We see ∼2% of all (user + kernel) cycles
spent in this function, which suggests that despite frequent lock
acquisition there is relatively little lock contention or spinlock-
ing.

On POWER4, several different SYNC instructions (ISYNC,
SYNC, LWSYNC) are used in the synchronization code to en-
sure proper ordering and that all previous instructions have
completed before the next instruction is initiated. For exam-
ple, when a SYNC instruction completes, all storage accesses
initiated prior to the SYNC instruction are complete. A SYNC
instruction itself can take a long time to complete and is consid-
ered to be costly. However, it has been optimized on POWER4.
We measured that the fraction of cycles when a SYNC request
is in the SRQ (store reorder queue) is less than 1%. Hence, the
overhead of SYNC instructions is fairly small for user-level
processes including WebSphere and there is little room for
improvement. In contrast, during the execution of privileged
code, the fraction of cycles when a SYNC request is in the
SRQ is approximately 7% (data not shown). GC contains far
fewer SYNC instructions compared to the frequency of these
instructions during the execution of mutator (Java) threads.

4The ISA instructions are LWARX/STWCX and LDARX/STDCX.
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Figure 10: CPI Statistical Correlation (r)

4.3 CPI Correlation

Quantifying a relative correlation of processor events with CPI
can yiled useful insights about system behavior and bottle-
necks. Statistical correlation allows one to quantify how close
two sets of sampled data are to being linearly related. Correla-
tion can be calculated as follows:

Σ(x−x̄)(y−ȳ)√
Σ(x−x̄)2Σ(y−ȳ)2

The formula yileds a number between −1 and 1, where neg-
ative values represent an inverse correlation, and where the ab-
solute value represents how closely two data sets are correlated.

Figure 10 shows correlations of several different hardware
events and execution characteristics to the overall CPI of the
system (for the user-level code including WebSphere). The
figure shows that there is no single characteristic or a hardware
event that is perfectly correlated with CPI but several events are
correlated fairly strongly, and this suggest that there are some
opportunities for optimization. We will review them in detail.

There is stronger correlation between load misses and CPI
relative vs. between store misses and CPI. This observation
confirms that load misses have a more negative impact on per-
formance than store misses. Interestingly, overall, there is no
strong correlation between L1 DCache load and store misses
(i.e., L1D Load Miss and L1D Store Miss) and CPI. We also
see little correlation between CPI and load and store miss rates.
The data suggests that the L2 latency is sufficiently short for
this workload, and the front-end is capable of supplying use-
ful work while L1 misses are being serviced. The fact that the
L3 cache satisfies about 15% of L1 misses suggests that the L2
cannot maintain the entire working set. Increasing the size of
the L2 cache can improve performance.

We observe strong correlation between CPI and the num-
ber of prefetching requests from the POWER4 sequential
prefetcher (L1D Prefetches, L2 Prefetches, D$ Prefetch Stream
Alloc.). More prefetching requests are generated and new
prefetching streams are allocated as a result of a sequence of
L1 misses (a burst of misses). The data suggests that a single
L1 DCache miss is often satisfied out of L2 (in 75% of cases as
discussed earlier) and its impact can be hidden (POWER4 can
have about 100 instructions in flight), but a burst of L1 DCache
misses would have much stronger correlation with CPI because

a sequence of misses would be more likely to slow down a pro-
cessor pipeline.

A “speculation rate” (instructions dispatched for each in-
struction completed) is not correlated strongly with CPI per-
haps because other factors have much more impact on CPI.
The bar labeled “Cyc w/ Instr. Comp.” corresponds to the
number of cycles when at least one instruction was completed.
A higher count of such cycles corresponds to lower CPI which
is reflected by a negative correlation. Similarly, when more
instructions are fetched from L1 ICache, the CPI is likely to
be lower, which is also reflected by a negative correlation. At
the same time, when more instructions are fetched from deeper
levels of memory hierarchy (L2, L3, memory), the processor
is more likely to stall, resulting in a higher CPI and positive
correlation. By reducing instruction footprint one can reduce
CPI. The code footprint of this workload is large and is larger
than that of other commercial benchmark workloads that stress
a memory system (e.g., TPC-C). The fact that the instruction
cache miss data are stronger correlated with CPI than the data
cache miss data implies that the workload is more sensitive to
instruction fetch performance. It may be interesting to evaluate
an alternative L2 replacement policy that gives instruction en-
tries a lower probability of being chosen for eviction than data
entries.

While we observed that a SYNC request was in SRQ in less
than 1% of cycles, we still see a strong correlation between
SYNCs and CPI. As discussed, SYNC instructions cause ear-
lier instructions to be completed prior to the execution of later
instructions, which stalls the flow of a processor pipeline. The
impact of these instructions could be larger on a larger system.

Translation misses are strongly correlated with CPI. This is
in spite of the fact that we use large pages for the Java heap.
It appears that by improving ERAT and TLB hit rates (e.g., by
placing executable and JIT compiled code to large pages, or
increasing ERAT sizes) one can reduce CPI.

Branch prediction rates, particularly the conditional misses,
are strongly correlated to CPI. This is to be expected consid-
ering high branch misprediction rates that we observed for this
workload (Figure 6). The number of branches seems to have
no correlation with the target address mispredictions (correla-
tion of -0.07). There is some correlation between the number
of conditional misses and the number of branches (0.43).

Because of certain limitations in the hardware performance
counters, it is not possible to correlate CPI with various data
cache counts presented in Figure 9 (such as data fetches from
L2, L3, and memory).

Overall, the data shows that it is difficult to identify any ma-
jor components of the architecture that need “drastic” improve-
ment for this type of workload. However, reducing instruc-
tion and data cache footprint, code reordering, reducing target
address mispredictions, increasing L2 capacity, and reducing
translation misses by exploiting large pages can improve per-
formance. Considering that a large proportion of instructions
are loads and stores, low latency accesses to the L1 data cache
remain important for performance.



5 Related Work

There has been several performance studies of Java client
and Java server applications, particularly with the SPECjvm98
suite, SPECjbb2000, and later with previous versions of SPEC-
jAppServer (namely, SPECjAppServer2002 and its predeces-
sor, ECPerf). Earlier Java benchmarks were generally focused
on stressing a JVM, a JIT compiler, and a GC, but unlike
SPECjAppServer2004, were not designed to emulate all com-
ponents of a large server application. Small Java benchmarks
did not portray a realistic view of a real server workload.

Cain et al.[17] implemented the TPC-W benchmark in Java,
and evaluated its memory characteristics on a 6-processor IBM
RS/6000. This benchmark is similar to the jas2004 benchmark
in that it intends to simulate a commercial system including a
web front-end and a database. However, it does not incorpo-
rate a J2EE application server. They found that the majority of
memory stalls resulted from L2 load misses, and that a large
number of these misses were serviced by cache-to-cache trans-
fers. jas2004 also suffers from many L2 misses, but only a
fraction of L2 misses are satisfied from remote L2 caches.

Stoodley[18] reported on the difference between jas2004
and simple benchmarks like SPECjbb2000 and SPECjvm98
applications. Their study of jas2004 also finds that the work-
load has a flat method profile and low synchronization over-
head.

Karlsson et al. [7, 19, 20] compared performance of SPEC-
jAppServer20015 with SPECjbb2000. SPECjAppServer2001,
like jas2004, is a multi-tier benchmark and is intended to bet-
ter emulate a real commercial application. They investigated
the effects of scaling (through a combination of simulation and
real-system studies) on a memory subsystem.

Li et al.[4] use a complete system simulation to character-
ize SPECjvm98 benchmarks. They find that a large amount
of runtime is spent in the OS kernel, and trace the cause back
to software-managed TLB miss handling routines. We see a
relatively good TLB performance with jas2004 on POWER4
which has a hardware-managed TLB. In our experiments, a
much larger fraction of time was spent in user-level process-
ing.

SPECjbb2000 and VolanoMark were compared with integer
benchmarks by Seshadri et al. [5]. They demonstrate higher
L1 hit rates and slightly higher L2 hit rates in SPECjbb2000,
lower CPI values, similar branch behavior, and lower levels of
speculation.

Shuf et al. [14] evaluated the memory behavior of the
SPECjvm98 suite and the SPECjbb2000 benchmark to identify
how a JVM, a GC, and a JIT compiler can be optimized and
improved. They created memory access traces on an instru-
mented JVM and then simulated a memory system of a proces-
sor. Some of their simulation results were then validated using
performance monitor counters on a PowerPC604e system. Un-
like jas2004, the benchmarks studied in that paper had obvious
“hot” methods and “hot”instance fields and a much lower L1

5referred to as ECperf in their paper

data cache miss rate. Some benchmarks had high TLB miss
rates.

We observed a small GC overhead when running jas2004.
Blackburn et al. [2] evaluated several GC techniques on the
SPECjvm98 suite and SPECjbb. In their experiments the heap
sizes were considerably smaller and a large percentage of run-
time was spent in GC.

Hauswirth et al.[12] used statistical correlation to perform
“vertical profiling” to collect correlation statistics across data
from different performance monitoring tools. In[13] they ex-
plore techniques for automating this process.

6 Conclusions

The paper makes the following contributions:

• It presents a detailed performance analysis of the SPEC-
jAppServer2004 workload (jas2004) running on a high-
end server with a state-of-the-art application server, a
JVM, and DBMS.

• It discusses challenges in analyzing complex enterprise
applications.

• It highlights the differences between the characteristics
of small Java benchmark workloads and a large jas2004
workload and points out that these significant differences
require the development of new approaches for perfor-
mance analysis.

• It identifies performance bottlenecks and opportunities
for performance improvements.

• It uses statistical correlation to evaluate the relationship
between different hardware events and the CPI of the
system, which aids in diagnosing performance bottle-
necks.

At a high-level, jas2004 is a complex workload that is
considerably difficult to setup and tune. However, it reaches
a steady state fairly quickly and has a uniform performance
throughout a run. This workload behavior is conducive to
collecting meaningful data from hardware performance mon-
itors. The jas2004 workload exhibits a very flat execution pro-
file and does not contain “hot spot” kernels like some of the
smaller Java benchmarks studied in the past[14]. This presents
many challenges to JIT compiler writers and creates a de-
mand for novel profiling and code analysis techniques. More-
over, a rather significant fraction of runtime is spent not in the
JIT compiled code, namely the OS and the middleware code.
Therefore optimizations across OS and middleware can be ben-
eficial.

Garbage collection contributes very little to the overall run-
time of the workload (whether we use J9 JVM or Sovereign
JVM). In a separate study, we observed a similar small GC run-
time overhead with Trade6, another J2EE workload. Our GC
results differ from previous Java benchmarking experiments
because most previous studies used small Java benchmarks that
spend more than 90% of time in JVM and JITed code and used
relatively small heap sizes.



Unlike small Java benchmarks, this workload has a consid-
erably larger code footprints, flat profile, no hot spots. Its exe-
cutable and JIT compiled code cannot fit into a L2 cache. The
observed branch misprediction rate is relatively high. There-
fore optimizations like placing executable and JIT compiled
code into large pages, better code reordering, better prediction
of indirect branches are good directions for improving perfor-
mance of this workload.

Unlike small Java applications, the jas2004 workload has a
larger fraction of loads and stores and a higher CPI. Larger data
footprints cannot be accommodated by a L2 cache. A bigger
L2 cache or a lower latency of accesses to a L3 cache could
help improve system performance.

7 Future Work

An evaluation of the effects of scaling the number of proces-
sors on performance will be interesting as the industry moves
to designs with many processor cores. Another direction is
to analyze jas2004 workload on relatively inexpensive blade
systems and to place a web server, an application server and
a DBMS onto a cluster of interconnected blades. Hauswirth
et al. [13] devised techniques for correlating data across dif-
ferent components of the execution stack. The application of
these techniques would further improve our understanding of
jas2004 workload. It would be interesting to compare the char-
acteristics of the recently released DaCapo benchmarks [21]
with jas2004.
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