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Exploiting workload parallelism
for performance and power optimization

ABSTRACT

To achieve application performance, future power-limited
design constraints impose new rules on the scaling for appli-
cations. Where in the past, application performance was the
domain of delivering peak performance and translating peak
performance into actual application performance, the chal-
lenge for future supercomputing applications will depend on
delivering the best performance for a given budget.

To determine the impact of application scaling parame-
ters to deliver performance for a given power budget, we
analyze three applications These applications include both
strong and weak scaling applications, as well as a study of
the effect of input sets on power/performance scaling charac-
teristics of an application. Specifically, we study the NAMD,
UMT2K and WRF codes using a Blue Gene/L system as the
target platform. We find that even for strong scaling prob-
lems, Blue Gene/L systems can deliver superior performance
scaling and deliver significant power/performance efficiency.

Application benchmark power /performance scaling for the
voltage-invariant energy x delay® power /performance metric
demonstrates that choosing a power-efficient 700MHz em-
bedded PowerPC processor core and relying on application
parallelism was the right decision to build a powerful, and
power /performance efficient system.

1. INTRODUCTION

To deliver increasing aggregate performance for supercom-
puting workloads, the main challenge for system designers
today is addressing system power. This is the result of both
the individual core power dissipation, and the resulting chal-
lenge to cool a rack, as well as the limits of pre-existing data
centers housing these racks. Today, a system power is a con-
cern.

Typical air-cooled data centers have a power and cooling
capacity of about 400-1600 kW making solutions above this
limit non-viable for most prospective system users. Thus
for future power-constrained designs, the emphasis is on in-

creasing aggregate performance while maintaining system
power requirements. This challenge has been addressed by
a number of recent designs, ranging from consumer appli-
cations embodied by Cell [3, 11], to supercomputing appli-
cations exemplified by the world’s #1 supercomputer, the
Blue Gene/L system installed at Lawrence Livermore Na-
tional Laboratories [20, 22, 6].

The key decision in achieving the performance goals within
the available design constraints is to optimize the system to
exploit parallelism, not single node performance. This is of
particular importance in view of results reported by [21],
which formalizes the intuitive notion of limiting returns on
investment in single node performance.

In this work, we analyze a collection of supercomputing
applications ranging from life science workloads to weather
modeling. We report power and performance measurements
using the Blue Gene/L system for applications including:
(1) NAMD, a molecular dynamics application [13, 19], (2)
UMT2K, an unstructured mesh benchmark [4], and (3) the
WRF numerical weather prediction system [23].

The remainder of the paper is structured as follows: sec-
tions 2 and 3 give an overview of the Blue Gene/L hardware
and software systems on which these experiments were per-
formed. Section 3 analyzes design constrains and describes
power and performance efficiency metrics for modern sys-
tems. Section 4 analyzes power/performance application
scaling for NAMD as an example of life science application
and studies the impact of the problem size on energy effi-
ciency. Section 5 discusses UMT2K and evaluates the im-
pact of thread-level and data-level parallelism on workload
performance characteristics. Section 6 discusses WRF as an
example of weather modeling codes. We conclude in section
7.

2. SYSTEM OVERVIEW

To achieve high system performance, the Blue Gene/L
design opts for parallelism instead of high frequency. Fre-
quency and voltage scaling, and/or more aggressively pipe-
lined microprocessors achieve the highest single-node perfor-
mance, but the marginal cost of performance is extremely
high, exceeding 2% increase in energy for 1% increase in
performance [15]. Given that the heat dissipation capac-
ity of an air-cooled rack is limited, the most energy-efficient
approach to reach maximum performance is to increase par-
allelism using efficient low-frequency processors.

To ensure good scaling, the Blue Gene/L system provides
five high performance networks. These have been optimized



Figure 1: The Blue Gene/L concept leverages par-
allelism and advanced packaging to deliver superior
power/performance.

and integrated into the system architecture. To reduce com-
munication overhead, the network interfaces are located on
the same chip as the processing units and implemented with
an System-on-a-Chip design [6].

The Blue Gene/L computer is a scalable system consisting
of up to 65,536 nodes using IBM CMOS CU-11 technology.
Each node is built around a single System-on-Chip based on
the PowerPC 440 processor core and 9 or 18 SDRAM-DDR
memory chips. The Blue Gene/L compute node contains a
prefetching L2 cache and 4MB high bandwidth embedded
DRAM used as on-chip L3-cache shared between the two
processors. This high density/low component count SoC-
based design approach is important to reach an optimum
cost/performance point.

Blue Gene/L also leverages the software infrastructure
of the industry-standard PowerPC architecture. The aim
was to differentiate where big gains were possible, and use
standard components everywhere else. The standard com-
ponents include industry standard networks from the Blue
ASIC CoreConnect library, the PowerPC 440 processor core,
embedded DRAM from the IBM 0.13x CU-11 process tech-
nology, and IBM XL compiler technology.

The PowerPC 440 microprocessor is a high-performance,
out-of-order industry-standard PowerPC processor originally
targeted at high-end embedded systems. The processor sup-
ports 2-way super-scalar instruction execution with a seven
stage pipelined micro-architecture. The processor core in-
cludes highly associative first level instruction and data caches
with a capacity of 32KB each. Optimized components in-
clude the “Double Hummer” SIMD floating point unit, based
on a standard PowerPC floating point unit but replicating
key functionality, collective and torus networks, and an op-
timized memory system with software-managed coherence
between cores.

System packaging is an integrated aspect of the Blue Gene/L

design. In this design, a single rack consists of two mid-
planes. A midplane is populated with 512 processing nodes,
with 5.6GFlop per compute node. In addition to compute
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Figure 3: The PowerPC440.

nodes, a midplane is also populated with several I/O nodes.
These I/0 nodes are implemented using the same ASIC SoC
as the compute node, but configured to handle file I/O and
host communication.

Blue Gene/L addresses the communication requirements
to achieve good application performance scaling by provid-
ing 5 dedicated communication networks: the torus net-
work, collective network, barrier network, Ethernet, and
IEEE1149.1 (JTAG). The networks are described in more
detail in [7].

An important element of the Blue Gene/L system is sup-
port for multiple concurrent users. This “multi-user” mode
is accomplished through logical partitioning (LPAR) of the
machine, which allows each user to have a dedicated set of
nodes for their application, including dedicated network re-
sources. This partitioning is accomplished through the use
of the link chips.

All of Blue Gene/L’s networks pass through link chips
when they cross midplane boundaries. The link chip is used
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Figure 5: The Blue Gene/L compute node chip in-
tegrates two PowerPC 440 processors with a SIMD
FP2 unit, dense EDRAM L3 on-chip cache and I/0O
capabilities to drive several high-performance com-
munication networks.

to re-drive signals, to preserve the high speed signal char-
acteristics over the cabling across midplanes. The link chip

can also redirect signals between its different ports. This
redirection capability enables partitioning of a single Blue
Gene/L system into multiple, logically separate systems.

The Blue Gene/L compute node contains two processors
based on the PowerPC 440 core with a SIMD floating point
unit, achieving a peak performance of 2.8 GFlops per core.
A SIMD approach was advantageous because it allows paral-
lel execution of both floating-point and load/store instruc-
tions, thus reducing the need for power-intensive fetching
and issuing of instructions. Figure 4 shows the design of the
FP2 core. The Double Hummer uses two copies of the archi-
tecturally defined PowerPC floating-point register file. Both
register files (primary and secondary) are independently ad-
dressable; in addition, they can be jointly accessed by SIMD
instructions.

The primary register file is used in the execution of the
pre-existing PowerPC floating-point instructions as well as
the SIMD instructions, while the secondary register file is
reserved for use by the new instructions. Along with the two
register files, there are also primary and secondary pairs of
datapaths, each consisting of a computational datapath and
a load/store datapath.

The final aspect of low power design in Blue Gene/L was
the System-on-a-Chip approach. By leveraging SoC integra-
tion to reduce component count, many high-power off-chip
I/0 signals driven across the signal pins and PCBs are elim-
inated. As described previously in [6], the Blue Gene ASICs
were built with an optimized ASIC design flow incorporat-
ing guided placement and bitstacking, but no custom circuit
work.

3. BLUE GENE SYSTEM SOFTWARE

As can be expected from a system the scale of Blue Gene/L,
the software stack poses a set of interesting challenges. The
basic programming model for Blue Gene/L is the MPI mes-
sage passing interface for communication between nodes.
Two configurations are possible: (1) “communication copro-
cessor mode” where one processor is dedicated to computa-
tion and the second can offload some of the communication
work, and (2) “virtual node mode” where two independent
MPI processes are placed on each node, so that both pro-
cessors can be used for computation, while memory is par-
titioned between the two processes.

Each compute node has a micro kernel that can handle
all functions necessary for high performance real time exe-
cution. The kernel provides an interface to the hardware for
interrupts, timers, and error handling which are executed
with supervisor privilege. To allow for fast communication
and synchronization during execution of an application, ac-
cess to the memory-mapped torus network interface is pro-
vided to the user address space. Thus, MPI messages are
passed to other nodes without incurring the cost of a context
switch from user to supervisor mode.

The Blue Gene/L computer node kernel does not imple-
ment a paging system to support virtual memory, reflecting
the large number of nodes and threads provided in the sys-
tem. Given the fact that nodes do not have private disk or
other secondary storage devices, paging would be required
over the I/O networks which would be prohibitive in a sys-
tem of this size.

Instead, all threads use the same address space, mapping



PowerPC effective addresses (virtual addresses) directly to
real (physical) addresses. The TLB is statically allocated
at system startup and implements a flat 256MB effective
to real address translation. Similarly, software threads map
directly to hardware threads.

To allow multiple users to use the Blue Gene/L system
concurrently, partitioning of the system is implemented by
reprogramming the link chips. Within each Blue Gene/L
partition, the operating system supports single user running
single program application. This approach protects machine
resources — such as memory or communication channels —
from accidental corruption so they can be used reliably for
error detection, debugging, and performance monitoring [1].

Ensuring reliable operation is another system function.
In a large system of such as Blue Gene/L with up to 65536
nodes operating on computations for extended time peri-
ods, node failures are to be expected. Even with low MTTF
rates, the compounding effect of large system image and
long run times will make node failures a reality to be dealt
with. Instead of expensive hardware recovery mechanism,
reliability is a system function achieved by the system soft-
ware layer through the implementation of a checkpointing
system.

External access to a Blue Gene/L system occurs via the
I/O nodes which provide an offload engine for I/O and in-
terface traffic. I/O nodes do not participate in the the torus
network, and in the MPI communication protocol. Instead,
they run a standard Linux operating system kernel with ap-
propriate service extensions to communicate with the com-
pute nodes.

A host computer is required for compiling, diagnostics,
and result analysis The host computer is also responsible
for file system input/output and program loading, which is
accomplished via message passing. The choice of host will
depend on the class of applications and their bandwidth and
performance requirements.

Since the processor at the core of the Blue Gene/L system
is the industry standard PowerPC architecture, the familiar
compiler and tool infrastructure available for the PowerPC
family can be used to program the Blue Gene/L system.
The XL compiler family has also been extended to support
generating code which exploits the high performance dual
floating point SIMD unit available in each core.

System bringup and testing is performed with the BGL
ADE (Blue Gene/L Advanced Diagnostic Environment), an
operating system which was designed expressly with the pur-
pose to exploit and access all of Blue Gene/L’s capabilities
[8]. The BGL ADE system can deconfigure portions of a
chip so as not to trigger hardware components which are
suspected of being defective, and allow isolated testing of
all system components.

4. POWER/PERFORMANCEEFFICIENCY

Power /performance efficiency was a prime design constraint
to arrive at a high computing density system that would fit
in the form factor of air-cooled racks in a standard machine
room. Here, we analyze the power/performance efficiency of
the final Blue Gene/L system and compare design choices
in the design of systems, and how they influence power ef-
ficiency. While peak numbers are an eye-catching metric,
delivered power/performance on applications is the relevant

metric. Thus, our analysis is based on a detailed analysis of
workloads to understand how well the Blue Gene/L system
delivered on its promise of power/performance efficiency.

Power is a critical parameter as the densities that we are
aiming for are more than a factor of 10 beyond where we
could go with nodes based on traditional uni-processors. In
addition, there are serious cost and reliability issues associ-
ated with high power density designs.

Several metrics have been proposed for characterizing en-
ergy efficiency. The most common of these metrics is MIPS
/ Watt. This metric corresponds to energy per operation,
i.e., it does not assume that there is any benefit in speeding
up computation, or cost for reducing its speed. Increasing
the number of nodes, the energy per operation remains con-
stant as performance per processor and power per processor
remain unaffected.

However, energy per operation metric does not reflect the
benefit of reduced execution time with the increasing num-
ber of nodes. Thus, Gonzalez and Horowitz argue for the use
of energy-delay product as a metric, which corresponds to
paying 1% energy for an increase of 1% in performance [10,
9]. Introducing parallelism reduces execution time, without
ideally increasing the power consumption per node, thus
keeping energy consumption for a problem constant with
dropping execution time.

Martin et al. propose the energy x delay? product as an ef-
ficiency metric for VLSI computation [15, 16, 18]. This met-
ric puts even more emphasis on performance thus favoring
speedup via parallelism at a constant energy budget. This
metric is considered to be superior to other metrics such as
energy or energy-delay because it is reflects a “better” de-
sign point regardless of voltage — i.e., this metric remains
constant as a system is voltage scaled to higher or lower
performance. This metric is useful in considering tradeoffs
between higher-frequency, higher voltage design points, and
more power efficient lower frequency lower power cores.

In contrast, under the energy-delay metric, design opti-
mality changes under the assumption of scaling to a differ-
ent voltage. From another perspective, when voltage scaling
is an option, the highest cost which can be justified is 2%
energy for 1% performance — if the cost becomes higher than
this, voltage scaling is always more profitable.’

Based on the observation that for many large-scale sci-
entific problems, multi-processor scaling gives much better
return on hardware resources than scaling a single proces-
sor, it is advantageous to address such problem classes with a
system-level approach. Large scale scientific problems typ-
ically offer multi-processor efficiency by exploiting thread-
level parallelism in the 60+% percent range, far exceeding
the improvements to be achieved by a microprocessor-centric
optimization approach.

Figure 6 shows the normalized energy, energy-delay and
energy x delay® metrics for idealized scaling of performance
and power on a system offering thread-level parallelism. The
scaling of this idealized metric is usually closely tracked by
the reported LINPACK benchmark results.? While LIN-

The energy, energy-delay and energy x delay® metrics are
closely related to the MIPS™ / W ratings, where energy

=1/ (MIPS/W), energy x delay = 1 / (MIPS?/W) and
energy x delay® = 1 / (MIPS® / W).
2Based on the Top 500 submissions for Blue Gene/L, LIN-
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Figure 6: Ideal power/performance scaling across a
range of Blue Gene/L partition sizes using logarith-
mic scale.

PACK efficiency may seem overly optimistic for actual ap-
plications, we will show below that applications also exhibit
significant scaling efficiency.

In this and the following charts, each curve has been self-
normalized to allow all three metrics to be represented in
a single figure. In keeping with the interpretation of these
numbers, a smaller energy-delay product is better, repre-
senting either less energy at the same performance, or more
performance at the same energy, or both.

In the idealized benchmark, the energy per operation (curve
labeled E) remains constant across all configuration, as per-
formance per processor and power per processor remain un-
affected by the increasing number of nodes. Introducing
parallelism reduces execution time, without ideally increas-
ing the power consumption per node, thus keeping energy
consumption for a problem constant with dropping execu-
tion time. This is reflected by the improvement of of the
peak performance energy-delay curve (labeled E x t).

The third metric E x ¢t puts more emphasis on perfor-
mance than the E and E X t metrics, thus favoring speedup
via parallelism at a constant energy budget even more. The
energy X delay® curve (labeled E x t2) reflects a constant
energy-delay metric under the assumption of voltage scaling
— i.e., this metric remains constant as a system is voltage
scaled to higher or lower performance. This metric is use-
ful in considering tradeoffs between higher-frequency, higher
voltage design points, and more power efficient lower fre-
quency lower power cores. Thus, according to this metric a
100 node system offers a nominal four orders of magnitude
better power/performance efficiency than voltage scaling a
single core. Evidently, voltage scaling cannot cover such a
range, but relative figures on the curve offer insights into
tradeoffs in system design. For example, the peak perfor-
mance of a 128 node system could also be obtained by a volt-
age scaled 100 node system at a loss of power/performance
efficiency of et2123/et2100, where et2; indicates the value of
the E x t2 metric for a system with ¢ nodes.

PACK shows about 80% efficiency (Rmax/Rpeak of DD2
hardware).
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B /./
250 /

0 512 1024 1536 2048

Figure 7: Normalized NAMD performance scaling
across a range of Blue Gene/L partition sizes.

While we have discussed the use of these metrics for ideal-
ized performance scaling for thread-level parallelism, these
observations will be most useful when applied to actual
benchmark performance and power data to evaluate the
power /performance efficiency of a massively parallel system
such as Blue Gene/L.

While many large problems can be arbitrarily parallelized
to allow the problem to match the size of the system on
which computation is performed — such as LINPACK — many
applications are fixed size problems requiring constant amount
of computing independently of the size of the system. This
is referred to as strong scaling. Strong scaling problems give
a more conservative performance evaluation, as they char-
acterize what can be gained from a parallel system on many
real problems. Application performance results are also
more realistic in that they include multiprocessor overhead,
such as communication overhead, synchronization, program
sections which cannot be parallelized, etc.

5. NAMD

As arepresentative of typical life-science applications which
are an important application area for the Blue Gene/L project,
we use NAMD, a molecular dynamic simulation system [13,
19]. The NAMD code is available as open source. To
compare NAMD performance across a wide range of par-
allel systems, the NAMD distribution includes a benchmark
problem which serves as the basis of the results reported
here. The benchmark problem — referred to as ApoAl, for
apoprotein A1 — models one high density lipoprotein par-
ticle (apoprotein A1) found in the bloodstream. The setup
consists of the apoprotein A1l molecule solvated in water and
has a fixed problem size of 92224 atoms of lipid, protein and
water calculated in 500 steps.

In this work, we use NAMD version 2.6b1 [14] which is
tuned to exploit the underlying high-performance hardware
primitives of the Blue Gen/L systems.

Figure 7 shows the scaling of the NAMD molecular dy-
namic code on the Blue Gene/L system and plots the nor-
malized performance against the number of nodes.

System performance scales well across a range of configu-
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rations with an increasing number of nodes. Detailed anal-
ysis with a number of installed systems shows the extremely
advantageous scaling behavior of the Blue Gene/L system.
The increase in number of processors translates directly into
increased system performance with only a small impact of
multiprocessor overhead.

Energy and energy-delay metrics for NAMD is shown in
Figure 8. The energy-delay metric shows a significant im-
provement based on the overall performance gain and shows
three orders of magnitude improvement when scaling from
a 1 node system to a 2048 node configuration.

The power /performance efficiency advantage is even more
pronounced for the energy x delay? metric showing more
than five orders of magnitude efficiency gain of a 1024 node
Blue Gene/L system over the base 1 node configuration.

Put another way, according to this metric, parallel NAMD
execution on a 1024 node Blue Gene/L system is nearly
five orders of magnitude more efficient than voltage and fre-
quency scaling of the microprocessor in a 1 node configura-
tion. While ranging across this performance differential is
not possible with voltage scaling, the curve shows possible
tradeoff points. The impact of choosing a higher perfor-
mance microprocessor in a node can be determined from
E x t? curve.

Exploiting the metric invariance under voltage scaling, we
can choose a configuration with n nodes and voltage scale it
until it reaches the performance of a configuration with m
nodes under the idealized assumption that all system com-
ponents can be voltage scaled. While the curve does not tell
us how much we would have to scale, we can determine the
outcome in terms of loss in power/performance efficiency
for compute-intensive problems with the ratio et2,/et2,,
where et2; indicates the value of the E x t2 metric for a Sys-
tem with ¢ nodes. Evidently, a Blue Gene/L system consists
of computation, communication, memory, storage, and I/O
components which will all have distinct power and perfor-
mance characteristics in response to voltage scaling. Thus,
programs which derive their performance and power char-

acteristics from these other subsystems need to be analyzed
in accordance with the scaling rules for those domains.

While voltage scaling may not allow to span the perfor-
mance differential between any two configurations of n and
m nodes, other tools are at the microarchitect’s disposal.
However, many of these techniques offer even worse % en-
ergy for % performance tradeoffs than voltage scaling.

A study on efficiency of pursuing a microprocessor-centric
approach to achieve performance post-dates the Blue Gene
effort — reported by Bose et al. [5, 12] - and confirms this
decision. Bose et al. study the efficiency of microarchi-
tecture changes and in particular increasing pipeline depth
to achieve higher clock frequency. The results point to
a very limited potential for power/performance efficiency
improvement with modestly deep pipelines, and significant
power /performance efficiency degradation beyond that point.

Blue Gene/L allocates partitions in sizes of 32 nodes or
larger, making this the smallest useful configuration size in
a production system. Configuration sizes below 32 nodes
are reported only to study application scaling.

6. UMTZ2K

UMT2K is an ASCI Purple benchmark, which solves a
photon transport problem on an unstructured mesh [4]. This
application is written in Fortran-90 using MPI and option-
ally OpenMP. We use an MPI-only implementation, because
there is no support for OpenMP on Blue Gene/L. (And no
plans to support it, given the complexity created by the non-
coherent L1 caches.) The unstructured mesh is statically
partitioned using the Metis library [17]. The UMT2K test
case used in this work was modified from the RFP2 bench-
mark problem, following the benchmark instructions to keep
the amount of work per task approximately constant.

UMT2K is typically used as a weak scaling application,
where the problem size is increased to hold the work per
node constant. In keeping with this usage, we will report
weak scaling results. > Figure 9 shows performance scaling
of UMT2K across a range of Blue Gene/L partition sizes.
Perfect scaling would correspond to constant steps per sec-
ond executed on a node, or a completely flat line in Figure 9.

Figure 10 shows energy and energy delay products for
this application. The dots on the figure 10 represent the
energy-delay metrics calculated using the performance re-
sults and based on the actual power measurements obtained
for the partition sizes ranging from 512 to 4098 compute
nodes. Each compute node consist of two processors oper-
ating in the co-processor mode, where one processor handles
communication tasks and the another one calculations.

While concentrating on microprocessor performance is not
the central optimization point, microprocessor performance
should not be neglected. A variety of processor design choices
can be made which allow to generate higher-performing code.
Examples of such optimizations are making available more
registers to hide memory latency, and to exploit data paral-
lelism when available.

To this effect, the Blue Gene/L system implements the

3Evidently, UMT2K can also be used as a strong scaling
application by fixing the problem size. We posit that the
observed lower performance for lower node counts will trans-
late for longer runtimes for large problem sizes in a strong
scaling scenario.
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“Double Hummer” dual floating point unit, a SIMD archi-
tecture offering four parallel double precision operations per
issued instructions (each SIMD instruction can issue a dual
merged multiply-add operation). By tuning code to achieve
better blocking factors by exploiting the ability to store 64
double precision values in architected floating point regis-
ters, and exploiting parallelism, efficiency can be improved
with only a modest cost in power and area. Again, paral-
lelism (in the form of data parallelism) offers high leverage
for power performance optimization (as can be seen from
the small area dedicated to the FP units in the floorplan).

UMT2K is a good example for the exploitation of both
thread-level and data-level parallelism in Blue Gene/L. In
UMT?2K, there can be a significant spread in the amount of
computational work per task, and this load imbalance affects
the scalability of the application. Initial profiling [2] demon-
strated that the elapsed time for UMT2K was dominated
by a single computational routine consisting of a sequence
of dependent division operations.
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Figure 11: Normalized metrics for scalar and SIMD-
izied UMT2K runs for the 1024 Blue Gene/L parti-
tion size.

By splitting loops into independent vectorizable units, the
IBM XL compiler was able to generate efficient data parallel
code to exploit the data parallelism of the double FPU for
computing reciprocals, resulting in a 50-60% overall perfor-
mance boost from the double-FPU for this application.

Exploiting data parallelism is advantageous for improving
energy efficiency as it offers multiple benefits which improve
both power and performance product terms:

e marginal increase in CPU power (<10%) reduces run-
time by half.

e reducing runtime reduces energy dissipation (which is
power per time unit multiplied by time), leading to sig-
nificantly better energy efficiency as the computation
time is sped up.

e system components other than the CPU are exercised
for a shorter period

This is illustrated in Figure 11. Figure 11 shows exe-
cution time, energy, energy-delay and energy delay squared
power /performance metrics for UMT2K runs on a 1024 par-
tition size on Blue Gene/L. The numbers are normalized to
scalar run. Exploiting data parallelism by efficiently em-
ploying SIMD architecture reduces execution time to 60%.
Although power consumption for exercising double-FPU in-
creased for approximately 6%, the overall consumed energy
is only 62% of the energy consumed for the scalar run due to
significantly reduced execution time. Power/performance ef-
ficiency is even more obvious using energy-delay and energy-
delay squared metrics for two approaches, showing 61% and
76% improvement.

Thus exploiting data parallelism is a particularly advan-
tageous optimization, as it not only improves time, but actu-
ally energy consumption as well, whereas power /performance
optimization involves a tradeoff between improving perfor-
mance or energy consumption. Exploiting data parallelism
leads to nearly an order of magnitude energy efficiency im-
provement for the energy x delay® product.



7. WRF

WREF stands for Weather Research and Forecasting, and is
a framework for numerical weather prediction [23]. It is used
by a number of sites including the National Weather Service,
and is under active development in a collaboration involving
several centers including NCAR (National Center for Atmo-
spheric Research) and the NOAA (National Oceanographic
and Atmospheric Administration) Labs. The WRF fore-
cast applications are specifically designed for parallel execu-
tion based on the MPI programming model, but WRF can
also be used on single-processor systems as well as shared-
memory machines.

For its calculations, WRF uses domain decomposition.
In a typical situation, a three-dimensional finite-difference
grid is partitioned in latitude and longitude, with each MPI
process owning a block that includes all vertical layers in
the block. The communication mainly involves boundary
exchange with the MPI processes that ”own” neighboring
blocks using point-to-point communication routines, but there
are also important collective operations, such as gathering
the results to save "history” files.

The ratio of communication to computation is determined
by the number of grid points in the physical domain and
how the grid is partitioned among MPI processes. Roughly
speaking, computation is related to the volume of the lo-
cal domain, and communication is related to the boundary
area of the local domain. In addition to boundary exchange,
there are also gather operations that tend to be more expen-
sive as the number of processors increases.

The performance data shown in Figure 12 is generated
with the WRF benchmark problem, which uses a 425x300x34
grid. The benchmark problem is constructed to report per-
formance of the forecast application without doing I/O. Per-

fect scaling would correspond to linear increase of total GFlops.

The parallel efficiency on Blue Gene/L is a little larger than
50% at 2048 processors, i.e. you get about a 1000x speedup
with 2000 processors.

Blue Gene/L is an interesting architecture to consider for
WRF. With the typical numerical grids that are used to-
day, weather forecast applications can scale fairly well out
to several thousand processors. On Blue Gene/L it would
be necessary to implement a parallel I/O strategy to keep
the I/O and computation balanced.

Figure 13 analyzes energy and energy-delay metrics for
WRF for a range of Blue Gene/L partition sizes, where all
three curves are self-normalized. Based on the scaling be-
havior of WRF shown in figure 12, the overall energy con-
sumption shows an increase as the problem scales to a bigger
system. As WRF is strong scaling application, multiproces-
sor overhead due to non-parallel program sections, commu-
nication and synchronization overhead is visible in increase
of energy required with the increase of partition sizes.

8. CONCLUSIONS

The Blue Gene/L system leverages parallelism to achieve
high performance under power-constrained conditions. In
Blue Gene/L systems, we exploit data- and thread-level
parallelism with a massively parallel system using a data-
parallel floating point unit as its compute engine.

We have given an overview of the Blue Gene/L archi-
tecture, and analyzed performance and power/performance
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Figure 12: WRF performance scaling across a range
of Blue Gene/L partition sizes.
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scaling across a range of Blue Gene/L partition sizes.

characteristics of the Blue Gene/L system under a variety
of conditions.

To derive actual application performance we have ana-
lyzed the scaling of several significant supercomputing ap-
plications — ranging from life science workloads to climate
modeling — on a Blue Gene/L system. Specifically, our re-
sults are based on empirical studies for NAMD molecular
dynamic code, the UMT2K unstructured mesh benchmark,
and the WRF numerical weather prediction application.

We have also analyzed performance and power/performance
characteristics using energy and energy-delay metrics. For
the voltage-scaling invariant energy x delay? metric, we show
that exploiting thread-level application scaling with lower
power cores offers significantly better power/performance
characteristics than using higher frequency cores with high
power consumption. Additionally, our experiments show
that exploiting data parallelism is advantageous for improv-
ing energy efficiency.
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