
RC23819 (W0512-029) December 6, 2005
Computer Science

IBM Research Report

Proceedings of the First International Workshop on Design of
Service-Oriented Applications (WDSOA'05)

Amsterdam, The Netherlands, December 2005

1Jen-Yao Chung, 2George Feuerlicht, 3Jim Webber (Eds.)

1IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

2University of Technology
Sydney, Australia

3ThoughtWorks
Australia

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Preface

While most observers agree about the benefits of service-oriented computing,
there is less of an agreement about suitable architectural and interaction styles
for Web Services applications. Of equal importance is the current lack of agree-
ment about basic design principles for making decisions about what should con-
stitute a service and its interface, and related considerations of service granular-
ity. The transition towards service-oriented computing necessitates re-evaluation
of design methodologies that are used in the construction of enterprise applica-
tions. Web Services design is an active research area and while there is some
agreement about the basic design principles there are no comprehensive design
methodologies for Web Services at present. There is a need for input from the
research community and industry-based practitioners in order to develop design
frameworks to support best practices for Web Services projects.

The focus of this workshop was on methods, frameworks and approaches
for the design of service-oriented applications, and the workshop provided a
forum for the discussion of design objectives, methods and guidelines for de-
veloping Web Services applications. Workshop discussion included other related
topics such as design of industry-domain Web Services, design of Web Services
for enterprise application integration, and methods for transforming existing
component-based applications for SOA deployment.

The aim of the workshop was to bring together researchers and industry ex-
perts and provide a forum for exchange of ideas about design of Web Services
and related issues. We have received paper submissions with topics including
the architecture and design of service-oriented applications, engineering seman-
tic services, designing reusable services, Web Service conflict management, and
service discovery. All submitted papers were reviewed by three reviewers, and
ten papers were selected for workshop presentations based on originality, rele-
vance to the workshop topics, and overall quality. We thank the authors for their
contribution to the workshop.

We thank all of the members of the Program Committee who were instru-
mental in ensuring the quality of the WDSOA’05 workshop, the organizers of the
ICSOC conference and workshops, in particular Mike Papazoglou, Frank Ley-
mann, and Winfried Lamersdorf for their help in planning and organizing the
workshop. Special thanks to Christian Zirpins for his assistance with preparing
the proceedings and collaboration in organizing the workshop, and Paco Curbera
for his support in publishing the proceedings.

November 2005 Jen-Yao Chung
George Feuerlicht

Jim Webber

Organization

Workshop Chairs

Jen-Yao Chung, IBM T.J. Watson Research, USA
jychung@us.ibm.com

George Feuerlicht, University of Technology, Sydney, Australia
jiri@it.uts.edu.au

Jim Webber, ThoughtWorks, Australia
jwebber@thoughtworks.com

Program Commitee

Andrew Blair, Biz Integration, Australia
Djamal Benslimane, LIRIS, France
Mark Cameron, CSIRO ICT Centre, Australia
Jen-Yao Chung, IBM T.J. Watson Research, USA
George Feuerlicht, University of Technology, Sydney, Australia
Ian Gorton, UNSW, NICTA, Australia
Paul Greenfield, CSIRO, Australia
Roy Grnmo, SINTEF ICT, Norway
Mark Little, Arjuna, USA
Mike Papazoglou, Tilburg University, The Netherlands
Savas Parastatidis, Microsoft, USA
Jiri Vorisek, VSE, Czech Republic
Jim Webber, ThoughtWorks, Australia
Andreas Wombacher, University of Twente, The Netherlands
Christian Zirpins, University of Hamburg, Germany

Table of Contents

SOA and the Future of Application Development . 1
Bill Eidson, Jonathan Maron, Greg Pavlik, Rajesh Raheja

Describing the Architecture of Service-Oriented Systems 9
Vojislav Misic, Michael Rennie

Bridging the Gap between Business Processes and existing IT Functionality 17
Gero Decker

Designing Reusable Services: An Experiential Perspective for the
Securities Trading Domain . 25
Abdelkarim Erradi, Naveen Kulkarni, Sriram Anand, Srinivas
Padmanabhuni

Towards Style-Oriented SOA Design . 33
Chen Wu, Elizabeth Chang, Vidyasagar Potdar

Application of Data Engineering Techniques to Design of Message
Structures for Web Services . 43
George Feuerlicht

A Consensus-Based Service Discovery . 53
Chun-Lung Huang, Ping Wang, Kuo-Ming Chao, Chi-Chun Lo,
Jen-Yao Chung

Specifying Reference Styles for Service Orchestration and Composition . . . 61
Karim Guennoun, Khalil Drira

Web Service Conflict Management . 69
Zheng Lu, Shiyan Li, Aditya K. Ghose

An Engineering Method for Semantic Service Applications 79
Guido Laures, Harald Meyer, Martin Breest

Author Index . 87

SOA and the Future of Application Development

Bill Eidson, Jonathan Maron, Greg Pavlik, Rajesh Raheja

Oracle Corporation
224 Strawbridge Drive, Suite 300

Moorestown, NJ 08057
[jonathan.maron, greg.pavlik, rajesh.raheja, bill.eidson]@oracle.com

Abstract. Service Oriented Architectures (SOAs) signal a shift not only in the external facing
aspects of application design, but also in the development of applications themselves. Most
importantly, the network interface of business functions in SOA is structured at a higher level of
abstraction than traditional distributed systems, focusing on the exchange of self-describing XML
documents. These documents are often manifestations of canonical business events that are
meaningful to higher-level business analysts. Utilization of these high-level constructs allows new
services to be composed readily using technologies like Business Process Execution Language
(BPEL), Enterprise Service Bus tools, and other XML-based technologies. With BPEL, for
example, information exchange between business systems is often reducible to simple XML
translations or transformations mediated by a process engine. Traditional systems programming is
often relegated to the implementation of adaptor technology to interface with existing systems. We
argue that this represents a serious evolution in the development of IT business solutions.

1 Characteristics of Traditional Distributed Programming

Traditional distributed application development approaches are primarily focused on low-
level programming constructs such as sockets or programmatic support of object models
as seen in CORBA, EJB, or DCOM. These approaches have a number of drawbacks. For
example, socket programming is widely recognized as extremely low-level and error-
prone [1]. Most business solutions delegate the management of network interfaces and
message construction to middleware frameworks. The 90s were dominated by systems
that used the object modeling paradigm for distributed systems.
Distributed object systems like CORBA or Java Remote Methods Invocation (RMI) are

based on the idea of distribution transparency and provide a relatively simple approach to
programming that models method invocation on an object without exposing whether the
object is collocated in the same address space or distributed across the network. [2,3]
Although distributed object models make the development of distributed systems simpler
in comparison to developing custom message-over-sockets code, these systems still
require application developers to expend a great deal of effort managing low-level system

constructs such as object lifecycle, fault tolerance, load balancing, security and
transactions. In addition, developers are forced to struggle with the following problems:

1. Fault tolerance in distributed object systems is extremely challenging to manage. For
example, failure modes are difficult to determine and object references are typically
bound to a specific address space [4]. While many applications were built with
distributed objects, the technology proved to be difficult to use as a basis for highly
available systems without very specialized knowledge and experience. CORBA
systems, for example, never successfully established a robust fault tolerance standard.

2. Object modeling tends to introduce a high degree of coupling in programs. With
distributed objects, the coupling between clients and servers makes it difficult to think
of participants as autonomous services, since the client must assume detailed
knowledge of object interfaces and implementation details like lifecycle.

3. Because messages are passed as opaque encodings of programming language structures
or native objects, it is difficult to effectively audit or process messages using
intermediaries.

4. As a client-server model, distributed object systems do not offer an end-to-end message
processing model, making distributed object systems less than ideal for structuring
long-running business processes that execute over many systems.

Post-CORBA distributed object systems such as EJB address some of the issues in
distributed object programming by providing containers that manage object lifecycle and
system services. The EJB model, for example, manages object pooling, threading,
security, distribution and transactions in the container to which the EJB is deployed. Many
of these services are configured via XML deployment descriptors, though the application
logic remains cognizant of the implications of the behavior managed by the container.
Despite the improved factoring in the EJB model, it suffers from the range of problems

faced by developers using objects as a distribution model. As it is closely associated with
the Java platform -- its invocation interface is based on Java types – EJB also faces
interoperability difficulties. The latest generation of EJB systems is focused on providing
a robust infrastructure for transactional business logic and persistence. EJB 3.0 is
optimized for address-space-constrained Java objects (so-called “POJOs”). [5] This
reorientation reflects the fact that EJBs are most often used as components within Web
applications based on Servlet technologies. As a rule, this architecture does not require
distributed object support.

2 Characteristics of Service Oriented Architectures

Service Oriented Architectures provide a very different model for applications. Rather
than creating distributed applications by projecting object models across address spaces,

2 B. Eidson, J. Maron, G. Pavlik, and R. Raheja

SOA applications create explicit boundaries for business functions, which are offered as
services. A SOA is characterized by:

1. Business functions that are explicitly modeled as networked services. In contrast to
distributed object systems, which emphasize distribution transparency, SOAs assume
that service boundaries must be dealt with explicitly. Middleware can optimize for
collocation scenarios, but a distributed architecture is assumed. This helps to address
many of the problems and ambiguities associated with distributed object systems: in a
SOA, both applications and infrastructure assume that system interoperability must be
addressed explicitly and that network latency and failure may occur when crossing
service boundaries.

2. Application interfaces that describe the exchange of self-describing XML
documents. One immediate consequence of a SOA is an increased level of abstraction
affecting the way in which services and their capabilities are described and consumed.
The emphasis in a SOA is not on programming models; instead it focuses more directly
on the exchange of business information to address specific business functions.
The exchange of messages encoded in XML has several important advantages:

• Services can be built to process platform-independent data structures. This enables
applications to more readily exchange data and build on common data formats.

• XML documents, particularly those conforming to the SOAP processing model, can be
processed by intermediaries without prior knowledge of the XML schema used to
define the business messages. Data-driven functions like content-based routing,
auditing, and security can be implemented within the network. This is already widely
supported by Web services management products.

• Both partial processing and transformation of data can be supported using readily
available XML tools. Backward-compatible evolution of XML schemas for business
documents also provides additional resiliency as services evolve independently.

3. Well-understood meaning for messages based on canonical business documents or
events. With well-understood message definitions, services can more readily be
integrated since they are designed to share a common information model. Legacy
systems or pre-existing services can be integrated by translating from a canonical
business message to a service specific message format. To further reduce coupling
between systems, event driven capabilities are being introduced as a complement to
SOA. Event-based service integration relies on a publish and subscribe mechanism to
send the same message to multiple services for processing in parallel. A business event
is defined by a canonical business document.

4. Coarse-grained business functions that provide a specific service in isolation from
orthogonal business functions. Providing services with a well-defined and limited
scope maximizes the reusability of services in new applications and processes. Because
services tend to offer singular functionality, they are often implemented as stateless
entities. One way to visualize a service is as a building block for more complex
business applications. The SOA properties that we describe in this section are intended
to complement this aspect of a service.

SOA and the Future of Application Development 3

5. Robustness of applications is increased by leveraging the ubiquitous protocols of
the Web. For example, service endpoints can be identified by URLs and SOAP is most
commonly sent over the HTTP protocol. These characteristics provide several
important advantages for SOAs. First, URLs are more easily redirected as
infrastructure evolves because DNS is able to act as a universal directory. Second, Web
protocols are better suited to support horizontal scalability for business functions and
effective redirection and caching capabilities. Because SOAs are designed to provide
flexibility in the carrier protocol for XML or SOAP messages, they are able to provide
optimized channels for message distribution. For example, an XML business event can
be sent over JMS for intranet subscribers and directly over HTTP to consuming
applications in another network domain.

3 Impacts on Application Development

While SOAs offer a new paradigm for building applications, there are two key areas in
which traditional systems development is still required: primitive business functions and
adapter technology. New methods of service development will be used to build composite
and interconnected services. We explore these three service types and how they relate in a
SOA in this section

3.1 Primitive business functions

Middleware is normally used to expose business logic in a distributed environment.
Because middleware manages many of the low level details of systems programming,
business developers are free to focus on the function of their business service and the data
it uses rather than issues related to network connectivity, transactions, etc. Development
technologies such as EJB provide good technology support at the container level, but only
provide developers an empty canvas. Lack of structure results in proliferation of non-
uniform service definitions and additional effort in testing and certification throughout the
development lifecycle.
We believe that developers of low-level distributed service components will benefit

from frameworks that provide additional structure for service design. The important
structuring aspects for service development are:

1. Consistent programmatic interfaces so that multiple business functions can operate in a
homogenous fashion. Ideally, business services in this scenario will be implemented
based on a-priori knowledge of the business documents that it will exchange. Standards
such as Service Data Objects (SDO) are being designed to support this approach.

4 B. Eidson, J. Maron, G. Pavlik, and R. Raheja

2. Built-in support for common design patterns such as factories are needed so that
extensibility support is available to easily modify services in the face of changing
requirements. We expect that a development framework will provide automated
dependency resolution or so-called Dependency Injection.

3. We also strongly subscribe to the notion of tagging extensive metadata to the business
functions. This should be supported via programming language annotations and XML
configuration. This combination both simplifies development and leads to more
flexibility in the solution, particularly if protocol bindings and policies are maintained
independently from business logic. Metadata describing services and their capabilities
can also be published to a central repository and queried with taxonomies that can be
understood by business analysts.

The Service Component Architecture (SCA) is a framework jointly defined by BEA,
IBM and Oracle that provides these capabilities for developers working in a SOA
environment. SCA is described in detail in [6]. We believe frameworks of this nature will
be increasingly important for implementing basic building block services.

3.2 Adapter technology

Traditional systems programming also plays a significant role in providing the code to
link the service layer to legacy systems. The specific techniques for integrating a legacy
business function into a SOA will vary based on environment. Some systems will require
custom adapters; development of custom adapters often requires detailed knowledge of
both the legacy system and the middleware functions of the system hosting the adapter.
The Java Connector Architecture[7] is an example of an adapter framework that can be
used for building adapters to connect back end systems into a SOA.
In many cases, adapters for legacy systems and enterprise applications are provided as

packaged solutions by middleware vendors. In this case, bridging into a SOA may be as
simple as applying transformations on the XML generated by the backend system into a
business event defined for the SOA.
This combination of adapters and XML processing is useful for either creating new

services on modern application server platforms or accessing business functions in legacy
systems. They serve to expose existing business functions as services. Once these basic
services have been defined, SOAs can be leveraged to compose new business functions by
rapidly combining existing services into composite services.

3.3 Composite Services

The most significant change in development occurs in the way in which composite
services are created and connected. Once the building blocks for a SOA are established
within an IT organization, composite services will be the normal model for developing

SOA and the Future of Application Development 5

new business functions or processes. As a rule, composite services will not be created in
traditional programming languages. The foundational technology for implementing
composite service development is the Business Process Execution Language [8], an
orchestration language for combining XML messages from a SOA into new business
processes.
The BPEL standard provides the following features:

1. Composite services are modeled as business flows. These new business processes are
themselves simply exposed as Web services available within the SOA

2. Business interactions are driven by the exchange of XML business documents. BPEL
process definitions themselves rely on XML as the basis of a process’s data model.

3. Data exchange and process flow is defined primarily by reference to content in the
XML business documents consumed by the process. Simple data referencing
mechanisms like XPath are exploited for extracting data fragments used in decision
trees.

4. Asynchronous interactions are enabled by the underlying process engine, which
manages message correlation and process state. The inherently complex programming
required to manage long-running business processes and data exchange is eliminated
by the use of the BPEL engine.

Although an extensive examination of the BPEL syntax is beyond the scope of this paper,
some of the most relevant constructs to this discussion include:

1. The <scope> element allows for the definition of a reversible unit of work. This
allows for the definition of data variables as well as the specification of error handling
and compensation handlers for the work performed within the given scope.

2. The <flow> parallel control construct allows multiple services to be invoked
concurrently. There is no development effort required to handle the threading and
asynchrony issues a concurrent invocation required in the past.

3. The <receive> element provides a facility for blocking while waiting for the
matching message to arrive; the developer is not required to model the network
message exchanges. The BPEL process manager further allows for the correlation of
the responses once they are received; the processing within the scope of the <flow>
element is not completed till all responses are received.

4. The <sequence> element allows for the ordered processing of the nested activities
(service invocations, message receipts, etc.). Such standard control flow and
branching activities are available to explicitly script the logic driven by the exchange of
business documents as the process progresses.

5. The <assign> element uses XPath to copy fragments of XML between documents.

Many BPEL engines allow extension points to apply transformations via XSLT or other
XML manipulation techniques.

6 B. Eidson, J. Maron, G. Pavlik, and R. Raheja

BPEL provides a straightforward syntax for implementing concurrency, state
management and control flow that is difficult to model in system programming languages
like Java and C.

Fig. 1. Composite Services

3.4 Connecting Services

Concrete relationships are established by binding entities during the deployment of
services into a SOA. In many cases, the coupling between services is reduced by using
intermediaries as message routing agents. Canonical business documents at the core of a
BPEL process are critical to allowing easy data exchange: if the same data structures are
shared by many services, multiple services can more readily produce and consume shared
information formats. These standard formats also enable event-driven relationships in
which business events of interest, described by canonical message definitions, will be
propagated to many services simultaneously for processing. The services within the
application expose a number of business events that are raised at significant moments in
the applications. For example, the application’s customer module raises a new-customer
business event whenever a new customer record is created. Other application modules
can then add custom routing rules to the business event, without needing to modify the
customer module itself. A routing rule can be used to invoke any service, including
initiating a BPEL business processes. Similar to how modules within an application
integrate through business events, routing rules can also be added for integration with
external applications. These rules can transform and route the message to an external
Web service, or to a service implemented by a legacy system adapter.

SOA and the Future of Application Development 7

In the Oracle ESB, for example, an event source initiates a routing service to deliver
the document to its appropriate destination, regardless of the network protocol. The
difference in document formats from the canonical business event to the destination can
be a simple XML transformation in certain A2A cases, or can be a complex long-lived
business process in certain B2B standards, such as RosettaNet. Changing business
requirements - such as the outsourcing of a given service - can be achieved by altering the
routing service to replace a simple XSL transformation service with a BPEL-based service
that satisfies the new business requirement.
This has important implications for interconnected services. Traditional application

development methodologies could not adapt to changing business requirements due to the
tightly coupled way in which the business services were woven into the system. By
utilizing XML messaging on top of a flexible integration fabric, SOAs provide a basis for
resiliency in distributed systems.

4 Conclusion

SOAs modularize business services and focus development efforts on the exchange of
business information required to support those functions. The increased level of
abstraction in a SOA provides enormous benefits to IT organizations: new services are
simpler to develop, new automated business processes can be deployed as services, and
those processes are amenable to change. We believe these benefits are best achieved by
providing programming models and infrastructure frameworks that provide inherent
support for SOA enablement and management.

References

1. Schmidt, Douglas C, Vinoski, Steve: Object Interconnections – Introduction to Distributed
Object Computing, SIGS, Vol. 7 Number 1, January 1995

2. OMG, Common Object Request Broker Architecture: Core Specification, Version 3.0.3, March
2004

3. Sun Microsystems Inc.: Java Remote Method Invocation (RMI) Specification 1.5, 2004
4. Waldo, Jim, Wyant, Geoff, Wollrath, Ann, Kendall, Sam: A Note on Distributed Computing,
November 1994

5. Sun Microsystems Inc.: JSR 220: Enterprise JavaBeans, Version 3.0, EJB Core Contracts and
Requirements, June 25, 2005

6. Service Component Architecture: Building Systems using Service Oriented Architecture, A
Joint Whitepaper by BEA, IBM, and Oracle, November 2005.

7. Sun Microsystems Inc.: J2EE Connector Architecture Specification, Version 1.5, Final Release,
November 2003

8. Thatte, Satish (Ed.): Business Process Execution Language For Web Services, Version 1.1, May
5, 2003

8 B. Eidson, J. Maron, G. Pavlik, and R. Raheja

Describing the Architecture of Service-Oriented Systems

Vojislav B. Mišić and Michael W. Rennie

Department of Computer Science
University of Manitoba, Winnipeg, Manitoba, Canada

vmisic@cs.umanitoba.ca

Abstract. Effective design and implementation of service-based systems requires
proper methodology and tool support at all levels. At the architectural level, such
support includes a suitable architecture description language (ADL), an example
of which is described in this paper. A prototype implementation of the proposed
ADL generates Java code skeletons which can be used to build Jini-compliant
applications.

1 Introduction

The service-based computing paradigm is rapidly gaining acceptance as a viable option
for the creation of modern software systems. The service-based paradigm is a flexible
approach in which software entities are distinguished through the services they provide.
In this manner, software systems may be dynamically configured as a loosely coupled
association of entities, some (or most) of which are loaded on demand and unloaded
when their services are not needed.

However, advances in several areas are needed before the service-based paradigm
can find wider use for mission-critical industry applications. One of the areas in which
such advances are needed is the infrastructure to support the basic operations of the
service-based paradigm – e.g., along the lines of [1]. Another one is software architec-
ture [2] which has to make use of the service-based paradigm right from the start, rather
than applying it later as an afterthought. An important step towards that goal is the de-
velopment of service-oriented architectural description languages (ADLs), a number of
which have been proposed in the last decade [3]. Unfortunately, most of the existing
languages have focused on the problems related to static architectures, while the (much
more interesting) issues related to dynamism were not as popular. In fact, only a handful
of architecture description languages provide support for dynamism, and no language
that we know of deals specifically with the requirements of the service-based comput-
ing paradigm. The lack of a suitable ADL presents an impediment to further develop-
ment and wider acceptance of service-based systems and applications. To address this
lack, we propose a small XML-compliant language, named SeAL (for Service-oriented
Architecture description Language). We also outline a tool to create and validate spec-
ifications written in this language and to subsequently generate the skeleton code to
implement them, and present some findings from a prototype implementation of such
tool.

The paper is organized as follows. In Section 2 we briefly review major concepts of
service-based design. Section 3 gives an outline of SeAL, while some notes regarding
the prototype tool are given in Section 4. Finally, Section 5 concludes the paper.

2 Main concepts of service-based design

In component-based systems, components are the bricks from which systems are built:
they are units of packaging as well as units of deployment. A component provides or
implements some services for others to use; in order to do that, it requires other services
which are provided by other components. Services exist but act merely as plugs and
receptacles through which the components interconnect and subsequently interoperate.

Service-based systems are built upon the concept of services as first class entities,
which then interoperate to form a dynamic and evolving system. The connections are
formed only when needed, they exist only while the interaction takes place, and they
can be destroyed afterward. Components are still needed, but only to provide convenient
packaging for the services.

This approach has a nuumber of distinct advantages [4]. Alternate service imple-
mentations can be substituted as long as they implement the same externally observable
behavior. An explicit request for a particular service may be deferred until the most
suitable provider is found, and the selection criteria may vay from one invocation to
another. Interactions may take place locally or remotely, as the location of the service
provider may be irrelevant to the client. (Of course, local services may be preferred
on account of performance, security, or other properties.) In either case, services inter-
act through a series of asynchronous messages exchanged between the client and the
service provider. resulting in a true message passing paradigm.

As mentioned above, service interactions necessitate the presence of an infrastruc-
ture capable of managing them, either as part of the original client application or inde-
pendently of it. Such an infrastructure may be embedded in the operating system and
thus made available to all the applications, or it may be made to run as part of the actual
application. (The choice, of course, depends on the facilities offered by the operating
system.) A number of such frameworks currently exist, most notably Web Services [5],
which are rapidly increasing in popularity despite the fact that they support remote ser-
vice invocation only.

3 The SeAL language

Let us now present the main tenets of the SeAL language, with comments as appropri-
ate.
Architectures. A service-based system is described through a series of architectures,
which can contain other, nested architectures which may optionally be defined. Archi-
tectures can thus be reused when needed, which provides a high level of flexibility.

Specification :== Architecture+

Architecture :== Openness "architecture" name "is"
"starting-with" Service
["contains" Service]*
["includes" Architecture]*
"end-architecture"

10 V. Misic, and M. Rennie

Openness :== "open" | "closed"

In case of nested architectures, services from a higher-level architectures have ac-
cess to all the services from the lower level ones. On the other hand, services from a
lower level architecture can access services from the higher level one if and only if
(a) the lower level architecture is not declared closed, and (b) such services are explic-
itly designated as shareable, in the manner that will be outlined below. This provision
may seem as a violation of the principle of information hiding, but it actually facil-
itates reuse, as an architecture can reference other architectures which are specified
elsewhere, whilst information hiding is supported at the service level, similar to most
object-oriented programming systems.

Each architecture definition must include the definition of a starting service – the
service which is to be run when the implementation of the architecture is executed.
Other services within the architecture may be loaded at the same time or later, depend-
ing on the service definitions and available resources, as will be seen below.
Services. Each service within an architecture may optionally be provided (i.e., imple-
mented) by one or more software components. If a service is declared as external, its
implementation resides outside of the architecture, as in the case of Web Services, and
no implementing component can be specified. Specifications of non-external services
may include the implementing component.

Most services are accessible globally, which means that other services, both within
the architecture and outside of it, can access them. (Global accessibility is the default.)
If the service accessibility is defined as local, only the services within the same archi-
tecture can access it. Accessibility is thus an implementation of the principle of infor-
mation hiding.

Service :== Accessibility "service" name "is"
[["external"] | ["provided-by" Component]]
["provides" ServiceMsg]+
"end-service"

Accessibility :== "local" | "global"

Components. A component is a packaging unit with which is used to physically imple-
ment services. An important property—from the architectural viewpoint—is the com-
ponent’s availability. A private component provides its services to clients within the
same architecture only; such services are always local. A protected component is ac-
cessible to services residing outside of the architecture; however, any interaction must
be performed through message exchanges only (again, think of Web Services); services
provided by a protected component may be either local or global. Finally, a public com-
ponent may have its executable image (e.g., a Java .jar file or equivalent) available to be
transferred to the remote host for execution.

Component :== Availability "component" name
"end-component"

Availability :== "private" | "public" | "protected"

Describing the Architecture of Service-Oriented Systems 11

Access restrictions imposed by the components are mapped onto services. In this
manner, a service can have different implementations, some of which are global while
the others are protected, and possibly some that are local as well. Note that other ser-
vices within the same architecture will be able to access all of those services.

The default accessibility level is public; protected takes precedence over public, and
private takes precedence over either of them; this model is similar to the one adopted in
Java. Since the same service provider component may provide more than one service,
the access restrictions specified within the defitinions of those services may differ. In
this case, the most restrictive qualifier will be used, eliminating inconsistencies from
the processing of architecture definitions.

Note that the outward extension of an architecture depends entirely on the service
provider definitions, whereas the inward extension depends on the architecture itself.
In other words, an architecture is free to ‘close’ itself by declaring that it will not seek
help from others. Irrespective of the extendibility setting, individual services may be
accessible (and their provider components may be available) to the outside world.

It is important to note that a component defined as public does not mean that ser-
vices it implements are mobile; they are only movable. In other words, it can be sent
between clients and executed on it; but it can’t be suspended in mid-execution and then
transferred to another client in order to resume execution. (Extensions of the SeAL
language to support such behavior are the topic of our current work.)
Service Messages. Each service is invoked via a specified message. The first part of
the message specifies functional information such as the service name and a list of pa-
rameters in parentheses; this is rather similar to method signatures. The other, optional
parts specify quality of service (QoS) promises as well as the required preconditions.
Each QoS promise consists of a property and the associated value; this information
may be used to guide the process of service selection. However, in order to fulfill those
promises, a component may require certain preconditions to hold.

Two main types of preconditions can be readily identified: resource requirements
and service requirements. Resource requirements are analogous to the QoS promises,
except that they spell out what are the properties of the operational environment that
the client must provide in order for QoS guarantees to be met: for example, available
memory, CPU speed, specific version of the operating system, and the like.

ServiceMsg :== name "(" ParameterList ")
["with" QoSGuarantee]+
["at" ResourceReq]*
["requiring" RequiredServ]*

ParameterList :== [Datatype [", " Datatype]*]

QoSGuarantee :== Property "of" Value

ResourceReq :== Resource "of" Value

These definitions facilitate the use of a QoS specification protocol similar to those
proposed for Web Services, such as the WSOL [6]. Additionally, a shared QoS ontology

12 V. Misic, and M. Rennie

along the lines of [7] could be defined so as to ensure compatibility among different
specifications.

Service requirements, on the other hand, identify a number of other services that
are, or may be, needed in order to fulfill the obligations. Furthermore, certain QoS
requirements may be specified for those services as well.

RequiredServ :== Location Immediacy name
["(" ParameterList ")"]
["with" QoSGuarantee]+

Location :== "local" | "remote"

Immediacy :== "immediate" | "optional"

This kind of dependency may be limited to services available locally, i.e., those
defined within the architecture as well as those downloaded from other architectures;
the default option is to include all services, local and remote ones. If a required service
is labeled immediate, it must be made available prior to execution by whatever means
available. If it is optional, its acquisition may be deferred because the component is
willing to wait for it when needed, or might not even need it at all.

The facilities described above provides an additional selection criterion that allows
for finer control of system execution and, consequently, performance. Note that any sin-
gle service can be provided by more than one component; the QoS guarantees provided
by those components may differ, as may be the case with the required preconditions.
Thus some clients in need of a service may opt for best performance regardless of its
extended requirements, while the more cost-conscious clients may prefer to get service
that require fewer or less additional resources.

The infrastructure that manages the architecture will initially load the starting ser-
vice, as well as its immediate required services (subject to resource limitations, of
course); optional services will be loaded when they are actually invoked.

Finally, we note that the list of required services is an optional part of the SeAL
language, limited to the definitions of local services – if a service is accessed via a
remote host, no guarantees can be given as to the services it may require.

4 The implementation

For the implementation of the SeAL language, we have chosen to employ an XML
compliant notation. In this manner, we can leverage all the benefits offered by XML,
most notably platform independence, ease of processing (as XML parsers are readily
available), and simple validation (provided a validating parser is used). To that end,
the grammar described above has been mapped to aan XML Schema, which (as is well
known) offer better expresiveness and better control over document content than a com-
parable DTD. A simple example is given below.

<architecture documentation="" id="a6"
name="Louvre" openness="closed">

Describing the Architecture of Service-Oriented Systems 13

<starting-with>
<service accessibility="global" documentation=""
external="false" id="s5"
name="Greek" provided-by-component="c0 ">
<component availability="protected" documentation=""
id="c0" name="Athens" provides-service="s5 "/>
<service-message documentation="" id="sm1"
name="welcome">
<parameter-list documentation="" id="pl2"
name="Parameters">
<parameter documentation="" id="p18"
name="fromWho" value="String"/>
<parameter documentation="" id="p19"
name="toWhom" value="String"/>

</parameter-list>
<qos-guarantee documentation="" id="q20"
name="loudness" value="100"/>
<required-resource documentation="" id="rr21"
name="silence" value="50"/>

</service-message>
...

</starting-with>
...
</architecture>

The next step in implementing SeAL was to build a prototype tool for editing, val-
idating, and code generation; the tool was implemented in Java. A screenshot of the
tool’s main window is shown in Fig. 1.

As for the code generation, we did consider the possibility of creating the Web
Service skeletons; however, this would limit the architecture to external services only.
Because of that, we have focuse on the Jini framework [8]. While Jini is not the most
recent development, the facilities it offers match the constructs in the SeAL language
rather well. For example, the generated source code is grouped into packages based
on the architectures specified: each architecture is contained within its own package,
which allows us to enforce the openness restrictions. Availability and accessibility can
be supported as well, as all of the sub-elements of an architecture in the design are
constituents of the corresponding package. Finally, the latest version of the framework
does offer the possibility to create Web Services-compatible packages as well.

At present, the source code generated by the tool is not editable from within the
tool; however, given the multitude of excellent support tools available, this was not
considered as a high priority task. All source that is created is fully Java compliant and
provides javadoc recognizable commenting of classes, interfaces and methods.

14 V. Misic, and M. Rennie

Fig. 1. A screen shot of the prototype editing and validation tool.

5 Still much to be done

Of course, the work reported here is but the beginning, and much remains to be done.
We are currently working in two directions. First, we are considering building a runtime
environment for testing the specification in a live setting. Speaking of interoperability,
we could make use of one of several available component-centric evironments, such
as those baed on the OSGI [9] technology and its successor, Web Services Resource
Framework [10]. Code generation could also be improved, and the tool could perhaps
be redesigned as an Eclipse [11] plugin.

Second, we are considering migration to a different development tool, most notably
ArchStudio 3 [12]; this would also mean that SeAL would have to be modified to be-
come compatible with the xADL 2.0 extensible architecture description language [13].

Moreover, we are looking into the methodologies to specify and design the archi-
tecture of service-based systems. Regardless of the current (relative) simplicity of this
project, we believe that it offers a promising proof that the design of service-based ap-
plications can be undertaken with ease, and that the service-centric way of looking at
applications is indeed the way future software applications will be designed and built.

Describing the Architecture of Service-Oriented Systems 15

References

1. Maximilien, E., Singh, M.: A Framework and Ontology for Dynamic Web Services Selec-
tion. IEEE Internet Computing 8 (2004) 84–93

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. 2nd edn. The SEI
Series in Software Engineering. Addison-Wesley, Reading, MA (2002)

3. Medvidovic, N., Taylor, R.: A Classification and Comparison Framework for Software Ar-
chitecture Description Languages. IEEE Transactions on Software Engineering 26 (2000)
70–93

4. Singh, M.P., Huhns, M.N.: Service-Oriented Computing: Semantics, Processes, Agents.
John Wiley & Sons, New York, NY (2005)

5. Fletcher, P., Waterhouse, M., eds.: Web Services Business Strategies and Architectures.
Expert Press, Chicago, IL (2002)

6. Tosic, V., Ma, W., Pagurek, B., Esfandiari, B.: Web Service Offerings Infrastructure – A
Management Infrastructure for XML Web Services. In: Proceedings IEEE/IFIP Network
Operations and Management Symposium. Volume 1., Seoul, Korea (2004) 817–830

7. Ankolenkar, A., Burstein, M., Hobbs, J., Lassila, O., Martin, D., McDermott, D., McIlraith,
S., Narayanan, S., Paolucci, M., Payne, T., Sycara, K.: DAML-S: Web Service Description
for the Semantic Web. In: Proceedings of the First International Semantic Web Conference,
Sardinia ,Italy (2002)

8. Sun Microsystems, Inc.: Jini Network Technology. http://www.sun.com/software/jini (2004)
9. OSGi Alliance: Open Services Gateway Initiative. available at http://www.osgi.org/

(accessed on 10 November 2005)
10. Web Service Resource 1.2 (WS Resource). Public Review Draft 02, OASIS Open, available

at http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsrf
(accessed on 06 October 2005)

11. IBM: The Eclipse Project. http://www.Eclipse.org (2004)
12. ArchStudio 3 Software Architecture-Based Development Environment. Institute

for Software Research, University of California, Irvine, Irvine, CA, available at
http://www.isr.uci.edu/projects/archstudio/ (accessed on 10 November
2005)

13. xADL 2.0 Highly-extensible Architecture Description Language for Software and Sys-
tems. Institute for Software Research, University of California, Irvine, Irvine, CA, available
at http://www.isr.uci.edu/projects/xarchuci/ (accessed on 10 November
2005)

16 V. Misic, and M. Rennie

Bridging the Gap between Business Processes
and existing IT Functionality

Gero Decker

Hasso-Plattner-Institute for Software Systems Engineering at the University of
Potsdam, Germany

Prof.-Dr.-Helmert-Strasse 2-3, 14482 Potsdam, Germany
gero.decker@hpi.uni-potsdam.de

Abstract. Transforming business processes into IT supported processes
can be very challenging. The functionality exposed by existing infor-
mation systems often does not match the tasks defined in the business
process model. Reasons are inappropriate granularity, unsuitable inter-
action models, and complex interdependency inside the enterprise infor-
mation systems.

This paper examines existing solutions for retrieving IT supported processes.
We then present a list of incompatibilities between business process mod-
els and existing IT functionality.

We propose patterns for introducing a process support layer that solves
some of the incompatibilities. The effectiveness of this approach is shown
by applying it to a real-world example.

1 Introduction

A clear trend towards process orientation can be observed in software technology.
Business processes move into the center of attention. But how can we use the
already existing enterprise information systems for enacting business processes?
How much work has to be done to bring a process model and the existing func-
tionality together?

Closely supporting business processes within a company and between busi-
ness partners is one of the main purposes of service-oriented architectures (SOA).
As described in [1] we distinguish between three elements within a SOA: Service
providers, service requesters, and a service broker. Providers publish their ser-
vices to the broker. Requesters can use the broker to find desired services. After
having bound to a service, the requester can finally use the service.

There exist a lot of different definitions for the term “service” e.g. in [2], [3],
and [4]. In order to avoid ambiguity we will focus on services that either realize
intra-enterprise business processes or provide access to functionality of a cer-
tain application domain. In [4] these types of services are called process-centric
services and basic services, respectively. Furthermore, we will only focus on ser-
vices that are technically realized as web services. According to the terminology
introduced in [5] we will talk about service operations that can be invoked. In

2

addition, we will distinguish between stateless and stateful services. While state-
less services do not preserve conversational state between operation invocations,
stateful services do so. However, using a stateless service can affect the state of
an underlying system.

When applying typical engineering process models like the Rational Unified
Process [6] to the development of a SOA we would first perform a business
analysis. This leads to a business process model containing a set of (business)
tasks, a description of the control flow, and a high level definition for the data
flow between the tasks. We then want to automate the enactment of the business
processes according to the given model. An elegant way to realize this is proposed
in [4] where we employ a business process management system (BPMS). We
have to tell the BPMS which functionality of the enterprise information systems
is to be used for performing the individual tasks. Therefore, we take our task
specifications and try to match each task to a service registered in the broker.

Since we have carried out the business analysis without having in mind what
services are actually available, we will probably run into incompatibilities be-
tween the existing services and our tasks. For instance the granularity of the
tasks could be different from what is offered by the systems: We could have
modeled a business task “source material” while we can only use service op-
erations such as “source material from stock”, “select supplier”, and “source
material from supplier”.

Existing solutions for these incompatibility problems will be discussed in the
next section, before we suggest introducing a process support layer in section
3. An insight into different patterns for this layer is provided in sections 4 and
5. Some of these patterns are applied to a real-world example taken from [8] in
section 6. Finally a conclusion and outlook will be given.

2 Existing approaches

As we have already said, tasks within a business process model can often not
directly be mapped to existing services. The effectiveness of approaches for solv-
ing these incompatibilities can be measured by the solution’s initial costs, the
costs of changes in the business process model (maintenance costs), the degree
of modification of the model, and the number of solvable incompatibilities.

Approach 1: Changing the business process model. Changing a busi-
ness process model for implementation reasons is generally not desirable. When
changing the model we might run into the problem that the business analysts
and managers do not understand the resulting model any longer. They might
not recognize how their business’ individuality is reflected within the resulting
model. Another problem of this approach occurs when a redesign of the business
processes is necessary because of changing business requirements or strategies

18 G. Decker

3

later on. Then we probably run into incompatibilities once again, which in turn
forces us to change this new model.

Some ERP system vendors go one step further: They propose that a busi-
ness process model should be designed having in mind what services the system
offers. Thus, a distinction between analysis and realization phase is eliminated.
This forces the business analyst to exactly adopt the terminology and granular-
ity that is predefined by the given systems. However, since older ERP systems
have been forcing companies to use this terminology for a long time now, a lot
of the analysts got used to it.

Approach 2: Changing the information system. This option can some-
times be found in the industry, too. Engineers of ERP system providers have to
be paid for implementing new tailor-made services within the existing systems.
This solution takes time and can be very costly. Maintenance of the business
process model also becomes costly: Every time the model is changed, it is likely
that new tailor-made services are needed in order to avoid the newly arising
incompatibilities.

This approach is only feasible for a company if it carries out a pilot project
where it closely collaborates with the ERP system provider.

Approach 3: Maintaining two different process models. This option
leaves the initial business process model unchanged. However, it has the dis-
advantage that we now have to deal with two different models. They have to
be constantly kept in sync. It is not sufficient to derive the second model once,
but every time the business process model is changed we also have to adapt the
second model.

The strategies proposed in [7] only allow strict functional decomposition for
realizing business process tasks. Henkel et al. [8] propose more transformations
but still only solve a limited number of incompatibilities. Thus, they conclude
that their approach is not sufficient for real-world scenarios.

3 The Process Support Layer

We now propose a fourth option of which we think that is more effective than
the three other ones in some scenarios.

Like in the first option, we directly enact the business processes. However, we
introduce an architectural layer between the BPMS and the existing information
systems. This process support layer copes with the incompatibilities and makes
them transparent to the BPMS. That way, we can leave the business process
model unchanged.

Since every task within the business process model has to be mapped to a
service task we build supporting services that cope with the different incompat-
ibilities and offer exactly the operations we need.

Based on the transformation list provided in [8] and other possible incom-
patibilities, we established a set of patterns that point out solutions to the given

Bridging the Gap between Business Processes and existing IT Functionality 19

4

challenges. We describe how supporting services can internally look like for each
pattern. Hence, a software engineer does not need to reinvent the wheel for each
incompatibility but can consult the patterns to quickly come to a solution.

4 Process Support Layer Patterns

Pattern name Problem Solution

Composition The existing business functions
are too fine-grained.

We introduce a composite service
aggregating the existing functions.

Decomposition The existing business function is
too coarse-grained.

We introduce a stateful service that
calls the existing function as soon as
enough data has been gathered.

Technical
Switch

The business functions offer dif-
ferent technical solutions for the
same task.

We introduce a service that decides
what function is actually called.

Bulk Service The business function processes
only one item at a time while we
need to process several ones.

We introduce a service that per-
forms several calls within a trans-
action.

Blocking
Send/Receive

The existing business function is
asynchronous while we need to
perform a synchronous call.

We introduce a service that per-
forms an asynchronous call and
waits for the corresponding result.

Non-blocking
Send

The existing business function
is synchronous but we want to
perform an asynchronous call.

We introduce a service that per-
forms the call while the business
process can continue.

Non-blocking
Send/Receive

The existing business function
is synchronous but we want
to proceed while the service is
working.

We introduce a service that per-
forms the call while the business
process can continue. The result is
passed to the business process.

Sequentializing The existing business functions
have to be called sequentially
while we want to call them con-
currently.

We introduce a stateful service that
waits for the right operation calls to
be performed and calls the existing
functions in the appropriate order.

Reordering The existing business functions
have to be called in an other or-
der than we want to.

We introduce a stateful service that
calls the existing functions in the
right order as soon as enough data
is available.

Table 1. Process Support Layer Patterns

Granularity is the amount of computation performed by a function. Incom-
patibilities between business process models and existing business functions arise
if the functions’ granularity does not match the business tasks’ granularity. The
patterns named in the first four rows of table 1 help to bridge the gap between
different levels of granularity.

20 G. Decker

5

The patterns for interaction model problems enlisted in the middle part of
table 1 are strongly inspired by the Service Interaction Patterns presented in [11].
The authors categorize possible scenarios of service interaction by the number
of parties involved (bilateral vs. multilateral interactions) and the maximum
number of exchanges (single-transmission vs. multi-transmission interactions).

We have taken a closer look at the bilateral, single-transmission interaction
patterns and we have examined what happens if the two parties involved support
different interaction patterns.

In order to compose different business functions to form a business process
these functions should ideally be independent from each other. However, the
business functions of existing information systems often have to be called in
a specific order. Two incompatibilities can be solved by applying the patterns
named in the last two rows of table 1.

The following section will cover the Decomposition pattern. A more detailed
description of this and the other patterns can be found in [12].

5 Decomposition

Problem: The existing business function is too coarse-grained.
Example: The existing systems offer the business function “check invoice”

while the business process model contains the tasks “check for duplicates” and
“check invoice completeness” and “check invoice/order correspondence”. All the
functionality specified in these three tasks is incorporated in “check invoice”.

Solution: A stateful service that offers all the desired operations is intro-
duced. This service performs one call on the existing business function as soon
as enough data has been gathered.

Fig. 1. Decomposition pattern

Figure 1 shows how an existing business function AB is decomposed into A
and B. This figure uses the business process modeling notation [10].

Applicability: When applying this pattern you have to carefully consider
your data flow. There are examples where the proposed solution does not work.

Imagine introducing a third task C between A and B. As regards the data
flow, A influences C and C influences B. This problem might sometimes be solved

Bridging the Gap between Business Processes and existing IT Functionality 21

6

by calling AB twice. E.g. if both A and B are read-only tasks that do not change
the state of the underlying information system. In other cases it is impossible
to call AB twice. Let us consider the example where A is “generate offers for
customer”, B is “filter offers”, and C is “send offers to customer”. This case can
neither be solved by applying Decomposition described above nor by calling the
business function twice.

6 Example Case

In [8] we can find a simplified real-world business process model. In this model
an order is issued by the customer. The order is then confirmed, before it is
processed and the shipment is planned. Finally the shipment advice is sent to
the customer. Figure 2 illustrates this process.

Fig. 2. Business process model from [8]

The following restrictions are imposed by the existing services:

1. An existing service triggers both logistics planning and order processing.
2. A notification is returned after this asynchronous service operation has com-

pleted its work.
3. An order confirmation can be sent to the customer as soon as the order is

received by the service.
4. The confirmation is sent as a HTTP message or a FTP file transfer depending

on the customer’s service ability. We assume that for both alternatives a
service is available.

All of these limitations can be tackled by introducing a process support layer.
The supporting services can be designed by using the patterns enlisted above.

Restriction 1 is a granularity problem that can be solved by using Decompo-
sition. Since Decomposition expects sequential calls of the operations we have to
introduce Sequentializing, too. Restriction 2 causes an interaction model incom-
patibility because the task within the business process model implies a synchro-
nous call. Here we apply Blocking Send/Receive. Constraint 3 poses the problem
that the confirm order task can only be executed after the logistics planning and
order processing have been completed. Thus, Reordering is used. Finally, Techni-
cal Switch provides a solution for restriction 4. Figure 3 illustrates the dynamic
structure of our solution where the patterns proposed are employed.

22 G. Decker

7

Fig. 3. Dynamic structure of the supporting services

In [8] it is stated that a lossless realization of the given business process is not
possible because Reordering and Decomposition are not allowed. A refactoring
of the business process model, which we discussed in section 2, is proposed as
the only valid solution.

As we have shown, this unsatisfying suggestion can be overcome by intro-
ducing a process support layer and by applying the patterns.

7 Conclusion and Outlook

We have presented a new approach for solving incompatibilities between busi-
ness process models and existing business functions. As depicted in table 2 our
approach (appr. 4) is more effective than the existing ones in certain scenarios.

Initial
costs

Maintenance
costs

Business model
modification

solvable in-
compatibilities

Appr. 1 medium medium high high

Appr. 2 high high very low high

Appr. 3 medium medium very low medium

Appr. 4 medium medium very low high
Table 2. Comparison between our approach and the existing ones

Bridging the Gap between Business Processes and existing IT Functionality 23

8

We have proposed a number of patterns which help to develop supporting
services and therefore to reduce the realization costs. This pattern list can surely
be extended and more research is needed to identify the most helpful patterns.

We have not discussed impacts of our approach to performance measuring.
Probably the measuring results are jeopardized because we sometimes completely
reorder the tasks in the process support layer. This might also result in strange
behavior when it comes to logging: The order of log entries might not directly
correspond to the business process model any longer, which in turn might have
an impact on the compliance with legal requirements.

Furthermore, we have not addressed the general problems of stateful services.
Since we enact process instances within the supporting services we have to ensure
that these instances terminate. So what do we do if an instance dies?

Some incompatibility problems cannot be solved using our approach. E.g.
there are business functions that affect several application silos. This screws a
clear process design where each task is to affect only one silo. In this case it is
up to the ERP system providers to refactor their products in order to provide
highly reusable business functions. If application silos are separated cleanly and
functions are comprehensibly exposed, faster and more efficient development of
easily maintainable enterprise applications will probably be possible.

References

1. IBM: Web Services architecture overview. (2000) http://www-
128.ibm.com/developerworks/webservices/library/w-ovr/

2. Fremantle, P., Weerawarana, S., Khalaf, R.: Enterprise Services. Communications
of the ACM, ACM Press New York, NY, USA (2002)

3. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration. (2002) cite-
seer.ist.psu.edu/foster02physiology.html

4. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA. Prentice Hall (2004)
5. W3C: Web Services architecture. (2004) http://www.w3.org/TR/ws-arch/
6. Kruchten, P.: The Rational Unified Process: An Introduction, Second Edition.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2000)
7. Dijkman, R. M., Quartel, D. A. C., Ferreira Pires, L., van Sinderen, M. J.: A Rigor-

ous Approach to Relate Enterprise and Computational Viewpoints. In: Proceedings
of the 8th IEEE Enterprise Distributed Object Computing (EDOC) Conference,
Monterey, CA, USA, pp. 187-200 (2004)

8. Henkel, M., Zdravkovic, J., Johannesson, P.: Service-based Processes - Design for
Business and Technology. (2004)

9. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel,
S.: A Pattern Language. Oxford University Press (1977)

10. BPMI: Business Process Modeling Notation (BPMN) Specification, Version 1.0.
(2004) http://www.bpmn.org/Documents/BPMN V1-0 May 3 2004.pdf

11. Barros, A., Dumas, M., ter Hofstede, A.: Service Interaction Patterns: Towards
a Reference Framework for Service-Based Business Process Interconnection. (2005)
http://sky.fit.qut.edu.au/∼dumas/ServiceInteractionPatterns.pdf

12. Decker, G.: Bridging the Gap between Business Processes and existing IT Func-
tionality. (2005) http://myhpi.de/∼gdecker/BridgingTheGap.pdf

24 G. Decker

 Designing Reusable Services: An Experiential

Perspective for the Securities Trading Domain

Abdelkarim Erradi 1, Naveen Kulkarni2, Sriram Anand2, Srinivas Padmanabhuni2

1 School of Computer Science and Engineering
University of New South Wales, Sydney, Australia

aerradi@cse.unsw.edu.au
2 Software Engineering and Technology Labs
Infosys Technologies Ltd, Bangalore, India

{Naveen_Kulkarni, Sriram_Anand, Srinivas_P}@infosys.com

Abstract. Service-oriented Computing (SoC) is an approach for building
distributed systems that deliver application functionality as a set of self-
contained business-aligned services with well-defined and discoverable
interfaces. This paper presents our experiences in designing services for the
securities trading domain. Best practices and lessons learned during this
exercise are also discussed. Further, it discusses a range of techniques and
guidelines for systematically identifying services, designing them and deciding
service granularity.

1. Introduction

The increasing move towards end to end automation of business processes has fuelled
interest in Service-oriented Computing (SoC), which is focused on the integration of
heterogeneous, autonomous software systems with virtualization and “black-box”
reuse as the central theme. SoC decomposes a system in terms of services and focuses
on loosely coupled message based interactions [6], and forces separation of service
interface description, implementation, binding and declarative policies and service
level agreements (SLAs) governing service interactions.

An effective approach for modeling and designing services is crucial for achieving
the full benefits of SoC with the optimal level of service granularity being an
important consideration. In this paper, we present the set of design principles and
processes for identifying, designing and layering services in a repeatable and non-
arbitrary fashion. This has been derived from an elaborate SoC example involving the
Securities Trading domain. The rationale behind design decisions is captured and the
lessons learned are reported. The resulting prototype implementation of the case
study has been accepted for presentation as a demo at ICSOC’05.

The rest of the paper is organized as follows. In Section 2 we provide an overview
of the securities domain focusing on the pain points inherent in this area.
Subsequently, in Section 3 we briefly discuss our suggested service-based
decomposition framework. Section 4 details the suggested service design for our case
study. Section 5 presents the lessons learned and the key service design
considerations. Section 6 briefly discusses related work and reviews their limitations.
The last section concludes the paper and provides some directions for future work.

2. Background and problem area

In this paper, we concentrate on the area of securities trading that relates to the
order capture, processing and fulfillment of equities trading. The captured order
needs to be priced and validated for correctness. Subsequently, the order is sent to an
exchange for fulfillment. The exchange may fulfill the order in batches and send the
acknowledgement back to the order management system. Subsequently, trades must
be allocated to the right order, matched and the information sent to the custodian.
Finally, the funds are transferred and the data is sent to the Depository for
recordkeeping.

The typical issues that are encountered by business and IT groups in existing IT
architectures that enable securities trading processes can be enumerated as below:

Heterogeneous IT portfolio: The typical IT portfolio of large brokerages is
heterogeneous and contains multiple systems that are usually integrated using
proprietary and brittle point to point connections that impact flexibility.

Redundant and overlapping functionality: Most brokerages offer multiple
financial instruments to their customers with business process and IT portfolios for
these business offerings having been developed independently in silos. This leads to a
redundancy in certain processes and IT systems leading to cost overheads and
increased time to market. A specific example may be the use of individual pricing
engines along with individual market data servers for multiple trading instruments.

Inflexible and costly legacy applications portfolio: In many cases, a large chunk
of mission critical functionality resides on legacy systems with high cost of
ownership including costs of maintenance, operation and upgrade of both software
and hardware. Legacy platforms are typically inflexible due to the proliferation of
unstructured code and the lack of documentation of key modules.

In order to address the above mentioned issues, we propose an enterprise level
incorporation of SoC to yield a future-proof SOA. We use a structured architectural
methodology termed as Service Oriented Architecture Framework (SOAF) [2], to
systematically review the architectural pain points and develop an enterprise wide
SOA. The main business drivers for adopting service-orientation for our case-study
are: to accelerate the securities trade processing from T+3 processing towards
Straight Through Processing (STP), and to make the securities trading accessible
from various channels like Web and mobile devices.

3. Service Oriented Decomposition Process

Service-based decomposition is an iterative process for arriving at an optimal
services composition. The aim is to first establish clear and well-defined boundaries
between collaborating systems, followed by reduction of interdependencies and
limiting of interactions to well-defined points. The key tasks in the process include
identification of services along with appropriate layering of services.

As shown in Figure 1, for service identification we advocate a hybrid approach
combining top-down domain decomposition along with bottom-up application
portfolio analysis. This yields a list of candidate services that further need to be
rationalized and consolidated. The top-down analysis of a business may be
decomposed into products, channels, business processes, business activities, use cases
etc. The business activities are often good candidates for business services. For

26 A. Erradi, N. Kulkarni, S. Anand, and S. Padmanabhuni

example, the activity of obtaining a price for a specific security during an equity
trading business process may be a logical candidate service. On the other hand, a
broker could offer equity trading as a product which requires instantiating order
placement and settlement processes, whose activities could be realized by services
harvested from functionalities embedded in existing applications. The harvesting can
be facilitated by reverse-engineering techniques and tools to extract data and control
flow graphs that provide different views of abstraction of operational systems.

Figure 1: Service identification framework

Service identification also covers identifying reusable infrastructure services that
may be leveraged to support business services like security and provisioning services.

Figure 2: Service conceptualization Meta-model

Figure 2 shows a way to guide service based decomposition activities: (1)
identification of candidate services representing communication points between the
parties involved, followed by (2) capturing and describing a black-box view of the
service representing the externally observable behavior. An illustration of service-
based decomposition of the Securities Trading application is depicted in Figure 3.
During the service identification the primary view point should be towards achieving
a common business goal through a single service. The business processes usually are
modeled to achieve a single goal and hence would provide a natural boundary. For
example a Trade Settlement service would aggregate various correlated activities like
allocation matching, trade billing (commission, tax, fees etc) to achieve the goal of
trade settlement.

The identified services can be classified and grouped in a variety of ways. The
services can be classified according to their scope into cross-business services, cross
LOBs/channels services, and LOB/channel specific services. The classification can
also be based on their degree of reuse such as core enterprise services used by all
(like a Customer Information Service), common services, or services unique to a

Designing Reusable Services: An Experiential Perspective for the Securities Trading Domain 27

specific application. The service classification activity is crucial to guide the non-
functional aspects of services design, for example core and common services need to
be designed and deployed with more emphasis on scalability and high availability.

Figure 3: High-level view of key Securities Trading services and their choreography

4. Service Design

This Section briefly presents key service design principles. Then it discusses the main
service design decisions for our Securities Trading case study and their rationale

4.1. Service design principles

The service design should take into account the basic principle of high cohesion and
low coupling among services [5]. This ensures that resulting services are self-
contained, replaceable and reusable. Service Cohesion refers to the strength of
functional/semantic relatedness of activities carried out by a service to realize a
business transaction [5]. High cohesion ensures that a service represents a single
abstraction and exposed interface elements are closely related to one another. Service

Coupling refers to the extent to which a service is inter-related with other services, in
other words it measures the degree of isolation of one service from changes that
happen to another [1]. The objective is to minimize coupling through encapsulation
and self-contained services to enable rapid change and to minimize the impact of
change. Low coupling can be achieved by reducing the number of connections
between services, eliminating unnecessary relationships between them, and by
reducing excessive interactions between services [5].

Another key service design principle is that of metadata based stateless service
design, meaning that exchanged messages should be self-contained with sufficient
information and metadata (like links to persisted data) to allow the destination service
to establish the message context [6]. Sound interface design has to anticipate and
meet the current and future needs of varied clients using the service in different
contexts and different functional and QoS expectations. The service interface should
capture and describe externally observable service behavior hiding the

28 A. Erradi, N. Kulkarni, S. Anand, and S. Padmanabhuni

implementation details. This ensures that changes to the implementation are localized
and minimize subsequent interface changes.

Optimal service granularity is crucial in ensuring maximum reuse in SoC. If the
service is too coarse-grained, the size of the exchanged messages grows and
sometimes might carry more data than needed. On the other hand if the service is too
fine grained, multiple round trips to the service may be required to get the full
functionality. Usually a balance is established, depending upon the level of
abstraction, likelihood of change, complexity of the service, and the desired level of
cohesion and coupling. A tradeoff needs to be made while taking into account non-
functional requirements particularly performance. During service design, reusability
can be maximized by using generalized service schema design, where the variations
of the service behavior can be captured simply by supplying varying message
instances conforming to a subset of a super-schema defined by the service schema.

4.2. Service design tasks

Designing service-oriented applications involves a variety of tasks that may be
enumerated as below
Specifying the structure/data model of exchanged messages using a schema

definition language such as XML Schema
Defining the service interface covering the incoming and outgoing messages that

are consumed or produced by the service as well as supported Message Exchange
Patterns (MEPs), like one-way/notification, request-response.

Modeling of supported conversations between services by defining the order in
which messages can be sent and received
Specifying the service policy to advertise supported protocols, the constraints on

the content of messages and QoS features, like security, manageability assertions, etc.
Defining the service contract: “terms and conditions” of service usage covering

syntactic, logical and semantic constraints governing the service usage.

4.3. Services for the Securities Case Study

The suggested service design (as shown in Figure 4) for our Securities Trading
case study aims to address the key pain-points discussed in Section 2. It also
facilitates the move to STP through increased automation and integration of business
processes. The suggested services facilitate real-time communication across the
systems belonging to different stake holders. Having a variety of services that fulfill
every aspect of the business facilitates automation of many manual activities and
opens up greater collaboration opportunities with external partners. The process
based services in Figure 4 such as Order placement, Trade reporting, and Trade
settlement are provided by the broker to the external partners such as the Investment
Manager. For example, the Order placement process would capture the order, validate
it and route it to an appropriate order execution service that finally sends the notice of
execution (NOE) report once the trade is completed. The NOE would be directly sent
to the Investment Manager to trigger the Allocation Matching process which would
further call additional services to complete the settlement process. Our design
considers four types of services:

Process services represent workflows that the Broker uses to deliver products
offerings, like Equity Trading, through various channels like the Web, telephony or

Designing Reusable Services: An Experiential Perspective for the Securities Trading Domain 29

direct access. Process services, like Order Placement, expose access points that allow
business partners to participate in the process. Process services also automate the
information flow across disparate systems and eliminate duplicate data entry, manual
data transfer and redundant data collection.

Application services represent business activities that are useful across business
units. For example, services like the Securities Pricing service is required across
multiple business lines such as equity trading, fixed income trading, asset
management, mutual fund trading etc. Application services provide shared and
consolidated functional services to reduce/eliminate redundant/overlapping
implementations.
Shared data services map multiple schemas from different data sources to a single

schema which is presented to collaborating applications. They provide the ability to
unify and hide differences in the way key business entities are represented within the
organization or between different business partners. Shared data services, like a
Customer service, can expose aggregated entities from specific data sources to
reconcile inconsistent data representations and minimize the impact of change.

Infrastructure services provide shared functions for other services, such as
authentication, authorization, encryption, logging, etc. Often infrastructure services
can be acquired, like an LDAP directory service, rather than built in-house.

Figure 4: Equity trading key services from the Broker viewpoint

30 A. Erradi, N. Kulkarni, S. Anand, and S. Padmanabhuni

5. Discussion and lessons learned

This Section discussed the key lessons learned from the Securities Trading case study.
Further, key design considerations per service types are briefly presented.

5.1. Key lessons learned

While the SoC approach strongly reinforces well-established software design
principles such as encapsulation, modularization, and separation of concerns, it also
adds additional dimensions such as service choreography, scalable service mediation,
and service governance. Our study highlights the following:

Business process centered top-down identification of shared business services can
lead to business aligned service design.

An enterprise wide common information model (CIM), also known as Canonical
Schema, is important to support the consistent representation of key business entities
and to reduce syntactic and semantic mapping overheads between services. Standards
like STPML [7] for the securities industry should be leveraged.

Moving to SoC requires more than just a simple change of programming practices,
rather a paradigm shift and mindset change is required to switch from RPC-
based/object-based architecture to a loosely-coupled, message-focused and service-
oriented architecture. A true SoC is realized when applications are built as self-
contained, autonomous business services that interact by exchanging messages that
adhere to specified contracts

When service-enabling Mainframe CICS applications, it would be wise to expose
one service per screen flow, and avoid translating all transactions to services. This
involves identifying the required screens navigation to achieve key capabilities of the
application, like CustomerCreation for instance, and then exposing the entire screen
flow as a service.

To ease service discovery and reuse, there is a need for clear service naming
guidelines and a services metadata management repository to support governance and
easy identification of services based on business function.

5.2. Design considerations per service type

For process services design the focus should be on the ease of modification and
customization as these services are subject to higher change frequency. Hence, they
should declaratively capture only the routing logic to manage the data and control
flow between activity services. Further, complex business rules should be abstracted
and externalized from processes so that they can be managed by a dedicated rules
engine. Further, robust exception handling/compensation design is required.

Application services can have a verb-focused design by exposing key verbs as
service methods, which unfortunately require RPC like behavior and sometimes
might reveal the internal state of the service. We advocate a message-centric design
to allow message content-driven service behavior and generalized service interface
that can be used and composed in various applications. Command design pattern is
used where the service performs dynamic content-based routing to direct the received
messages to the appropriate implementation. This practice is acceptable when the
resulting service contract is coherent and deals with closely-related business concepts.
For example a generic Securities Price Lookup service could be provided to retrieve

Designing Reusable Services: An Experiential Perspective for the Securities Trading Domain 31

the price from various stock exchanges using content-based routing. Services need to
be idempotent so that requests arriving multiple times are only processed once.
Shared data services uses noun-based design and usually expose CRUD interfaces

representing simple atomic operations on an entity.
Infrastructure services are usually acquired and act on messages depending on the

message context like the channel through which the message has arrived.

6. Related Work

Business Applications to Legacy Systems (BALES) methodology is proposed in [4]
to support Web-Services development using “objectified” legacy data and
functionality to build business applications. However, BALES is OO-focused and
yields fine-grained interfaces that are hard to map to coarse grained business
processes. Papazoglou et al. [5] describe a design methodology for Web services and
business processes. The methodology provides service design guidelines for Web
service interfaces and service flow models that maximize cohesion and minimize
coupling. Feuerlicht et al [3] focus on the design of domain-specific service interfaces,
like the travel domain. However the authors advocate an RPC-based view, while our
approach takes a message-centric view. Our approach is more consistent with the
latest SoC development best practices and WS-I recommendations [6, 8].

7. Conclusion and Future Work

Service-orientation is gaining momentum as a promising approach to deliver
increased reusability, flexibility and responsiveness to change. However, the practical
design of services requires sound engineering principles. The main contribution of
this paper is a service-enablement example in the securities trading domain showing
service design best practices and guidelines and highlighting of the challenges therein.
Future work will focus on empirical studies of how the level of service granularity
affects cohesion and coupling. Further, an in-depth comparison between various
service interaction styles, such as REST, MEST [6] and RPC, is highly needed.

References

[1] Briand, L. C., Daly, J. W. and Wüst, J. 1999, 'A Unified Framework for Coupling
Measurement in Object-Oriented Systems', IEEE Transactions on Software Engineering, vol.
25, no. 1, pp. 91-121.
[2] Erradi, A., Anand, S. and Kulkarni, N. 2006, 'SOAF: An Architectural Framework for
Service Definition and Realization', Submitted to ICSE'06, Shanghai, China.
[3] Feuerlicht, G. and Meesathit, S. 2004, 'Design framework for interoperable service
interfaces', in ICSOC'04, New York, NY, USA, ACM, pp. 299-307.
[4] Heuvel, W.-J. v. d., Hillegersberg, J. v. and Papazoglou, M. P. 2002, 'A methodology to
support web-services development using legacy systems', in IFIP Working Conference on
Engineering Information Systems in the Internet Context, Kanazawa, Japan, pp. 81-103.
[5] Papazoglou, M. P. and Yang, J. 2002, 'Design Methodology for Web Services and
Business Processes', in Proceedings of the Third International Workshop on Technologies for

E-Services (TES'02), vol. 2444, Springer, Hong Kong, China, pp. 54-64.
[6] Parastatidis, S. and Webber, J. 2005, 'Realising Service Oriented Architectures Using Web
Services', in Service Oriented Computing, MIT Press (chapter obtained from the authors).
[7] Straight Through Processing Markup Language (STPML) 2005, http://www.stpml.org
[8] Vinoski, S. 2005, 'RPC Under Fire', Internet Computing, IEEE, vol. 9, no. 5, pp. 93-95.

32 A. Erradi, N. Kulkarni, S. Anand, and S. Padmanabhuni

Towards Style-Oriented SOA Design

Chen Wu, Elizabeth Chang, Vidyasagar Potdar

School of Information Systems, Curtin University of Technology, Perth, Western-
Australia, 6845, Australia

{Chen.Wu, ChangE, PotdarV}@cbs.curtin.edu.au

Abstract. Architecting service-oriented application is a complex design activity. It
involves making trade-offs among a number of interdependent design choices, which
are drawn from a range of concerns by various software stakeholders. In order to
achieve reliable and efficient SOA design, we believe a rigorous study of architectural
style is important. Hence this paper aims at providing a formative survey of existing
web services architecture styles extracted both from the academic research projects
and industry practices.

1 Introduction

According to the web services adoption survey conducted in [3], quality require-
ments such as system scalability, reliability, and performance have become the sec-
ond most important criteria for a company to choose web services solutions. Recent
research [4] indicates that most of these quality requirements can be heavily influ-
enced by the software architecture (SA) design. Hence for the purpose of architecting
better SOA applications fulfilling particular business requirements, this paper pro-
vides a literature review of common architectural styles for distributed web services
applications based on a classification scheme proposed in existing agent research
community. As a result, the architect can leverage existing architectural styles to
design web services applications against specific system requirements and resources.

2 WS-Architectural Styles

It is well recognized that multi-agent systems can form the fundamental building
blocks for distributed software systems, even if the software systems do not require
any agent-like behaviors [7]. The classification scheme of architectural styles in this
paper is based on earlier work from agent research. It is worth noting that the multi-
agent classification scheme used here does not necessarily suggest the architecture
components are all agents. We simply apply the middle-agent taxonomy to categorize
existing web services architectural styles. One of the most important components in
existing multi-agent architecture is the middle-agent [6, 9], which mediates between

the requesters and providers across the Internet. Authors in [9] presented a compre-
hensive taxonomy for middle-agent in the context of multi-agent systems. In this
taxonomy two broad types of middle-agent (Matchmaker and Broker) are identified.
When thinking of introducing middle-agent classification into web services architec-
ture styles, we find that contemporary web services architecture can be grouped into
three basic categories: Matchmaker Style, Broker Style, and Peer-to-Peer Style.
Moreover, we believe web service lifecycle – Discovery, Execution, and Composition
– can be used to scatter these basic styles into variant sub-styles. This is shown in
table 1, where each sub-style (e.g. BM) is applicable to some particular phases of web
services lifecycle.

Table 1. Styles scattered within WS-lifecycle

 WS-Discovery WS-Execution WS-Composition
Matchmaker BM, LM - -
Broker BB BB, LB LB
Peer-to-Peer P2PD P2PE P2PC-S/M/H

2.1 Basic Matchmaker Style (BM)

The most classical web services architecture is based on matchmaker style, where
a matchmaker component acts as a middle agent that stores capabilities advertise-
ments to discover the providers for requesters [6]. Corresponding to table 1, match-
maker does not concern how the services executed, how the services are composed to
form service processes. Based on the basic matchmaker style, derived are two match-
maker style variants.

2.1.1 Layered-Matchmaker Style (LM)

 Basic matchmaker only allows capability information to be advertised, another
important type of information – what the agent community terms as ‘preference’ – is
lacking. For instance, existing UDDI standard lacks the ability to discover and select
the most appropriate web services based on non-functional requirements – e.g. ‘QoS’
– of web Services. To address this open issue, some research ([9], [10], and [11]) adds
an additional architectural layer between the service requester/provider and the

Fig 1. Layered Matchmaker Style

34 C. Wu, E. Chang, and V. Potdar

matchmaker. Authors in [10] proposed a QoS capable web service architecture, where
the extra QoS layer collects QoS data from providers, makes the decision of selecting
appropriate providers, and negotiates with selected providers to ensure QoS commit-
ments. The proposed matchmaker – a dynamic service selection engine, which pro-
vides QoS-based service selection – is the major work of [9]. Similarly, the architec-
ture offered in [11] allows improved services selection by extended WSDL service
interfaces, which in turn can be processed by the additional layer of the UDDI regis-
try. All the above work, in an implicitly or explicitly manner, adds an intermediary
layer to the existing matchmaker style for the purpose of augmenting the standard
UDDI. We use Layered-Matchmaker style to portray such architectural style depicted
in Figure 1. The publish/request gateway forms an intermediary layer that provides
additional functionalities (e.g. QoS selection) that is absent in traditional UDDI
matchmaker registry. Some extra transaction data is essential at the intermediary layer
to augment the standard service discovery and selection process.

2.1.2 Federated-Matchmaker Style (FM)

One critical problem of basic matchmaker style is its poor scalability since the cen-
tralized matchmaker – UDDI registry – might become the bottleneck and single-
point-failure as the number of service requesters/providers increase ([12], [13], and
[15]). One may argue that UDDI V3 specification already offers the replication
scheme to facilitate collaboration among UDDI nodes scattered in the UDDI clouds.
Nevertheless, related research indicates such solution is not feasible. Firstly, it needs
complex replication contracts between involved registry providers as well as manual
system administration for each registry. Moreover, such replication approach causes
extra problems such as expensive data replication, unnecessary global service query-
ing, etc [21]. Therefore, while technically possible, practically replication between
UDDI registries does not occur [27].

Fig 2. Federated-Matchmaker Style

While authors in [14] stated that ‘replication was chosen in UDDI because creating
a scalable model for distribution of data is inherently difficult’, recent researchers
attempt to tackle such distribution issue by introducing a federated matchmaker style
([12], [14], and [27]). Research in [14] presents a scalable, high performance envi-
ronment for federated web service publication and discovery among multiple match-

Towards Style-Oriented SOA Design 35

maker registries. Authors in [27] built the matchmaker UDDI federation upon peer-to-
peer infrastructure – Edutella P2P overlay. A federation of UDDI-enabled peer regis-
tries that operate in a decentralized manner is also provided in [12], where the authors
envision the federated matchmaker architecture is able to: 1) support a decentralized
service publication and discovery; 2) maintain the same publish/discovery mechanism
that existing UDDI has. As shown in Figure 2, service requesters and providers, for
some reason – e.g. proximity or functionality, can be syndicated under local match-
makers, which in turn form the matchmaker registry federation in a decentralized way
(may or may not be based on peer-to-peer networks). Each local matchmaker is re-
sponsible for discovering the immediate services registered within the local syndica-
tion. If the requested services cannot be found locally, the registry will form the
global query delegated to other registries via the federation network.

2.2 Broker Style

Broker style is widely used in distributed information systems such as multi-agent
systems and distributed databases. It is a straightforward way to achieve loose-
coupling between client and server, and hence fulfilling the requirements of reusabil-
ity and maintainability. The major difference between a broker and a matchmaker is
that the broker involves the execution between requester (client) and provider
(server). [1] defines broker architectural pattern (style) as “structures the distributed
software systems with decoupled components that interact by remote service invoca-
tion. It is responsible for coordinating communications”. A broker architectural style
includes six components [1]. The most significant component is the broker compo-
nent, which distributes client requests to the responsible server components and re-
turns corresponding results or exception information.

3.2.1 Basic Broker Style (BB)

Besides service discovery and selection, which are already provided by match-
maker, the broker focuses on mediating the interaction between service providers and
requesters. Hence the direct peer-to-peer communication in matchmaker style is re-
placed by indirect message – request, response, and exceptions – delegation offered
by the broker in the broker style, where the interaction coupling between provider and
requester is removed as indicated in Figure 3. Instead, the message exchange provided
by the broker facilitates the interactions. Authors in [17] describe such broker as an
‘SOA Fabric’ – a central message environment that hides the complexity of reliable
message exchanges and other interaction issues from service providers and requesters.
Among other interaction issues, the heterogeneity is the most well-known problem
and hence received much research momentum [16, 18]. Authors in [16] provided a
detailed analysis about broker’s architecture requirement, which indicates broker
should have powerful reasoning capability in order to homogenize the heterogeneities
in different web services. To deal with the heterogeneity, a concrete broker-based
architecture style is presented in [18], which employs the extended WSDL files to
solve the heterogeneous conflicts.

36 C. Wu, E. Chang, and V. Potdar

2.3.2 Layered-Broker Style (LB)

It is true that the broker style reduces the complexity involved in developing both
service providers and requesters as it makes distribution transparent to the developers
[1]. However, the ‘hidden’ complexity does not mean the complexity is removed or
does not exist at all. All the complications now go into the broker itself – the broker
needs to handle all the complex problems which used to be handled by providers and
requesters. This undoubtedly raises the difficulty to build an ‘omnipotent’ broker that
is capable of handling complicated tasks – discovery, execution, and compose, espe-
cially as the number of providers/requesters increases exponentially across the Inter-
net. Since layering is one of the most common ways of dealing with complexity [1],
the layered-broker style is proposed accordingly to tackle such challenge. In [19] the
broker layer addressed the issue of heterogeneity when composing distributed web
services. The authors argue that basic broker architectures cannot be directly applied
to develop distributed web services since the web services mediation requires the
homogenization of different service interfaces, a task needs layered structure with
each layer focusing on each separate concern – remoting, mediating, and composing.
The proposed layered-broker style can be depicted in Figure 3.

2.4 Peer-to-Peer Style

Both matchmaker and broker styles reply on a central control point – the match-
maker or the broker. However, the peer-to-peer (P2P) architectural style assumes that
it is not feasible to constantly rely on such a centralized, administratively managed
infrastructure within an open environment (e.g. the Internet) where all the resources
are connected and widely distributed [20]. Hence some research has introduced the
peer-to-peer computing model into web services, thus structuring the peer-to-peer
architecture style.

2.4.1 P2P Discovery Style (P2PD)

The most common P2P architecture in web services can be found in P2P based
service discovery, which generally falls into two approaches. The first approach [21,
24, 25, 26] places the web services protocols above the native P2P protocols such as
Gnutella [20], DHT [20], with WS-P2P adaptor to bridge the gap of two protocols.

Fig 3. Layered Broker Style

Towards Style-Oriented SOA Design 37

The second approach [22, 23, & 27] constructs the P2P communication protocol using
web services protocol. Meanwhile, both of these two approaches can also support the
semantic-based services discovery [21, 24, 25, 27, 28]. These two approaches are
illustrated in Figure 4.

2.4.2 P2P Composition Style (P2PC)

As indicated in Section 3.1 and 3.2, P2P execution (P2PE) is a common means to
invoke web services in the matchmaker style. Hence in this section, we only focus on
the P2P composition style, which can be further classified into three sub-styles.

1) Static Composition Style (P2PC-S)
In this style, overall process specification (e.g. BPEL4WS) is, at design-time, parti-

tioned into small pieces and deployed to involved service providers. Such design-time
partition approach is not new. The early study on partitioning process specification
can be found in [32]. Project in [33] is the early work that uses such static partition to
distribute web services processes. Authors in [34] present an algorithm to partition a
single BPEL process into an equivalent set of decentralized processes. Based on [34],
[29] proposed a decentralized BPEL composite scheme which contains multiple en-
gines, with each executing composite web service specification at distributed loca-
tions. Figure 5 illustrates such static composition style.

2) Mobil Composition Style (P2PC-M)

Using this style, both process specification and instance with execution states are
dynamically brought to the service providers at run-time. Authors in [35] utilize the
mobile agent to encapsulate and deliver the process specification to each host where
the desired services are invoked by such mobile agent. In architecture proposed by
[31], the process engine which executes that service is also decided in an ad-hoc
manner. The mobility of process is implemented using the message communication
between peer engines. This style is depicted in Figure 6.

Fig 4. P2P Discovery Structure

38 C. Wu, E. Chang, and V. Potdar

Fig 5. P2P Static Composition

3) Hybrid Composition Style (P2PC-H)

Project in [30] employed the mobile P2P execution style to create a true peer-to-
peer service process execution runtime environment. The two-phase-commit protocol
is used to distribute the process instance to the target node (service provider) based on
the meta-information replicated from the global repositories. On the other hand, in
order to achieve better performance and reduce the amount of data to be replicated,
the authors also utilized the static P2P execution style to partition a process into a set
of distributed execution units, which only contain small amount of data that can 1)
execute the local service; 2) navigate the process according to the service invocation
response.

Fig 6. P2P Mobile Composition

3 Related Work

Research of architectural style and patterns has been extensively conducted in both
academia and industry. Authors in [1] present eight architectural patterns that specify
the fundamental structure of an application. However their result does not include
web services application, which merely comes into view in recent years. A series of
architectural styles for network application are surveyed in [8], which indicates that,
given certain contexts, a specific architecture can be built by combing different archi-

Towards Style-Oriented SOA Design 39

tectural styles in a ‘conflict-conciliated’ manner. Again, this work focuses on web and
network application, rather than web services application. Web services architectural
patterns are defined and identified in [2]. While these patterns are limited in e-
Business scenarios, they more or less reflect the business requirements of web ser-
vices architecture from industry perspective. The formative research of architectural
styles, which facilitates the design of SOA, still lies in its immature phase. Research
in [5] is the closest work to our efforts. The authors catalog architectural styles that
are essential for SOA applications and conceptually evaluate these identified six
styles. Nevertheless, theses styles are based on their proposed multi-agent model
rather than from related literature research and industry practices. Hence their work in
this sense is different from the architectural style survey carried out in this paper.

4 Conclusions and Future Work

In this paper, we surveyed web services architectural styles in current literature.
Our next research goal is to offer a comparison of these architecture styles based on a
well-defined quality framework. The aim of such comparison is to help architect
select the most appropriate architecture styles given specified requirements captured
from the stakeholders.

5 References

1. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture, a System of Patterns. J. Wiley and Sons, Inc, 1996.

2. Endrei, M., Ang, J., Arsanjani, A., Chua, S., Comte, P., Krogdahl, P., Luo, M., and Newling, T.,
‘Patterns: Service-Oriented Architecture and Web Services’, IBM Redbooks, April 2004

3. Cimetiere, J.C. ‘Web Services Adoption and Technology Choices – Analysis of survey results’,
Technical Report, Group SQLI, TechMetrix Research, 2003.

4. Lundberg, L., Bosch, J., Häggander, D. and Bengtsson, P. ‘Quality Attributes in Software Architec-
ture Design’, Proceedings of the 3rd IASTED International Conference on Software Engineering and
Applications, pp. 353-362, 1999.

5. Maximilien, E.M. and Singh, M.P., ‘Toward Web Services Interaction Styles’, In Proceedings of 2nd
IEEE International Conferences on Services Computing, July 2005

6. K. Decker, K. Sycara, and M. Williamson. Middle agents for the internet. In Proceedings IJCAI-97
7. Jennings, Nick R., ‘On Agent-Based Software Engineering’, Artificial Intelligence, 117(2) pp. 277-

296 (2000).
8. Fielding, R.T. 2000, ‘Architectural Styles and the Design of Network-based Software Architectures’,

PhD Dissertations, University of California, Irvine CA, USA
9. Wong, H.C. and Sycara, K., 2000, ‘A taxonomy of middle-agents for the Internet’, Proceedings of the

Fourth International Conference on MultiAgent Systems, July, 2000, pp. 465 - 466.
10. Wang, X., Yue, K., Huang, J. Z., Zhou, A., 2004, ‘Service Selection in Dynamic Demand-Driven

Web Services’, Proceedings of the IEEE International Conference on Web Services (ICWS04)
11. Yu, T. & Lin, K. 2004, ‘The Design of QoS Broker Algorithms for QoS-Capable Web Services,

Proceedings of EEE’04
12. Degwekar, S., Su, S.Y.W., Lam, H. 2004, ‘Constraint Specification and Processing in Web Services

Publication and Discovery’, Proceedings of the IEEE International Conference on Web Services
(ICWS’ 04)

13. Papazoglou, M. P., Kr¨amer, B. J., and Yang, J. 2003, ‘Leveraging Web-Services and Peer-to-Peer
Networks, Springer-Verlag Berlin Heidelberg 2003.

40 C. Wu, E. Chang, and V. Potdar

14. Pilioura, T., Kapos, G., Tsalgatidou, A. 2004, ‘PYRAMID-S: A Scalable Infrastructure for Semantic
Web Service Publication and Discovery’, Proceedings of the 14th International Workshop on Re-
search Issues on Data Engineering (RIDE’04)

15. Sivashanmugam, K., Verma, K., and Sheth, A., ‘Discovery of Web Services in a Federated Registry
Environment’, Proceedings of the 16th International Conference on Software Engineering & Knowl-
edge Engineering (SEKE2004): Workshop on Ontology in Action, pp. 490-493, 2004

16. Paolucci, M., Soudry J., Srinivasan, N., and Semantic Sycara, K. 2004, ‘A Broker for OWL-S Web
Services’, Proceedings of First Internatioinal Web Services Symposium, 22nd - 24th March, 2004

17. Malek, H.B. 2005, ‘Service-Orientation: A Brief Introduction’, OASIS SOA Reference Model,
http://www.oasis-open.org/committees/download.php/12834/Service-Orientation.pdf, May 2005

18. Fuchs, M. 2004, ‘Adapting Web Services in a Heterogeneous Environment’, Proceedings of the IEEE
International Conference on Web Services (ICWS’04)

19. Piers, P., Benevides, M., Mattoso, M. 2003, ‘Mediating Heterogeneous Web Services�, Proceedings
of the 2003 Symposium on Applications and the Internet (SAINT’ 03)

20. Milojicic, D.S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B., Rollins, S., Xu, Z.
2003, ‘Peer-to-Peer Computing’, Hewlett-Packard Company Technology Report

21. Ayyasamy, S., Patel, C., Lee, Y. 2003, ‘Semantic Web Services and DHT-based Peer-to-Peer Net-
works: A New Symbiotic Relationship’, Position Paper, School of Interdisciplinary Computing and
Engineering University of Missouri – Kansas City

22. Wang, Q., Yuan, Y., Zhou, J., Zhou, A., ‘Peer-Serv: A Framework of Web Services in Peer-to-Peer
Environment’, WAIM 2003, LNCS 2762, pp. 298 – 305, Springer-Verlag Berlin Heidelberg 2003

23. Prasad, V., Lee, Y. 2003, ‘A Scalable Infrastructure for Peer-to-Peer Networks Using Web Service
Registries and Intelligent Peer Locators’, Proceedings of the 1st International Symposium on Cluster
Computing and the Grid, p216, ISBN: 0-7695-1919-9

24. Paolucci, M., Sycara, K., Nishimura, T., Srinivasan, N. 2003, ‘Using DAML-S for P2P Discovery’,
Proceedings of International Conference on Web Services, ISWS, 2003

25. Emekci, F., Sahin, O., Agrawal, D., and Abbadi, A. 2004, ‘A Peer-to-Peer Framework for Web
Service Discovery with Ranking’, Proceedings of the IEEE International Conference on Web Ser-
vices (ICWS’04), 0-7695-2167-3/04 IEEE

26. Schmidt, C. and Parashar, M. 2004, ‘A Peer-to-Peer Approach to Web Service Discovery’, World
Wide Web, 7(2): 211-229, 2004

27. Banaei-Kashani, F., Chen, C-C., Shahabi, C., 2004, ‘WSPDS: Web Services Peer-to-peer Discovery
Service’, Proceedings of International Symposium on Web Services and Applications (ISWS'04), Las
Vegas, Nevada, USA, June 2004, pp 733-743

28. Thaden, U., Siberski, W., and Nejdl, W. 2003, ‘A Semantic Web based Peer-to-Peer Service Registry
Network’, Technical Report, Learning Lab Lower Saxony, University of Hanover, Germany, 2003

29. Chafle, G., Chandra, S., and Mann, V. 2004, ‘Decentralized Orchestration of Composite Web Ser-
vices’, In Proceedings of World Wide Web, May 17–22, 2004, New York, USA

30. Schuler, C., Weber, R., Schuldt, H., and Schek, H., ‘Scalable Peer–to–Peer Process Management —
The OSIRIS Approach’, Proceedings of ICWS, 2004

31. Lakhal, N.B., Kobayashi, T., Yokota, H., ‘THROWS: an architecture for highly available distributed
execution of Web services compositions’, Proceedings of the 14th International Workshop on Re-
search Issues on Data Engineering:

32. Muth, P., Wodtke, D., Weissenfels, J., Kotz, D.A. 1998, ‘From Centralized Workflow Specification
to Distributed Workflow Execution’, Journal of Intelligent Information Systems (JIIS), 10(2), 1998

33. Benatallah, B., Dumas, M., Sheng, Q., and Ngu, A., ‘Declarative Composition and Peer-to-Peer
Provisioning of Dynamic Web Services’, Proceedings of ICDE, 2002

34. Nanda, M.G., Chandra, S., Sarkar, V. 2004, ‘Decentralizing execution of composite web services’,
Proceedings of the 19th annual ACM SIGPLAN Conference on Object-oriented programming, sys-
tems, languages, and applications, Volume 39, Issue 10, October 2004,

35. Haller, K. and Schuldt, H. 2003, ‘Consistent Process Execution in Peer-to-Peer Information Systems’,
Proceedings of the 15th Conference on Advanced Information Systems Engineering (CAiSE), Kla-
genfurt/Velden, Austria, 2003

Towards Style-Oriented SOA Design 41

42 C. Wu, E. Chang, and V. Potdar

 Application of Data Engineering Techniques to Design

of Message Structures for Web Services

 George Feuerlicht

 Faculty of Information Technology,

University of Technology, Sydney,

P.O. Box 123 Broadway, Sydney, NSW 2007, Australia
 jiri@it.uts.edu.au

Abstract. Unlike components, Web Services are primarily intended for inter-

enterprise applications that use Internet as the underlying transport mechanism,

and consequently are subject to a different set of design considerations than in-

tra-enterprise applications. Most practitioners recommend the use of coarse-

grained, message-oriented Web Service that minimize the number of messages

and avoid the need to maintain state information between invocations. In this

paper we argue that excessive use of coarse-grained, document-centric message

structures results in poor reuse and undesirable interdependencies between ser-

vices. We describe a design approach that provides a framework for designing

message payloads for service-oriented applications. We treat the problem of

message design from a data engineering perspective and apply data normaliza-

tion techniques to the design of service interfaces. We consider the impact of

increasing message granularity on cohesion and coupling of service operations

and discuss the associated design tradeoffs.

1 Introduction

Web Services are used mainly in inter-enterprise applications that rely on the Internet

as the underlying transport mechanism, and consequently are subject to a different set

of design considerations than intra-enterprise applications. Internet-scale distributed

applications must be able to deal with unreliable connections, provider site failures,

network latency, and trust issues. Most practitioners recommend the use of coarse-

grained (i.e. services with aggregate data structures), message-oriented Web Services

on the basis that coarse-grained Web Services generate fewer SOAP messages and

therefore have lower communication overheads and less opportunity for failure [1].

Another motivation for using messages with aggregated message payloads is to avoid

the need to maintain state information between individual requests. Proponents of the

REST (Representational State Transfer) model [2] argue that Internet-scale distrib-

uted applications should rely entirely on stateless HTTP-based communications with

coarse-grained XML message payloads. Given slow response times, high latencies,

and poor reliability of the present Internet environment, performance is clearly an

important consideration. However the design of Web Services should not be driven

by performance-related objectives alone. The choice between fine-grained and

coarse-grained services is a choice between two extreme design options, each with

different impact on performance as well as software engineering properties of service-

oriented applications. Granularity (i.e. level of aggregation) of Web Services deter-

mines the scope of functionality that a given service (or service operation) imple-

ments, and is a key determinant of reusability and maintainability of service-oriented

applications. While coarse-grained services achieve performance advantages by re-

ducing the number of network interactions required to implement a given business

function, when considered from the perspective of software engineering they suffer

from a number of significant drawbacks, including limited reuse and poor maintain-

ability. Coarse-grained Web Services are characterized by complex message struc-

tures that arise from designing message payloads to include all the information

needed to perform the corresponding business function (e.g. airline booking). Com-

plexity of messages is further increased by embedding business rules and constraints

within the message data structures [3]. To illustrate this point consider, for example,

the OTA (OpenTravel Alliance, www.opentravel.org/) flight booking business proc-

ess. OTA defines request/response message pairs for individual business processes,

and implements the flight booking business process using the

OTA_AirBookRQ/OTA_AirBookRS message pair. The flight booking request

document OTA_AirBookRQ

(www.opentravel.org/downloads/2002B_XSD/OTA_AirBookRQ.xsd) is a complex,

aggregate document that contains a large number of data elements (many optional)

including flight booking, itinerary, traveler and payment details. The underlying as-

sumption is that all of the information is available at the time of booking the flight,

and that the airline tickets are paid for when the flight is booked. In practice, however

flight booking and payment are often performed separately resulting in duplication of

information and potential for data inconsistencies. The complexity and redundancy of

message data structures makes it difficult to evolve the specification without produc-

ing undesirable side-effects that invalidate existing applications. Message payloads

that externalize complex data structures result in high levels of data coupling and

interdependencies between services, violating a fundamental design objective for

distributed applications (i.e. minimization of coupling). Decomposing the flight book-

ing request into separate, lower-granularity operations (e.g. flight enquiry, flight

booking, payment, etc.) leads to simplification of the interface, improved flexibility,

and potential for reuse (e.g. payment operation can be reused in another context, e.g.

car rental, or a hotel room booking).

 From a software engineering perspective, service interfaces need to be designed

to maximize cohesion and minimize coupling [4], [5]. Maximization of cohesion

refers to the requirement for methods to implement a single conceptual task and is

closely related to reusability and maintainability of application components. High

level of cohesion produces orthogonal services and improves the stability of the ap-

plication as modifications can be typically confined to a specific service, or service

operation. Minimization of coupling (i.e. interdependencies between services), results

in improved ability to accommodate change. Applying these principles to service

design leads to improved clarity of the interfaces, reduction in undesirable side ef-

fects, and improved flexibility of applications [6], [7]. Such requirements tend to

favor finer-granularity services, and therefore conflict with performance considera-

44 G. Feuerlicht

tions. Balancing performance and software engineering considerations involves de-

sign tradeoffs and requires good understanding of the impact of service aggregation

on cohesion and coupling of service-oriented applications.

 In this paper we consider the problem of designing message structures for ser-

vice-oriented applications from a data engineering perspective, applying data nor-

malization rules to service interface parameters. In the following section (section 2)

we briefly review research literature dealing with the design of Web Services applica-

tions. We then describe a framework for the design of message structures for service-

oriented applications (section 3) and use this framework to design a set normalized

interfaces (section 4). We then evaluate the impact of increasing message granularity

on cohesion and coupling (section 5). In the concluding section (section 6) we sum-

marize the benefits of the proposed design framework.

2 RELATED WORK

Web Services design approaches can be broadly classified into methodologies based

on object-oriented design [8], [9], [10], [11], [12], methods for transformation of

industry domain specifications [13], and business process transformation approaches

[4], [14], [15], [16]. For example, Papazoglou and Yang [4] describe a design meth-

odology that gives a set of service design guidelines based on the principles of mini-

mizing coupling and maximizing cohesion to ensure that the resulting services are

self-contained, modular, extendable and reusable. The methodology produces defini-

tion of WSDL Web Service interfaces and WSFL service flow models, and also in-

cludes non-functional service design guidelines that relate to service provisioning

strategies and service policy management models. Web Services design is an active

research area and while there is some agreement about the basic design principles

there are no widely accepted design methodologies that can guide designers of Web

Services applications. The focus of this paper is on the design of message data struc-

tures that form the basis of interaction between services and determine the software

engineering properties of service-oriented applications.

3 DESIGN FRAMEWORK

From an architectural point of view service-oriented applications can be considered at

different levels of abstraction. From one perspective they can be regarded as distrib-

uted systems that use message interchange as the basic communication mechanism,

i.e. messages are regarded as the key artifacts of service-oriented applications. Mes-

sage-oriented approaches and Message-Oriented Middleware (MOMs) have been

used extensively in the context of Enterprise Application Integration (EAI) for the

implementation of loosely-coupled, asynchronous applications. Alternatively, service-

oriented applications can be viewed as programmatic environments that use proce-

dure calls to execute local and remote procedures (RPCs). RPC-based programming

environment is typically (but, not necessarily) used to implement synchronous,

Application of Data Engineering Techniques to Design of Message Structures for Web Services 45

tightly-coupled applications. We exploit this duality between messages and proce-

dures and describe a design framework that leverages object-oriented design princi-

ples and data engineering techniques for the design of message structures for service-

oriented applications.

3.1 Procedures vs. Messages

Procedures typically implement well-defined functions and use simple data parame-

ters. However, it is possible to pass complex objects (e.g. XML documents) as proce-

dure parameters, in effect using RPCs to interchange documents. Given this pro-

grammatic perspective, the interface contract is the signature of the corresponding

procedure call (service operation), for example:

FlightEnquiry(INPUT: OriginLoc, DestinationLoc, DepartureDate,

OUTPUT: FlightNumber)

 Given the message-oriented, document-centric perspective, message payloads

(i.e. XML documents within SOAP envelopes) define the interface contract. For ex-

ample, the XML schemas of the messages OTA_AirBookRQ and OTA_AirBookRS

constitute the interface contract and specify the method signature as:

BookFlight(INPUT: OTA_Air_BookRQ,

OUTPUT: OTA_Air_BookRS)

Importantly, these abstractions are independent of the physical implementation of

Web Services application that the designer may eventually choose. So that adopting

the programmatic perspective during the design stage does not imply that the imple-

mentation of services will be based on synchronous RPCs. It is, for example, possible

to conduct the design using the programmatic perspective and adopt the document

style, asynchronous Web Service implementation. We regard decisions about the

implementation style (i.e. binding style, RPC or document) and interaction model (i.e.

synchronous or asynchronous, stateful or stateless) as orthogonal concerns to the task

of designing the service interface, and defer such decisions to the implementation

stage of the systems development process. This separation of concerns allows focus

on interface design without introducing implementation dependent constraints during

early design stages. From the design point of view, taking the document-centric per-

spective makes it difficult to reason about design tradeoffs associated with different

message design strategies (e.g. level of message aggregation). However, changing the

level of abstraction from messaging to programmatic interactions and regarding the

messages structures as service interfaces makes it possible to apply well-established

program design techniques to Web Services message payloads.

3.2 Design Principles

Using the programmatic perspective, the task of designing interfaces for service-

oriented applications is conceptually similar to design of methods for object-oriented

applications. The guiding principles for interface design include orthogonality (i.e.

each interface should define a distinct function), maximization of method cohesion

46 G. Feuerlicht

and minimization of method coupling. Cohesion and coupling have been studied

extensively in the context of structured and object-oriented programming [17], [18].

Myers [19] defined module cohesion as a degree of interaction within programming

modules and coupling as the degree of interaction between programming modules,

and classified both measures according to type. According to Myers, the highest lev-

els of cohesion are Informational (all functions within a module share the same data)

and Functional cohesion (module performs a single function). Minimal (i.e. the most

desirable) types of coupling are Stamp coupling, where modules use data structures as

parameters, and Data coupling where individual data elements are used as parameters.

Thus the combination of Functional cohesion and Data coupling produces the most

desirable situation from the point of view of reuse and maintainability. To achieve the

highest level of cohesion the designer must ensure that service operations use the

same data structures (i.e. Informational cohesion) and that each service operation (i.e.

method) implements a well-defined, atomic task (Functional cohesion). Importantly,

high level of method cohesion leads to orthogonality as functional overlap is mini-

mized, or eliminated altogether. The requirement for data coupling dictates that inter-

faces consist of individual data parameters rather than complex data structures. Fur-

thermore, using individual data parameters for interface specification rather than

coupling via complex data structures (i.e. Stamp coupling) enables the application of

data engineering techniques to minimize interdependencies between service opera-

tions, as described in the following sections.

3.3 Design Steps

The definition of service interfaces involves specification of operations and corre-

sponding input and output parameters. This task is similar to designing method signa-

tures in the context of object-oriented design, and involves identifying suitable candi-

date methods that are progressively refined to produce a set of well-defined service

interfaces [5], [20]. The design framework consists of three design stages: initial

design of service interfaces, refining interface design using interface normalization,

and finalizing design by adjusting interface granularity. We base our design examples

on the OTA the airline availability request/response messages:

OTA_Air_AvailRQ/OTA_Air_AvailRS and booking request message pair:

OTA_Air_BookRQ/ OTA_Air_BookRS.

Decomposition of the Flight Booking business function can be achieved by model-

ing the interaction between a travel agent and an airline using a Sequence Diagram.

Each step in the Sequence Diagram dialog produces a Request/Response message pair

and corresponds to an elementary business function [5]. Alternatively, elementary

business functions can be identified as leaf functions in a business function hierarchy

[21]. The resulting service interfaces correspond to elementary business functions as

illustrated by the FlightEnquiry interface below:

FlightEnquiry(INPUT: OriginLocation, DestinationLocation, DepartureDate,

OUTPUT: FlightNumber, DepartureAirport, ArrivalAirport, DepartureTime, Arri-

valDate, ArrivalTime)

Application of Data Engineering Techniques to Design of Message Structures for Web Services 47

We can now apply interface normalization to detect extraneous interface parameters

that can be removed in order to minimize data coupling between interfaces, and at the

same time improve the cohesion of the operations.

4. Interface Normalization

Normalized data structures have been used extensively in database design [22]; we

use the same principles here in order to minimize data coupling of service interfaces.

Data coupling involves two or more interfaces being coupled via interface parame-

ters, i.e. output parameters of one interface match input parameters of another. Re-

moving data parameter interdependencies for the input and output parameter sets will

ensure that both parameter sets are minimal (i.e. do not contain redundant parame-

ters). We classify service operations according to type into query (i.e. operations that

return data in output parameters given a query specified using input parameters) and

update operations (i.e. operations that update data given update operation specified

using input parameters), and formulate the following interface design rules [5]:

Rule 1: Input parameters of query and update operations should form a minimal set,

i.e. individual data parameters must be mutually independent.

Rule 2: Output parameters of query and update operations should form a minimal

set, i.e. individual data parameters must be mutually independent.

Rule 3: Output parameters of query operations must be fully functionally dependent

on input parameters.

We regard the interfaces of query operation as relations where the input parameter

set corresponds to the relation key, and the output parameter set are the non-key at-

tributes. Output parameters of normalized interfaces are fully functionally dependent

on the input parameter set, i.e. the interface parameters form a BCNF (Boyce-Codd

Normal Form) relation. This ensures that parameters are used as data, not as control

parameters and avoids Control coupling that involves using interface parameters to

control the execution of the method [19]. Normalization of interfaces of query opera-

tions also ensures mutual independence of interfaces parameters for both input and

output parameter sets (i.e. input and output parameter sets are minimal). Update op-

erations, in general, do not exhibit functional dependencies between input and output

parameters. However, both input and output parameters sets should be minimized by

removing redundant data parameters, to avoid unnecessary data coupling. Now, as-

suming the functional dependencies below we can produce a set of to normalized

interfaces:

FD1: {OriginLocation, DestinationLocation, DepartureDate FlightNumber}

FD2: {FlightNumber DepartureAirport, DepartureTime, ArrivalAirport, Arri-

valTime}

FD3: {FlightNumber, DepartureDate ArrivalDate}

FD4: {FlightNumber, DepartureDate, CabinType Quantity}

48 G. Feuerlicht

FD5: {FlightNumber, DepartureDate, CabinType BasicFareCode, BasicFare}

Query Operations:

FlightEnquiry(INPUT: OriginLocation, DestinationLocation, DepartureDate,

OUTPUT: FlightNumber)

ScheduleEnquiry(INPUT: FlightNumber,

OUTPUT: DepartureAirport DepartureTime, ArrivalAirport, ArrivalTime)

ArrivalEnquiry(INPUT: FlightNumber, DepartureDate,

OUTPUT: ArrivalDate)

SeatEnquiry(INPUT: FlightNumber, DepartureDate, CabinType,

OUTPUT: Quantity)

PriceEnquiry(INPUT: FlightNumber, DepartureDate, CabinType,

OUTPUT: FareBasisCode, BaseFare)

Update Operations:

BookFlight(INPUT: FlightNumber, DepartureDate, CabinType, TravelerName,

OUTPUT: BookingReferenceID)

SeatingRequest(INPUT: BookingReferenceID, SeatPreference,

OUTPUT: BookingReferenceID)

MealRequest(INPUT: BookingReferenceID, MealPreference,

OUTPUT: MealType)

We can verify that the interfaces are fully normalized by noting that all input pa-

rameters for the enquiry operations are determinants (i.e. right-hand side of functional

dependencies) satisfying the condition for BCNF Normal Form [23]. In addition to

minimizing coupling, the effect of interface normalization is to maximize cohesion as

resulting interfaces implement atomic operations.

5. Finalizing Design

The above analysis leads to normalized service interfaces and results in fine-

granularity operations. While this may be theoretically appealing, the associated in-

crease in the number of runtime calls and complexity of the interaction dialogue

makes this approach difficult to implement in practice given the existing low-

reliability and slow response time Internet infrastructure. Finding an optimal level of

granularity for Web Services and individual service operations requires further ex-

amination.

5.1 Adjusting Granularity of Interfaces

We can use the normalization framework introduced in section 4 to understand the

impact of aggregating interfaces. For example, the query operations SeatEnquiry and

Application of Data Engineering Techniques to Design of Message Structures for Web Services 49

PriceEnquiry share common input parameters FlightNumber, DepartureDate, Cabi-

neType. Combining the two interfaces produces a composite operation SeatPriceEn-

quiry:

SeatPriceEnquiry(INPUT: FlightNumber, DepartureDate, CabinType,

OUTPUT: Quantity, FareBasisCode, BaseFare)

This clearly leads to loss of cohesion as the resulting operation no longer imple-

ments a single atomic task, and in situations where it is used to perform a partial en-

quiry (e.g. seat availability enquiry only) the operation returns values that are not

used by the application. Applying the normalization framework, this lack of cohesion

is reflected by a partial functional dependency between the input and output parame-

ter sets of the SeatPriceEnquiry interface (i.e. the loss of full functional dependence).

This tradeoff can be justified in this instance on the basis that both operations are

frequently performed together, and that the benefits of reduced number of operations

and runtime procedure calls outweighs the loss of cohesion. Similar considerations

apply to update request operations. For example SeatingRequest and MealRequest

can be combined into a composite operation SeatingMealRequest:

SeatingMealRequest(INPUT:BookingReferenceID, SeatPreference, MealPreference,

OUTPUT: SeatNumber, MealType)

This time, a partial request, e.g. seating request only, produces non-homogeneity

with MealPreference and MealType left undefined.

5.2 Implementation Style and Interaction Model

Following decisions about the appropriate level of aggregation, the final design stage

involves decisions about the implementation style (i.e. binding style, RPC or docu-

ment) and interaction model (i.e. synchronous or asynchronous, stateful or stateless).

Adopting the document-centric (message-oriented) approach the resulting interface

definitions are transformed into document-style WSDL specifications. Alternatively,

the resulting interfaces can be mapped directly into Web Services operations using

the RPC binding style [3]. Detailed discussion of such implementation issues is out-

side the scope of this paper.

6. Conclusions

We presented a design methodology for Web Services that applies data engineering

principles to the design of message structures of service-oriented applications. The

design approach relies on the principles of orthogonality, maximizing method cohe-

sion, and minimizing method coupling, and uses data normalization techniques to

avoid externalization of redundant data parameters. While we have argued that exces-

sive use of coarse-grained, document-centric message structures results in poor reuse

50 G. Feuerlicht

and undesirable interdependencies between services, we do not advocate fine granu-

larity services as a universal solutions. Equally, this paper does not represent argu-

ment for any specific Web Services implementation style (i.e. RPC or document

style), as such decisions need to be made in the context of specific application re-

quirements and taking into account the implementation environment. The main bene-

fits of the proposed design framework is that it facilitates making informed decisions

about the level of granularity of service operations based on normalization of the

underlying message structures. As shown in section 5, composite operations can be

constructed from operations with fully normalized interface messages by combining

operations based on the properties of interface parameters. The impact of the resulting

message aggregation on cohesion and coupling of service-oriented applications can

be evaluated using the normalization framework, so that the designer can determine

the most appropriate message design for a particular set of requirements.

8. REFERENCES

[1] Huhns, Michael N. and Munindar P. Singh, "Service-Oriented Computing: Key Concepts

and Principles," IEEE Internet Computing, vol. 9, no. 1, 2005, pp. 75-81.

[2] Fielding, R.T. Architectural Styles and the Design of Network-based Software Architec-

tures, PhD Dissertation, 2000, Available on:

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[3] Feuerlicht, G. Implementing Service Interfaces for e-Business Applications. In Proceedings

of the Second Workshop on e-Business (WeB 2003), Seattle, USA, December 2003.

ISSN: 1617-9846.

[4] Papazoglou, M.P. and Yang, J. (2002), Design methodology for Web services and business

processes. In Proceedings of the 3rd VLDB-TES workshop (Hong Kong, August, 2002).

Springer, pages 54-64.

[5] Feuerlicht, G, Designing Service-Oriented e-Business Applications using Data Engineering

Techniques, The Third Workshop on e-Business, in conjunction with ICIS 2004, December

11, 2004, Washington D.C., USA, ISBN:957-01-9161-9

[6] Venners, B. (1998) Introduction to Design Techniques. Available on:

http://www.javaworld.com/javaworld/jw-02-1998/jw-02-techniques.html, February, 1998.

[7]Venners, B. (2002) API Design: The Object. Available on:

http://www.artima.com/apidesign/object.html, April 26, 2002.

[8] Ambler, S.W. (2002) Deriving Web Services from UML models, Part 1: Establishing the

process. Available on: http://www-106.ibm.com/developerworks/webservices/library/ws-

uml1/

[9] Levi, K. and A. Arsanjani (2002) A goal-driven approach to enterprise component identifi-

cation and specification. Communications of the ACM. Vol. 45:(10). (2002) 45 - 52

[10]Luo, M. et al. 2005, Service-Oriented Business Transformation in the Retail Industry Part

1: Apply SOA to Integrate Package Solutions and Legacy Systems [Online]. Available:

http://www.ibm.com/developerworks/webservices/library/ws-retail1/ [Accessed 15 April

2005].

[11] Meyer, B. Object-oriented Software Construction. 2nd ed. Prentice Hall, Upper Saddle

River, N.J., 1997.

[12] Smith, R. Modeling in the Service Oriented Architecture, 2003.

http://archive.devx.com/javasr/articles/smith1/smith1-1.asp.

Application of Data Engineering Techniques to Design of Message Structures for Web Services 51

[13] Masud, S. RosettaNet-based Web Services, Part 2: BPEL4WS and RosettaNet, 2003.

http://www-106.ibm.com/developerworks/webservices/library/ws-rose2/.

[14] Leymann, F. Web Services Flow Language (WSFL 1.0), 2001.http://www-

306.ibm.com/software/solutions/webservices/pdf/WSFL.p

[15] Radeka, K. Designing a Web Services Project for Maximum Value: the 90 Day Challenge.

In Proceedings of Conference on Object Oriented Programming Systems Languages and

Applications archive (OOPSLA 2002) Practitioners Reports, Seattle, Washington, Novem-

ber 2002. ACM Press New York, NY, USA. ISBN:1-58113-471-1.

[16] Stevens, M. Multi-Grained Services.

http://www.developer.com/design/article.php/1142661, May 21, 2002.

[17] Yourdon, E. and Constantine, L.. Structured Design: Fundamentals of a Discipline of

Computer Program and Systems Design. Prentice-Hall, Englewood Cliffs, N.J., 1979.

[18] Stevens, W.P., Myers, G.J., and Constantine, L.L., Structured Design, IBM SYSTEMS

JOURNAL, VOL38, NOS2&3, 1999

[19] Myers, G.J.: Composite Structured Design, 1978, Van Nostrand Reinhold, ISBN 0-442-

80584-5, 175 pages

[20] Feuerlicht, G., Design of Service Interfaces for e-Business Applications using Data Nor-

malization Techniques, Journal of Information Systems and e-Business Management,

Springer-Verlag GmbH, 26 July 2005, pages 1-14, ISS:1617-98

 [21] Feuerlicht, G. and S. Meesathit. Design Framework for Interoperable Service Interfaces.

In Proceedings of the 2nd International Conference on Service Oriented Computing, pp.

299-307, New York, NY, USA, November 2004. ACM Press. ISBN:1-58113-871-7.

[22] Codd, E.F (1971). Normalized Data Structure: A Brief Tutorial. In Proceedings of 1971

ACM-SIGFIDET Workshop on Data Description, Access and Control (San Diego, Califor-

nia, November 11-12, 1971). ACM, 1971, 1-17.

[23] Date, C. J. Fagin, R. (1992) Simple Conditions for Guaranteeing Higher Normal Forms in

Relational Databases, ACM Transactions on Database Systems (TODS) Volume 17, Issue 3

(September 1992) Pages: 465 - 476, 1992, SSN:0362-5915

52 G. Feuerlicht

A Consensus-Based Service Discovery

Chun-Lung Huang1, Ping Wang
2
, Kuo-Ming Chao3, Chi-Chun Lo1, Jen-Yao Chung4

1 Institute of Information Management, National Chiao Tung University, Taiwan
{clhuang@iim,cclo@faculty}.nctu.edu.tw

2 Department of MIS, Kun Shan University of Technology, Taiwan
pingwang@mail.ksut.edu.tw

3 DSM Research Group, School of MIS, Coventry University, Coventry, CV1 5FB, UK
k.chao@coventry.ac.uk

4 IBM T. J. Watson Res. Center, P.O. Box 218, R. 05-15, Yorktown Heights, NY, 10598, USA
jychung@us.ibm.com

Abstract. Efficient service discovery is a crucial process for web service com-

position. Most existing service discovery approaches, based on either functional

or non-functional attributes, do not address the issues associated with the im-

pact of subjective expectations and preferences on service discovery. For in-

stance, searching for a Web service (for cheap and convenient flights), does not

only involve functional requirements, but it also includes subjective and fuzzy

opinions on query terms f-

ferent perceptions of such terms by service consumers and providers create se-

rious problems in web service discovery. This is compounded by the fact that

they may have different preferences or opinions. This paper presents a moder-

ated fuzzy web service discovery approach to model subjective and fuzzy opin-

ions, and to assist them in reaching a consensus. The method achieves a com-

mon consensus on the distinct opinions and expectations of individual users.

This process is iterative and further fuzzy opinions and preferences can be

added to improve precision in web service discovery.

1. Introduction

The emergence of web services has created unprecedented opportunities for organiza-

tions to reshape the landscape of collaboration with other organizations, using more

flexible and dynamic means. The realization of value-added services by composing

existing ones is gaining significant momentum. The success of web service composi-

tion significantly relies on mechanism for service discovery. Many available web

services provide overlapping or identical services in terms of functionality, but with

different Contents of Services. It is essential to make choices to determine which ser-

vices are to participate in a given composite service. As an example, a travel agent is

required to find a cheap and convenient flight to destination A using various airlines

(web services). These airline web services provide the same or similar functions, but

with different degrees of quality of services and various contents in their services. The

introduction of a discovery mechanism to the process could increase the effectiveness.

The premise is that the contents of data repositories for web services should be sum-

marized and represented at higher levels of abstraction (that is the information quality

or quality of services for each web service). By looking up the summarized informa-

tion, the discovery mechanism could filter out those services which are less conformed

to consumers anticipation and locate the desired services with higher quality of ser-

vices. This approach can increase the likelihood of discovering acceptable service

efficiently, if the precision (probability) is acceptable and the number of recom-

mended services from the discovery mechanism is reasonable.

The improvement can be achieved by introducing an effective advertisement

mechanism for the contents of services with a high level of abstraction or fuzzy terms.

The precision lies in the representation of the fuzzy terms, which need to be defined at

least loosely and consistently among service providers and consumers. However, the

difficulty of having consistent terms among both sides is notorious, since they have

different expectations and experiences. This is complicated by the differences among

their preferences over the criteria. This research attempts to alleviate these problems.

This paper mainly focuses on the report of a consensus-based web service discovery

architecture that enables consumers and providers to reach a consensus on their expec-

tations and preference criteria over the terms they use, if there are any. The resulting

system should increase the success rate for a web service consumer in discovering the

required services. Therefore, the service providers can improve the quality of services.

2. A Moderated Fuzzy Web Service Discovery Architecture

In order to achieve an effective web service discovery, a number of components, in-

cluding fuzzy classifier, fuzzy engine, UDDI, OWL-S, fuzzy discovery and fuzzy

moderator, are incorporated in the proposed moderated fuzzy web service discovery

architecture (or called Moderated Fuzzy Discovery Method / MFDM) (see Fig. 1).

User

Preference

Fuzzy

Discovery

Fuzzy

Moderator

UDDI

OWL-S

Fuzzy

Classifier

OWL
Service Information

(Service Category + Raw data)

Registry

Semantic

Feedbacks

Vague

Request
Service in Fuzzy

Values (QoS)
Inference Rules

Inference Rules

Fuzzy

Engine

F
eed

b
a
ck

s

Services Discovered

Services Description

P
re

fe
re

n
c
e

Services Discovered

Semantic

Fig. 1. The Proposed Architecture for Moderated Fuzzy Web Service Discovery

The fuzzy classifier is used to summarize and represent the content of each web

services at higher levels of abstraction after browsing the data repositories. It contains

essential predefined knowledge for interpreting and classifying the information resid-

ing in web services and consists of primitive and composite fuzzy terms, modifier and

quantification fuzzy terms, and fuzzy rules (inference rules). Primitive terms are a set

of atomic terms that represent a collection of raw data. Composite terms are generated

through the combination of compound statements (primitive terms) and fuzzy rules.

54 C.-L. Huang, P. Wang, K.-M. Chao, C.-C. Lo, and J.-Y. Chung

The composite terms can also be represented in fuzzy rules, when heuristic associa-

tions between terms are required. The quantification terms are used to model the

probabilities of occurrences. A statement can be signified by a modifier to make the

statement a little vague. In other words, the statements associated with quantification

and modifier terms are represented in fuzzy rules for the purpose of reasoning. The

fuzzy classifier extends the aforementioned rules and their combinations to provide

powerful classifications for each web services and gives each of them a value of in-

formation quality (QoS) as the higher level of abstraction. The terms, which are repre-

sented in Effect of Process class of the OWL-S [9], are declarative facts supported by

other fuzzy terms and rules. The supporting fuzzy rules and sets are considered as

ontologies represented in OWL for further reasoning.

A fuzzy engine is used to drive the fuzzy classifier and to carry out the classifica-

tion process in order to evaluate the values of quality of service for each web service

in the same specific service domain. After the classification process, at least one QoS

value will be appended to the advertisement information registered in the UDDI and

OWL-S database for each web service. This QoS value provides the fuzzy discovery

with information to screen out the insignificant web services and help the consumers

to locate the desired services when vague query requests occur.

The proposed framework, Moderated Fuzzy Web Service Discovery Architecture,

adopts standard UDDI as a tool for advertising web services. However, the informa-

tion represented in UDDI lacks well-defined meaning, so it cannot fully support com-

puters and people to work in cooperation. With the complimentary support from se-

mantic web technology, the descriptions in UDDI can be modeled in OWL-S and

OWL. Retaining a list of semantic webs in UDDI provides a convenient way to dis-

cover web services, as the grounding profile in OWL-S is able to locate WSDL docu-

ments and the associated web services.

A fuzzy discovery also provides a function that converts crisp requests from service

consumers into fuzzy requests. It is important to have the crisp terms transformed into

fuzzy terms for the use of approximate reasoning, as contents of services have been

represented in fuzzy terms. The fuzzy discovery also allows the consumers to use

linguistic qualifier such as more, less, etc for searching web services. The detailed

descriptions on the fuzzy discovery method can be found in our previous work [6].

The fuzzy moderator is a mechanism to assist the service consumers and providers

in reaching consensus on the terms they use and the preferences over different criteria.

It is assumed that the web consumers and providers possess different opinions and

preference on the services they are about to consume or provide. The opinions and

preference, on which most or majority of users can agree in the group, will be accept-

able to the other members. The fuzzy moderator is able to incorporate iteratively us-

principle, the more feedbacks from users, the less subjective. The detail components

and steps for fuzzy moderator will be elaborated in the following section.

A number of tools are used for the implementation. The web services are imple-

mented via JAXRPC and their associated database systems are designed in MS Access.

The ontologies are defined through Protégé. OWLJESSKB, which is able to interpret

OWL syntax, is employed for reasoning. Extra functionalities are added to

OWLJESSKB in order to reason about fuzzy rules and sets.

A Consensus-Based Service Discovery 55

3. Fuzzy Moderator

The precision rate for service discovery is critically influenced by the fuzzy rules

(inference rules) in the fuzzy classifier which are used to summarize the content of

web services (i.e. cheap or convenient). The more the inference rule conforms to the

consumer s expectation, the higher the precision rate is. Initially arbitrary opinions

and preferences are adopted for the construction of default inference rules. However,

these default rules might not conform to consumer s expectation and it could lead to

the unsatisfactory precision rate.

The goal for fuzzy moderator is to find the group consensus on service terms (crite-

ria) and allows derived consensual values to replace the default ones for acquiring the

better classification results and precision rates in discovery. A fuzzy moderator in-

cludes two main sub-components: (1) the Similarity Aggregation Method (SAM) [5]

and (2) the Resolution Method for Group Decision Problems (RMGDP) [2],[3],[4].

During the moderation process, the SAM will be triggered first to gain the group con-

sensus on each of the criterion and subsequently RMGDP will be invoked to obtain

the group preferences on different criteria.

3.1. Similarity Aggregation Method (SAM)

The adoption of the Similarity Aggregation Method (SAM) is to resolve different

opinions among service consumers and providers. SAM is the method that can aggre-

nion. The

method employs the similarity measure to calculate the difference between one indi-

vidual with the others within the group in order to obtain the index of consensus. The

index of consensus for each individual can be collected as a set and calculated to form

an agreement among the group. After the process of SAM, the new consensual cogni-

tion about specific fuzzy terms will be derived to replace the default values in the

fuzzy classifier. With the use of SAM, the cognition of fuzzy terms between consumer

group and service providers can be relatively consistent, so the new QoS value can be

more representative. The detailed procedures can be found in [5] and the efficiency

was proved by the experiment in the previous work [1].

3.2 Resolution Method for Group Decision Problems (RMGDP)

The objective of RMGDP [2],[3],[4] is to reach group consensus on preference over

different criteria based on major opinions in the group. It can be divided into three

steps as following: (a) transformation process, i.e., to transform the individuals opin-

ions into preference values (the uniform representation), (b) aggregation process, i.e.,

to aggregate the individual preference values over different criteria to obtain the group

preference for all consumers in the group using OWA (Ordered Weighted Averaging)

operator [11], and (c) exploitation process, i.e., to compute the ranking of the alterna-

tives by group preference. The resolution method for group decision problems

[2],[3],[4] is summarized as follows:

56 C.-L. Huang, P. Wang, K.-M. Chao, C.-C. Lo, and J.-Y. Chung

(a) The transformation phase:

First, a collection of users have to be formed as a group. Each user has to evaluate

alternatives according to the defined criteria, and then assign ordering preference to

the alternatives for each criterion individually. The users allocate orderings based on

their own preferences and subjective judgments. A transfer function is applied to con-

vert those individual ordering of alternatives to a uniform representation, which char-

acterizes the ordering preference degree between alternative
ia and

ja of
kUser .

(b) The aggregation phase:

The collective preference is an aggregation of the user ordering preferences ob-

tained by the means of fuzzy majority [4]. The fuzzy majority is the product of com-

bining the OWA operator with the fuzzy quantifier. The merging function of the OWA

operator and the fuzzy quantifier Q infers the collective ordering preference on each

alternative. This process helps to aggregate all opinions into one consensus result.

(c) The exploitation phase:

The exploitation process is a consequence of identifying the priority of alternatives

of group preference. In this process, two well-known and complimentary fuzzy rank-

ing methods are used: (1) Quantifier Guided Non-Dominance Degree (QGNDD) and

(2) Quantifier Guided Dominance Degree (QGDD) [13]. These two indexes are able

to prioritize the final collective ordering preference and result the weightings under

group consensus.

4. A Numerical Example

This section mainly illustrates the resolution process for fuzzy moderator in the con-

text of the proposed architecture. The QoS term: satisfaction is the inference rule used

by the fuzzy classifier for summarizing the information of each web service at a higher

level of abstraction and is used for the vague query request about finding a Web ser-

vice (for cheap and convenient flights) by the consumers. QoS term: satisfaction de-

noted as satisfaction(Q
~

) is a composite term results from the following primitive in-

ference rules: (1) QoS term: cheap is a measurement of the cost that is defined as

cheap(Q
~

), and C
~

is its shorthand. (2) QoS term: seatsize is a scale for the available

space of the seat represented as seatsize(Q
~

) or S
~

for short. (3) QoS term: airtime

represents the length of flight time denoted as airtime(Q
~

) or T
~

for short.

So, the degree of satisfaction can be obtained by assigning them with default equal

weightings and adding them up, i.e.
initQ

~
= 1/3 ×

initC
~

+ 1/3
initS

~
+ 1/3

initT
~

.
initQ

~

is the default inference rule used for classification. After classification, consumers can

use vague query supplied by MFDM for quick find the flights with satisfaction (cheap

and convenient). This default inference rule, however, may not conform to consumers

expectation so the precision rate is not expected. For better precision rate, the initial

value for C
~

, S
~

,T
~

and weightings need to be modified to reflect the situation after a

number have been collected and calculated by the proposed method.

A Consensus-Based Service Discovery 57

We assume that there is a group of consumers, denoted as),...,3,2,1(miUser i
,

with their different subjective opinions on the definition of the term cheap. When they

use the fuzzy queries, their feedbacks on the terms cheap, seatsize and airtime can be

denoted as),,,(
~

iiiii dcbaC ,),,,(
~

iiiii dcbaS and),,,(
~

iiiii dcbaT as following:

After SAM processed these feedbacks, a moderated fuzzy set for QoS term:

cheap,)14925.007,13314.3331,0,0(
~
C , is obtained to replace the existing one (

initC
~

).

Applying the same principle, we can gain the),2.5181008,2.01050.8911,1.2(
~
S and

),2.93790,0,2.0666(
~
T for QoS term: seatsize and QoS term: airtime to replace the

existing
initS

~
and

initT
~

respectively. The fuzzy engine can use the less subjective value

(C
~

, S
~

,T
~

) to evolve in order to improve the quality of service discovery. The aggre-

gated values for each criterion are moderated but the weightings to the criteria are not.

RMGDP is utilized to assist users in reaching consensual weightings of C
~

, S
~

and T
~

.

Table 1: QGDD, QGNDD and Consensus Weightings for Alternatives

1a
(cheap)

2a
(seatsize)

3a

(airtime)

1wa
(cheap)

2wa
(seatsize)

3wa
(airtime)

QGDD for

alternatives

0.5938 0.4063 0.5000

consensus

weights for

alternatives from

QGDD 0.3959 0.2708 0.3333

1a
(cheap)

2a
(seatsize)

3a

(airtime)

1wa
(cheap)

2wa
(seatsize)

3wa
(airtime)

QGNDD for

alternatives

1 0.8125 0.9375

consensus

weights for

alternatives from

QGNDD 0.3636 0.2955 0.3409

Assume that each consumer provides his / her preferences on alternatives A using a

preference ordering },..,,{ 21

k

n

kkk

s oooO (n is the number of alternatives). For example,

consider that four consumers,)4,3,2,1(kUser k
, provide their preferences on alterna-

tives },,{ 321 aaaA , where
1a is cheap,

2a is seatsize, and
3a is airtime, by the

following ordering },,,{ 213

1 aaaO },,{ 231

2 aaaO , },,{ 321

3 aaaO and },,{ 132

4 aaaO .

After RMGDP, the consensus of four consumers is reached. The order of importance

of three alternatives can be observed evidently from the part on left of Table 1 which

generated from QGDD or QGNDD. We can then conclude that the importance of 3

criteria is
1a (cheap) >

3a (airtime) >
2a (seatsize). The value of QGDD and QGNDD

can be used to calculate the weightings for each alternative. If },...,{ 1 nwawaW is a

weighting vector and
iwa denotes the consensus weightings for alternative i,

n

i

iii aawa
1

/ ,]1,0[iwa , and
n

i

iwa
1

1
. The consensus weightings for alternatives

derived from QGDD and QGNDD are formulated as }3330.2708,0.3,0.3959{W

and }4090.2955,0.3,0.3636{W , that is the consensus weighting for QoS term: cheap

and its value is 0.3959 (the upper right part of Table 1). Finally, the QoS term: satis-

faction can be moderated as Q
~

= 0.3959 C
~

+ 0.2708 S
~

+ 0.3333 T
~

to replace

the default inference rule used for classification of web services.

58 C.-L. Huang, P. Wang, K.-M. Chao, C.-C. Lo, and J.-Y. Chung

5. Experimental Results

A case study with four different service consumers and ten airline service providers

was adopted to evaluate three different methods namely Capability Discovery Method

(CDM), Fuzzy Discovery Method (FDM) [6] which uses the default inference rule,

and Moderated Fuzzy Discovery Method (MFDM) which uses the moderated infer-

ence rule. In order to examine their overall performances, three different sets of ex-

periments were carried out and each set contain 10 experiments in order to gain their

average precision rates. 34 fuzzy terms such as very cheap, most available, comfort-

able etc and their associated rules between web service providers and consumers were

designed to represent their requests and underlying data repositories for the use of

fuzzy and moderated fuzzy discovery methods.

After 30 experiments have been carried out and the result of each experiment was

ified

and averaged according to three different methods for the investigation of their preci-

sion rates. Fig.2 shows that the MFDM with 75% precision rate has the best perform-

ance. FDM has produced correct recommendations just about over than half. CDM

only has 40% precision rate. We can conclude that the proposed MFDM has outper-

formed the FDM and the FDM has produced better precision rate than the CDM. The

MFDM has performed nearly twice better than the CDM in terms of precision rate.

Fig. 2. Average Precision Rates for CDM, FDM and MFDM

6. Discussion and Summary

From the experimental result, the proposed Moderated Fuzzy Discovery Method

(MFDM) has demonstrated that it is an effective method in web service discovery.

However, there are a number of lessons we have learned from these. It is a non-trivial

task to collect and classify the information and represent them appropriately in fuzzy

terms. So, collecting the information from various airline websites and building them

into a database were conducted. It is the same problem with coll r-

ence and opinions. This leads to that the number of web services were created is rela-

tive small. This affects the output of preference weightings which did not produce the

great differences from the original one. The scalability issue will be tackled in the

future. Since the fuzzy majority method was adopted for reaching consensus, we as-

sume that users will change their opinions and preferences in line with the consensus.

This is may not be the case when users have strong opinions and preferences. A nego-

A Consensus-Based Service Discovery 59

tiation system will be in place to resolve this issue. We believed that this method is

complimentary to [7],[8],[12] as it introduces another dimension to the web service

discovery based on QoS. Research [10],[14] on the web-based database have made

great progress on the query techniques and categorizing correlation among databases,

but the consensus issue has not been addressed. The proposed method could provide a

valuable mechanism to increase their precision rate.

The main contribution of this work is that it presents a moderated fuzzy web ser-

vice discovery mechanism which allows web service providers and consumers to

reach consensus on contents of services, even though they have different opinions and

preferences. As a result, the proposed method can improve precision in service dis-

covery. A number of experiments have been carried out to demonstrate that the pro-

posed method outperforms capability based and traditional fuzzy discovery methods.

References
1. C-L Huang, K-M Chao, C-C Lo: A Moderated Fuzzy Matchmaking for Web Services, (to

appear in) Proceedings of The 5th International Conference on Computer and Information

Technology, Shanghai, China, IEEE CS, (2005)

2. E Herrera-Viedma, F. Herrera, and F. Chiclana: A Consensus Model for Multiperson Deci-

sion Making With Different Preference Structures. IEEE Transactions on Systems, Man

and Cybernetics, IEEE, Vol. 32. (2002) 394 402

3. F. Chiclana, F Herrera, and E. Herrera-Viedma: Integrating Multiplicative Preference Rela-

tions in A Multipurpose Decision-making Model Based on Fuzzy Preference Relations.

Fuzzy Sets and Systems, Elsevier Science, Vol. 122. (2001) 277 291

4. F. Chiclana, F. Herrera, E. Herrera-Viedma: A Classification Method of Alternatives for

Multiple Preference Ordering Criteria Based on Fuzzy Majority. Journal. Fuzzy Math., Vol.

34, (1996) 224 229

5. H-M Hsu, C-T Chen: Aggregation of Fuzzy Opinions under Group Decision Making.

Fuzzy Sets and Systems, Elsevier Science, Vol. 79. (1996) 279-285

6. K-M Chao, M. Younas, C-C Lo, T-H Tan: Fuzzy Matchmaking for Web Services. Proceed-

ings of 19 IEEE Conf. on Advanced Network and Inform. Appl., IEEE CS, (2005) 721-726

7. L. Zeng, B. Benatallah, A.H.H Ngu, M. Dumas, J. Kalagnanam, H Chang: Qos-Aware

Middleware for Web Service Composition. IEEE Transactions on Software Engineering,

Vol. 30, Issue 5. IEEE, (2004) 311 327

8. M. Lin, J. Xie, H. Guo: Solving QoS-Driven Web Service Dynamic Composition as Fuzzy

Constraint Satisfaction. Proceedings of 2005 IEEE International Conf. on e-Technology, e-

Commerce and e-Service (EEE 05), IEEE CS Press, Hong Kong (2005) 9 14

9. OWL -S: Semantic -S v. 1.1,

White Paper, http://www.daml.org/services/owl-s/1.1/, Nov. (2004)

10. R Fagin, R Kumar, D. Sivakumar: Efficient Similarity Search and Classification via Rank

Aggregation. Data Proceedings of the 2003 ACM SIGMOD International Conference on

Management of Data, ACM Press, (2003) 301 312

11. R.R. Yager: On Ordered Weighted Averaging Aggregation Operators in Multi Criteria

Decision Making. IEEE Trans. on Sys., Man and Cyber., IEEE, Vol.18. (1988) 183-190

12. S Ran: A model for Web Services Discovery with QoS. ACM SIGecom Exchange, Vol. 4,

Issue 1. (2003) 1-10

13. S.A. Orlovski: Decision-Making with A Fuzzy Preference Relation. Fuzzy Sets and Sys-

tems, Elsevier Science, Vol.1. (1978) 155-167

14. U Nambiar, S Kambhampati: Answering Imprecise Database Queries: A Novel Approach.

Proceedings of the 5th ACM International Workshop on Web Information and Data Man-

agement, ACM Press, (2003) 126 133

60 C.-L. Huang, P. Wang, K.-M. Chao, C.-C. Lo, and J.-Y. Chung

62 K. Guennoun, and K. Drira

SR(r1)

SR(r2)

SR(r3)

SP(p1)

SP(p2)

SP(p3)

SOAP messages
(on the top of

HTTP, SMTP…)
Service Requestor

(SR)
Service Provider

(SP)

Elementary Pattern Architecture Example

Specifying Reference Styles for Service Orchestration and Composition 63

SR(r1)

SR(r2)

SR(r3)

SR(r4)

O(o1)

O(o2)

SP(p1)

SP(p2)

SP(p3)

SP(p4)

Service Requestor
(SR)

Orchestrator
(O)

Service Provider
(SP)

Elementary Pattern Architecture Example

64 K. Guennoun, and K. Drira

Composite Service
Provider(CP)

Basic Provider
SP(bp2)

Basic Provider
SP(bp1)

CP(P2)CP(P1)

CP(P3) CP(P4) CP(P5)

CP(P9)SP(P8)CP(P6) SP(P10)CP(P7)

SP(P11) SP(P13)SP(P12)

Elementary Pattern Architecture Example

Specifying Reference Styles for Service Orchestration and Composition 65

CP(p2)CP(p1)

CP(p3) CP(p4) CP(p5)

CP(p9)SP(p8)CP(p6) SP(p10)CP(p7)

SP(p11) SP(p13)SP(p12)

SR(r1) SR(r2)

SR(r3)

Composite Provider(CP)

Basic Provider
SP(bp2)

Basic Provider
SP(bp1)

Service Requestor
(SR)

66 K. Guennoun, and K. Drira

Service Requestor
(SR)

Composite Provider
(CP)Orchestrator (C)

Basic Provider
(BP)

Basic Provider
(BP)

CP(p2)CP(p1)

CP(p3) CP(p4) CP(p5)

CP(p9)BP(p8)CP(p6) BP(p10)CP(p7)

BP(p11) BP(p13)BP(p12)

SR(r1)

O(o1)

SR(r2)

O(o2)

SR(r3)

Elementary Pattern

Specifying Reference Styles for Service Orchestration and Composition 67

68 K. Guennoun, and K. Drira

Web Service Conflict Management

Zheng Lu, Shiyan Li, Aditya K. Ghose

Decision Systems Lab, School of IT and Computer Science
University of Wollongong, NSW 2522, Australia

 {zl07, sl562, aditya}@uow.edu.au

Abstract. Although the development of Web Service technology has made sig-
nificant progress, there is still a lack of a well-established mechanism for en-
suring reliable service composition. Unlike a traditional software module,
which runs within a predictable domain, Web Services are autonomous soft-
ware agents running in a heterogeneous execution environment. Those essential
natures of service oriented computing pose challenges to reliable service com-
position by raising questions such as how to avoid the service conflicts.

1 Introduction

Semantic research efforts (OWL-S [8]), formerly known as DAML-S [15], is an upper
ontology for services, aimed at achieving the automation of service discovery, invo-
cation, composition and interoperation. OWL-S leverages the rich expressive power of
OWL [2] together with its well-defined semantics to provide richer descriptions of Web
Services. Recently, semantic web rules language (SWRL) [3, 13] has been proposed to
define service process preconditions and effects, process control conditions and their
contingent relationships in OWL-S. Though OWL-S is endowed with more expressive
power and reasoning options when combined with SWRL, the description provided by
a combination of OWL-S and SWRL about service composition is still only a partial
picture of the real world. Most of what we know about the world, when formalized, will
yield an incomplete theory precisely because we cannot know everything – there are
gaps in our knowledge [11]. The ontology of services, on the other hand, is finite and
incomplete. Thus, a service composition specified by OWL-S has to deal with partial or
incomplete knowledge.

In this paper, we are going to bridge the gap between the semantic service descrip-
tion and multiple operational domains involved by introducing “service assumptions”.
Currently, OWL-S has no mechanism for handling the explicit description of service
assumptions and no method for reasoning about their side-effects. We will extend the
current OWL-S and try to define a formal mechanism to reasoning about incomplete
knowledge and to address the service conflict issues.

The paper is structured as follows: in Section 2 we explain the examples of Web
Service composition problems we address. In Section 3 we explain an atomic service
and composite service in general. In Section 4, we define the basic semantics for
planning-based service composition domain. In Section 5, we present a framework for

reasoning about incomplete knowledge in service composition context. Finally, in
Section 6, we present related work and our conclusions respectively.

2 Motivating Examples

The following example of a travel agency is used to explain the service conflicts which
may be caused by incompleteness of information during the dynamic service compo-
sition. Our example uses the often presented travel agency service package. A typical
use case could be the arranging of a trip with a hotel booking together with a car rental
and a sightseeing service. To simplify this use case, we assume this composite service
is executed in sequential manner (i.e. hotel booking service, then car rental service,
finally sightseeing service). Assume that when requesting this composite travel agency
service, user specifies his preferred car model, for example, a city car. Obviously, this
car will be used for sightseeing which is generated from this composite service. If the
functionality matches user’s requirement, then car rental service is invoked. In the real
world, most likely, the car rental service providers have some service policy about
usage of rental cars. However, when the car rental service is invoked, we don’t have
any information about what kinds of sightseeing plan generated from the execution of
the service, in other words, we don’t know how the rented car will be used. The point
here is that different sightseeing plans may be associated with different roads, and it is
may not be allowed for a rented car to drive on certain roads. For example, the desert
dune exploration plan is dynamically generated from the service and a city car is used
for the desert dune exploration. Certainly it is not ideal situation for both the car rental
company and the customer.

Thus, to ensure integrity of service composition, there should be a mechanism to
deal with incompleteness of information during the dynamic service composition. The
solution to this problem is to use the service assumptions. In this example, to prohibit
the illegal usage of the rental car, the car rental service could make the assumption that
“city cars do not drive on dune, beach, unsealed road…”. If the contrary evidence
appears (e.g. a dune exploration) from the succeeding service executions, then we can
conclude that there is a violation to the car usage policy. In other words, if we can get
additional information which is explicitly contradictory to the service assumptions in
context of the service composition, and then the potential service conflicts are detected.
The inability to make assumptions therefore translates into an inability to deal with
exceptions [10]. Before formally introducing our framework in next Section, we will
clarify some basic definitions about the Web Services.

3 Atomic Service and Service Selection

3.1 Atomic Service

An atomic service only performs a single function, each atomic service is described
by a tuple

ws

, ,ws p e a , where represents service precondition which must be truep

70 Z. Lu, S. Li, and A. K. Ghose

for the service to be invoked, e represents the change of world state i.e. the
effects after service completes and represents the service assumptions. Note
that and are different. It must be possible to establish that is true for to
be invoked. On the other hand, we only need to establish that is consistent with
what is known i.e. nothing is known that contradicts . is the strong condition
which must be true in order to execute the service ws , while is a weak condition.
Initially we assume to be true, unless we get additional information which is ex-
plicitly contradictory to .

ws

ws a

p a p ws

a

a p

a

a

a

3.2 Service Selection

The automated process of Web service compositions over that of software component
compositions holds some additional critical issues, such as service matching, selection
and retrieval. UDDI [5] provides a mechanism for the Web wide service registry, in
which descriptions of Web Service in UDDI are stored and searched by Category.
OWL-S allows us to semantically describe the capabilities of Web Services, thus it is
possible to perform logic inference for the service matching. [6] Provides one way to
combine these two efforts, by which services defined in OWL-S can be registered with
UDDI and allows UDDI engines to exploit OWL-S semantic information to facilitate
the retrieval of Web Services. In this proposed framework, let

1. represents an atomic service iws

2. is the set of all Web Services,WS iws WS

3. All Web Service descriptions are held in their corresponding catego-
ries is a tangible areas split from the service registry, for
example downloadable Multimedia.

1 2{ , ... }ncat cat cat icat

4. is the set of all service categoriesCAT icat CAT , ,icat WS

1{ ... }i mcat ws ws

5. Service selection function :sel CAT WS which takes a certain service
category as its input and give us an atomic service based on the service
matching i.e. ()isel cat ws .

Every atomic service in the rest of this paper refers to the Web Service which is
produced by the service selection defined above. For more details about the service
matching, interested readers may refer to [6, 7].

ws

3.3 Composite Service

Intuitively, a composite Web Service which performs combined functions may include
multiple atomic services. A composite service is the combination of the multiple
atomic services , where 0 < i < n, a composite service can be represented
as:

iws CompWS

1{ ()... ()}nCompWS sel cat sel cat

Because participants of the service composition do not necessarily share the same
objectives and background,without reasoning about incomplete knowledge and its side

Web Service Conflict Management 71

effects during the service execution, conflicts are easily accommodated in the service
composition context.

4 Service Composition as Planning

It is often assumed that a business process or application is associated with some
explicit business goal definition that can guide a planning-based composition tool to
select the right service [12]. Typically, classical planners presuppose complete and
correct information about the world. However, this simplifying assumption is not
suitable and unrealistic in the context of Web Service composition. Each node of
service composition is designed, owned, or operated by distinct parties, thus the agent
may not have complete information aboutworld. To reasoning about incompleteness of
information in the service composition context, we extend current semantic Web
Service description OWL-S by introducing service assumptions. Assumptions, in this
framework, together with states, preconditions, effects, and goals are all specified in
Description Logic [1].L

Now we are prepared to define the semantics of a service composition domain. A
state is a snapshot which describes the world with respect to the service composition
context. The state in this work is extensionally defined as a set of positive or negative
ground atomic formulas (atoms). These atoms which may change their values during
the state transition are called fluent, while for those which don’t change are called state

invariant. Unlike traditional planning, here is a partial description of the world. A
state transition t is represented as a tuple

S

S

S

, , 't s ws s , where , 's s are states and
is an atomic service. It is also worthwhile to mention that the initial state

ws

0s , in this
framework, is a partial description about the world. A goal is set of conjunctions of
atoms which need to hold in a desired world state or say final state. A service compo-
sition plan for a goal is a sequence of state transitions of atomic services, and the
transitions lead from an initial state to a final state where all ground atomic formulas in
the goal are true.

G

G

In the process of the state transition, there are three types of knowledge about the
current world which represent the state transition. Let denote a set of sentences
used to change the state . This set of sentences can be partitioned into three catego-
ries, namely state invariants, expansion and update, which is defined
as: . In rest of the paper, we will use symbol |= to represent
logical entail.

iSEN

iS

{ | |i i iSEN Inv Exp Upd }i

1. State invariant iInv denotes a set of sentences which can be entailed by the
knowledge in the previous state, defined as: 1 |i iS Inv

2. State expansion denotes a set of sentences which cannot be entailed by the
knowledge in the previous state and its negation also cannot be entailed by the
knowledge in the previous state, defined as: and

iExp

1|=\=i iS Exp xp

d

1|=\=i iS E

3. State update denotes a set of sentences whose negation can be entailed by
the knowledge in the previous state, defined as

iUpd

1|=i iS Up

72 Z. Lu, S. Li, and A. K. Ghose

In our framework, for any atomic service , Let be the set of all Web services,
is the set of all service effects, is the set of all service preconditions, we define the

following extraction functions:

ws WS

E P

1. Effect extraction function which takes an arbitrary atomic service
as an input, and extracts the effect of as its output. is a set of primitive

effects of and every primitive effect is a partition with the state invariant, expansion
and update i.e.

:ef WS E

iws ie iws ie

iws

()e if ws ei and { | |i i ie eInv eExp eUpd }i in which
denote state invariant, expansion and update respectively., ,i ieInv eExp eUpdi

i }i

2. Precondition extraction function which takes arbitrary atomic ser-
vice as an input, and extracts the precondition of as its output i.e.

. Similar to the effect extraction function:

:pf WS P

iws ip iws

()p if ws p { | |i i ip pInv pExp pUpd .
Following the definitions above, we can define the generic state transition operator

as: i1(, ,)i i i i iS pUpd eUpd S eExp pExp

which means the state transition from 1iS to is completed by means of applying
and to the state

iS

ipUpd ieUpd 1iS orderly, then add the two types of expansion of
knowledge () to the state,ieExp pExpi 1iS . Note that the order of applying state update
must be strictly followed.

5 Defeasible Reasoning in Service Composition

Comparing with the traditional software development, a dynamic service composition
is an automated process with less human intervention. Usually, it doesn’t have a pre-
defined boundary, based on which the problems of uncertainty and incompleteness of
information could be tackled. Unpredictable service executions and a dynamic
changing context complicate dynamic service composition in many ways. Inspired by
Non-monotonic logic [4], the following sub-section will attempt to provide a formal
framework for reasoning about incomplete knowledge in service composition context.

5.1 Defeasible Reasoning Framework

In this work, our conflict checking and reasoning about incompleteness of information
workwith three kinds of rules, namely absolute rules, defeasible rules and defeaters [4].
The absolute rules which are interpreted in the classical sense means whenever the
premises are indisputable then so is the conclusion. On the other hand, a defeasible
rule is that whose conclusion is normally true when its premises are, but certain con-
clusions may be defeated in the face of new information. Defeasible rules can be
defeated by contrary evidence or by defeaters. Defeaters represent knowledge which is
to prevent defeasible inference from taking place. We use the operator for absolute
rules, ~> for defeasible rules and for defeaters.

Let represents a Web Service which is produced by the service selection function
(see section3.2), represents the assumptions of , represents the precondition

iws

ia iws ip

Web Service Conflict Management 73

of , represents the effects of and represents a Web Service
whose preconditions can be satisfied. Based on Nute’s defeasible reasoning [4],

iws ie iws (iisValid ws)

)i

i

ie

Absolute rule: (Rule A)(ip isValid ws

Which means only precondition holds, and then the service is a valid candidate service
to participate service composition.
Defeasible rule: (Rule B)() ~iisValid ws e

Which means normally is the conclusion of , but which may be
defeated in the face of new information.

ie ()iisValid ws ie

Defeater: (Rule C)ia

Which means given an assumption , if the negation of the assumption is entailed
by a given state of knowledge, it will prevent the Rule B from making the conclusion

.

ia

ie

5.2 Outdated Assumptions and Assumption Database

If the negation of all sentences in is entailed by some statesie js , where is an effect
of Web Service and j > i, then the assumption associated with called the
outdated assumption. Formally, the outdated assumption can be represented
as:

ie

iws ia ie

()i jx e j i such that x Cn s ()jCn s denotes logical closure of jS ., Where
The outdated assumptions are not allowed to participate defeasible reasoning. A

simple example of an outdated assumption is: a book borrowing service assumes that
the borrower is in same city as the library. When the borrowed book is returned,we say
this assumption is outdated.

To conduct the defeasible reasoning about the current state of the world, it is nec-
essary to describe and record various assumptions generated during the service com-
position planning. In this framework, we maintain an assumption database D to store
these assumptions and their relevant effects as a pair :i ia e . Same as preconditions
and effects, assumptions are represented as ground literals.

5.3 Defeasible Reasoning Process

In this subsection, we are prepared to illustrate the process of constructing the service
composition plan based on our proposed framework. Service composition planning can
be viewed as a process of resolving conflicts and gradually refining a partially specified
plan, until it is transformed into a complete plan that satisfies the goal.
Service Composition planning is similar to the classical planning [9] in that each

world state is represented by a conjunction of literals and each Web Service is related to
a transition between those states. However, unlike classical AI planning techniques, in
this proposed framework, the planner is the rule based system which allows making
tentative conclusions and revising them in the face of additional information. In other
words, the planner is endowed with the ability to reasoning about incomplete infor-
mation in the service composition context.

74 Z. Lu, S. Li, and A. K. Ghose

Fig. 1. Defeasible Reasoning Process

For any state Web s ntil certain minimal
criteria are

er

).
i

orm sensing operations which is aiming at finding out the information
wh

1iS , ervice iws is not applicable to the state u
 met. i is specified in terms of the precondition ip , effect ie and as-

sumption ia , wh e ip must be satisfied for iws to be valid (Rule A) , the effect may be
concluded (Rule B) and the negation of the ia plays the role in being the defeat-
ers(Rule C

A state in our framework is not a complete v ew of the world. Usually, an agent is
forced to perf

ws

ich could satisfy the precondition ip . Like “1” showed in the Fig. 1, the sensing
operation may lead to knowledge expansion and update of the state 1iS . When the
sensing operations complete, if ip is satisfied, we can conclude that iws is applicable to
the current state (Rule A). Due to the expansion and update of knowled state 1iS ,
before the transition to state iS ,we get an intermediate state

1

'
i

S

ge to
which holds the current

knowledge of the world after the agent’s sensing operation. Following the sensing
operations, effect ie is applied to the current world state

1i

'S to simulate the action.

Again, the effect ie may expand and update the knowledge of the current state (Rule
B). This process can be presented as generic state transition ration as we defined in
Section 4.

One of the main features in this proposed framework is the ability to describe
various serv

ope

ice assumptions and support defeasible reasoning with these assumptions.
Assumptions generated from the service composition planning are represented as a set
of ground literals stored in the assumption database D . After the effect is applied to
the current state, the knowledge in the state may be expanded or updated. For the new
state of knowledge, the planner needs to carefu perform the checking to see
whether any outdated assumption is in D

lly
. Because the outdated assumptions are not

allowed to participate the defeasible reasoning, all outdated assumptions are deleted
from D . Next, it is to find the defeaters the mean of checking whether any negation
of assumptions can be entailed by the current state. The negation of service assumption
which is not outdated plays the role in being a defeater, which prevents the effects

by

associated with this assumption being applied to the state (Rule C). Up to now, the

Web Service Conflict Management 75

process of state transition from 1iS to iS is completed. We have illustrated that how the
new world state is reached in the presence of possibly conflicting rules.

6 Summary

The capability o
postcondition, as

f a Web by WSMO[14] in terms of precondition,
sumption, effect and some others properties. However, the assumption

we proposed in this work is different om the assumption in WSMO. The assumption

vice composition when information available
is

ng with various assumptions. We illustrated how knowledge based
pla

alvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P. F., Eds.
escription Logic Handbook:Theory, Implementation and Applications. Cam-

bridge University Press.
-

3.

6. antic
Semantic Web Workshop.
tching of Web Services

Service is specified

fr
proposed in this work extends the semantics of OWL-S for the purpose of explicitly
supporting defeasible reasoning and trying to tackle the problem of incomplete infor-
mation in service composition context.

The goal of dealing with incomplete information in the service composition context
is certainly a challenging task. The proposed framework is an attempt at tackling the
problem of how to achieve consistent ser

insufficient.
In this work, we have extended the OWL-S to a richer service description repre-

sentation schema by introducing the service assumptions. We also adopted defeasible
rules for reasoni

nning could reason about incomplete knowledge in service composition context and
construct the service composition plan. During the process of the service composition
we showed that absolute rules could be used for service precondition satisfaction,
especially defeasible rules and defeaters could be employed to make tentative conclu-
sions based on the available information, and to detect potential conflicts in service
composition when further suitable information about the problem is available.

References

1. Baader, F., C
2003. The D

2. Dean, M. and Schreiber G. OWL Web Ontology Language Reference W3C Recommen
dation, http://www.w3.org/tr/owl-ref/. Feb 2004.
Benjamin N. Grosof, Ian Horrocks Description Logic Programs: Combining Logic Pro-
grams with Description Logic ACM 1581136803/03/0005.

4. Donald Nute. Defeasible logic. In D. Gabbay and C. Hogger (eds.), Handbook of Logic for
Artificial Intelligence and Logic Programming, Vol. III, Oxford University Press,
1994:353-395.

5. Kreger, H. Web services Conceptual Architecture (WSCA 1.0).
http://www-4.ibm.com/software/solutions/Webservices/ , 2001
M. Paolucci, Takahiro Kawamura, Terry R. Payne, Katia Sycara. "Importing the Sem
Web in UDDI". In Proceedings of Web Services, E-business and

7. M. Paolucci, T. Kawmura, T. Payne and K. Sycara. Semantic Ma
Capabilities. In First Int. Semantic Web Conf., 2002

8. OWL-S White Paper: OWL Services Coalition. OWL-S: Semantic markup for Web ser-
vices, 2005. http://www.daml.org/services/owl-s/1.1/overview/#1

76 Z. Lu, S. Li, and A. K. Ghose

9. R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application of theorem provin
to problem solving. In J. Allen, J. Hendler, and A. Tat

g
e, editors, Readings in Planning,

10. D thesis, Stanford

11.
12. omposition of Semantic Web services. In

2), Toulouse, France, April 2002.
ubmission/2004/03/.

15. .
. Paolucci, T. Payne, K. Sycara, and

pages 88–97. Kaufmann, San Mateo, CA, 1990.
R. V. Guha. Contexts: A Formalization and Some Applications. Ph
University, 1991.
Reiter R. A logic for default reasoning, Artif Intell 1980; 13:81–132.
S. McIlraith and T. C. Son. Adapting Golog for c
Proceedings of the 8th International Conference on Knowledge Representation and
Reasoning (KR200

13. “Semantic Web Rule Language”, May 21, 2004. http://www.w3.org/S
14. WSMO working group. WSMO homepage, since 2004. http://www.wsmo.org/.

Ankolenkar et al., 2001 A. Ankolenkar, M. Burstein, T. Cao Son, J. Hobbs, O. Lassila, D
Martin, D. McDermott, S.McIlraith, S. Narayanan, M
H. Zeng: DAML-S: Semantic Markup For Web Services,
http://www.daml.org/services/daml-s/2001/10/daml-s.html.

Web Service Conflict Management 77

78 Z. Lu, S. Li, and A. K. Ghose

An Engineering Method for Semantic Service
Applications

Guido Laures and Harald Meyer and Martin Breest

Hasso-Plattner-Institute for IT-Systems-Engineering
Prof.-Dr.-Helmert-Strasse 2-3, 14482 Potsdam, Germany

{guido.laures|harald.meyer|martin.breest}@hpi.uni-potsdam.de

Abstract. Industrial usage scenarios for semantic services are currently
hard to find. The lack of standardized ontologies for certain business do-
mains, the complexity of the technologies, and very few concrete design
methodologies hamper the acceptance of semantic services-oriented ap-
proaches.

The service engineering method presented in this paper demonstrates
how end-user centric applications can benefit from the potential of se-
mantic services and their (semi-)automated composition. A practical im-
plementation example taken from the telecommunication sector proves
the applicability of the presented approach.

1 Introduction

Developing applications that re-use and compose the functionality provided by
existing services reduces development costs and is therefore one of the key en-
gineering goals. A composite application provides its specific functionalities by
invoking existing services or compositions of them. However, the direct address-
ing of services inside a composite application using standard web technologies
implies that it will be statically bound to external functionality. This leads to
the following issues:

– The integration of new services always implies a change in service binding
inside the application, which in most cases induces additional coding.

– The internal application flow can hardly be changed without rebuilding the
application.

– The reliability of the application depends on the availability and reliability
of external services that in most cases are out of the control of the developing
organization of the composite application.

Throughout this paper we will use the following definitions: a service is syn-
onymous to a web service as defined by the Web Service Architecture [1]. A
service composition is a process consisting of service interactions to reach a de-
fined goal [2]. A semantic service is a service for which a machine-processable
semantic description of its functionality exists.

2 Guido Laures and Harald Meyer and Martin Breest

2 Related Work

As shown in [3–6] the issues discussed can be tackled using semantic services.
While they allow for the development of more flexible, adaptable, and fault-
tolerant systems, their application to industrial scenarios is lacking. Several
problems hamper their acceptance. Industry-strength, reusable ontologies are
missing. Required technologies are still immature and hard to use. The missing
link, however, is a concrete design methodology that guides the design of seman-
tic service-oriented architectures. In this paper we present core elements of such
a methodology and elaborate its most important activities.

Our methodology is not self-contained. It is rather meant to be integrated
into existing engineering processes. The development of a full featured method-
ology is out of the scope of this paper. As most parts of a software engineering
process are common ground, it would not be very helpful either. Instead we are
restricting ourselves to the design of the semantic service-oriented part. Com-
bined with existing development methodologies (e.g. UP [7], V-Modell XT [8],
OOSE [9]), our approach can overcome today’s limitations. We will focus on
the specification of the core activities to be conducted in a semantic service ap-
plication engineering process. Unlike others [10] the proposed methodology is
independent of specific semantic service specification languages. Instead, it is
described on a conceptual level claiming to be applicable to various semantic
service languages and architectures.

3 Requirements on a Semantic Service-Oriented
Application Design Methodology

We demonstrate our methodology using a mobile scenario. The scenario aims
at the development of an attraction booking application enabling end users to
use their mobile devices to gain information about attractions, to book tickets,
and to get a route to the selected attraction. There are three stakeholders in this
scenario: The end user accesses the attraction booking application using a mobile
device. The end service provider is responsible for developing and running the
composite attraction booking application remotely accessed via a mobile device.
The providers of external services that are invoked by the attraction booking
application are called external service providers. Our methodology aims at the
end service provider.

In the following, we will examine the requirements of a methodology tai-
lored for semantic service-oriented applications. The usage scenario following
the sketched method will prove its applicability. In the last section we provide a
conclusion and an outlook how the methodology outlined in this paper can be
enhanced and detailed in the future.

There are two alternate approaches to develop a semantic service. The first
one is to develop a service from scratch and provide a semantic description
using a semantic service specification language (e.g. WSML [11]). The other way
is to develop only the semantic specification for an existing web service and

80 G. Laures, H. Meyer, and M. Breest

An Engineering Method for Semantic Service Applications 3

attaching the semantic specification to its WSDL. In this paper we develop a
methodology for the second strategy, as this approach only adds few additional
requirements to any engineering methodology already applied in developing the
core functionality, thus easing the barrier to adoption.

Requirement 1: Guide the design decisions on service granularity The gran-
ularity and also the used ontology concepts of a semantic service specification
determine the flexibility and adaptability of the composite application using
the specified service. If a semantic specification uses very fine granular concepts
they are likely to be composed and re-used in several use cases of the appli-
cation. But, too fine-granular descriptions cause a complex ontology and high
efforts to develop the specification itself. A more coarse-grained specification on
the other side is easy to develop but might on the other hand avoid the usage
of the service in a significant number of service compositions of the application.
Thus, a methodology for the development of composed semantic service appli-
cations needs to provide guidance for the selection of the most suitable concept
granularity.

Requirement 2: Provide a concise terminology to support communication and
collaboration of stakeholders from different domains Services defined and used
in a SOA ideally correspond to concrete business functionality. This implies
that projects dealing with the integration of services depend on an effective
information exchange between business and technology experts. Therefore, it is
important to define a clear terminology that all roles involved in the project agree
on. Such a terminology provides definitions for concepts from the SOA domain
as well as refined stakeholder role specifications. SOA projects are integration-
driven making a stakeholder analysis more complicated as compared to classical
application developments with a clearer distinction of the roles involved.

Requirement 3: Provide a trace from business models to machine-processable
domain ontologies Domain models elaborated using a traditional software engi-
neering process tend to serve as a documentation only. Thus, they are not likely
to be transferred into tangible artifacts processable by computational resources
of the system under development (SUD). In semantic service based applications
it is crucial to follow a methodology that provides traceability from the domain
model to a machine-processable ontology. As ontologies form the basis for a
number of semantic services re-used in different applications, the methodology
also needs to provide guidelines for the integration as well as the enhancement
of existing ontologies.

4 Semantic Service-Oriented Application Engineering
Methodology

For each activity of the methodology presented in the following section we will
use a common description pattern containing the following elements:

Description: a textual description of what is to be conducted in the activity.

An Engineering Method for Semantic Service Applications 81

4 Guido Laures and Harald Meyer and Martin Breest

Responsible Role: the role in the engineering process responsible for the con-
duction of the activity

Input Artifacts: the artifacts of the engineering process needed as an input
to this activity

Output Artifact: the generated artifacts of this activity

V

Compositions
specified

Identify
composition
candidates

Design
domain
ontology

Domain
ontology
specified

Service
landscaping

Service
landscape
specified

Application
flow specified

Use case
analysis

Component-
oriented design

Stakeholders
identified

Stakeholder
analysis

V

Evaluate
analysis
model

V

V

Evaluation
finished

refinement

iteration

required

Derive
semantic

query
templates

Semantic
query

templates
specified

Fig. 1. EPC of the sketched methodology

Figure 1 presents an EPC for the core activities of the proposed methodology.
In an iterative approach the presented activities aim at bridging the gap between
the use case analysis and the design phase taken from a classical development
process.

4.1 Identify Service Compositions

The application flow is a top-level view of the flow inside the application. Re-
quired functionality and their interactions are identified. In this early stage of
development it is unclear how this functionality maps to the landscape of avail-
able or planned services. Based on the application flow, the use cases of the
application that will be implemented with the help of compositions of external
services are identified. Figure 2 shows the application flow of the Attraction
Booking composite application. The application flow includes the three main
use cases: find attractions, book attraction, and get a route description. Each
of them is realized using service compositions. As the services used are sub-
ject to frequent changes, these parts of the application flow are ideal points for
automatically created service compositions.

Responsible Role Application Designer.

Input Artifacts To identify the service compositions an application flow spec-
ification is mandatory. Furthermore, a rough idea of the available service
landscape is required.

82 G. Laures, H. Meyer, and M. Breest

An Engineering Method for Semantic Service Applications 5

error

get details

get route

error

get booking

details

book

confirm errorView Action Decision Path

Route Planning

Ticketing

Tourist Information

find attractionsSearchView
SearchResult-

View

DetailsViewRouteView ReservationView

ConfirmationView

error

Find

Attractions

Get Route

Description

Book

Attraction

Service Composition Composition Assignment

Fig. 2. Identified Service Compositions

Output Artifacts The identified service compositions and their context inside
the application flow.

4.2 Design Domain Ontology

Several approaches to the design or engineering of ontologies exist. This does not
only include the design from scratch (e.g. [12–14]) but also reusing ontologies [15].
As our methodology is agnostic to the ontology design approach used and we
do not intend to develop our own approach, we will not further elaborate this
activity in this paper.

Responsible Role Domain expert and system analyst.

Input Artifacts The application flow specification as well as the composi-
tion identification is needed to identify the concepts of the to be developed
ontology.

Output Artifacts The output is a ontology containing all concepts needed
for the semantic service specification of the services in the service landscape
that will be elaborated in the Service Landscaping action described below.

An Engineering Method for Semantic Service Applications 83

6 Guido Laures and Harald Meyer and Martin Breest

4.3 Service Landscaping

A crucial part of every service-oriented project is the identification and analysis
of existing and newly developed functionality to be integrated in the SUD as
services. We call this action service landscaping. To conduct service landscaping
it is important to have the domain ontology in mind elaborated as output arti-
facts of the former actions of the methodology. Our methodology does not rely
on automated service discovery using web search as proposed in [16]. We are
convinced that in real business-related scenarios the selection of integrated basic
services and their providers needs to be a manual process. Therefore, the service
landscaping in our methodology mainly relies on a selection of basic web services
identified by a manual search and identification process. The specifications of the
external services (WSDL) need to be manually mapped to the concepts of the
domain ontology afterwards.

Responsible Role Architect together with domain experts.

Input Artifacts The composition identification is the most important input
of this activity. However, it is important that a redesign of the compositions
might be necessary if no adequate external basic services can be identified
during this action. Another input artifact is the concept specifications of the
domain ontology.

Output Artifacts The output of this activity is a set of semantic service
specifications and their mapping onto the grounded external services.

4.4 Derive Semantic Query Templates

After a successful service landscaping, all required functionality can be mapped
to services. Services and compositions of these services embedded in the applica-
tion flow have been identified. Nevertheless, the system is still unusable for end
users. To request functionality, semantic queries are issued. In response, service
compositions are created and enacted. End-users are not able to specify queries
directly as they usually include complex logical expressions and require basic
programming skills.

Our approach therefore includes the specification of templates for seman-
tic queries. Instead of requiring end-users to specify semantic queries, they are
merely asked for data input and additional properties. In turn, the user-specified
properties serve as values for the variables of the query templates (e.g. as it is
often done in SQL). These include boolean decisions that trigger the inclusion
of logical expression in the semantic query. More complex scenarios are possible
as well: lists allow the user to select one of several possibilities.

While this approach reduces the flexibility of automated service composition,
it results in a better usability of the end-user application. As semantic query
templates are known, the system as a whole is easier to use and more reliable than
a system where no restrictions on queries are in place. As several distinct user
inputs may be linked together, a huge amount of instantiations for each template

84 G. Laures, H. Meyer, and M. Breest

An Engineering Method for Semantic Service Applications 7

is possible. As composition is performed during run-time, most adaptations are
still possible, even in case of registration or de-registration of services.

Responsible Role Application designer.

Input Artifacts The input for the design of semantic query templates includes
the identified service compositions and the ontology. For each possible com-
position one template is created according to the ontology.

Output Artifacts The output are the semantic query templates for each com-
position and their integration into the user interaction.

5 Practical Applicability

The attraction information scenario we developed using the described method-
ology is based on the ASG reference architecture implementation. The service
landscaping showed adequate public services needed for the realization of such
a scenario still to be lacking. We therefore were forced to define and use custom
web services as simulation. Because of the lack of a fully-featured reasoning en-
gine for WSML-based services we had to manually define the ontology as well as
the service semantics using a frame logic implementation (Flora-2). Therefore,
the whole ontology definition based directly on Flora expressions proved to be
hard to understand for non-technical people. Thus, the traceability from busi-
ness models to machine-processable ontologies is limited due to missing tools
able to provide a better abstraction of the underlying technology.

6 Conclusion and Outlook

In this paper we sketched the basic elements of an engineering methodology for
semantic service based applications. The presented approach focuses on applica-
bility and has been validated by a prototypical implementation using the ASG
reference architecture implementation. Even though in principal it is possible to
start developing composite application using semantic services we found out that
tool support as well as the availability of external web services to be used in ser-
vice compositions is still far from being production-ready. More scientific efforts
need to be spent especially in the language and tool support for the reasoning
of semantic services. Furthermore, the development of business models for the
provision and integration of external web services (semantic and non-semantic)
is crucial for the full exploitation of the potential of web service technologies in
industries.

References

1. Booth, D., et.al.: Web Services Architecture, W3C. (2004)
http://www.w3.org/TR/ws-arch/.

An Engineering Method for Semantic Service Applications 85

8 Guido Laures and Harald Meyer and Martin Breest

2. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. Springer (2003)
3. Fensel, D., Bussler, C.: Semantic web services. IEEE Intelligent Systems 16 (2001)

46–53
4. Fensel, D., Bussler, C.: The web service modeling framework (wsmf). Electronic

Commerce: Research and Applications 1 (2001) 113 – 137
5. Sivashanmugam, K., Verma, K., Sheth, A., Miller, J.: Adding semantics to web

services standards. In: Proceedings of the 1st International Conference on Web
Services (ICWS’03), Las Vegas, Nevada, USA (2003) 395 – 401

6. Martin, D., et al.: Bringing semantics to web services: The owl-s approach. In:
Proceedings of the First International Workshop on Semantic Web Services and
Web Process Composition (SWSWPC 2004), San Diego, California, USA (2004)

7. Jacobson, I., Booch, G., Rumbaugh, J.: The unified software development process.
Addison-Wesley (1999)

8. Bundesrepublik Deutschland Germany: V-Modell XT.
(2004) http://h90761.serverkompetenz.net/v-modell-xt/Release-
1.1/Dokumentation/html/.

9. Oesterreich, B.: Objekt-orientierte Softwareentwicklung. Oldenbourg (2001)
10. Jaeger, M.C., Engel, L., Geihs, K.: A methodology for developing owl-s descrip-

tions. In: In First International Conference on Interoperability of Enterprise Soft-
ware and Applications Workshop on Web Services and Interoperability, Switzerland
(2005)

11. de Bruijn, J., et.al.: The Web Service Modeling Language WSML, DERI. (2005)
http://www.wsmo.org/TR/d16/d16.1/v0.2/20050320/.

12. Grüninger, M., Fox, M.S.: Methodology for the design and evaluation of ontologies.
In: Workshop on Basic Ontological Issues in Knowledge Sharing, held in conduction
with IJCAI-95, Montreal, Canada (1995)

13. Uschold, M., King, M.: Towards a methodology for building ontologies. In: Work-
shop on Basic Ontological Issues in Knowledge Sharing, held in conduction with
IJCAI-95, Montreal, Canada (1995)

14. Staab, S., Studer, R., Schnurr, H.P., Sure, Y.: Knowledge processes and ontologies.
IEEE Intelligent Systems 16 (2001) 26–34

15. Studer, R., Benjamins, R., Fensel, D.: Knowledge engineering: Principles and
methods. Data and Knowledge Engineering 25 (1998) 161 – 197

16. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Semantic matching of
web services capabilities. In: ISWC ’02: Proceedings of the First International
Semantic Web Conference on The Semantic Web, London, UK, Springer-Verlag
(2002) 333–347

86 G. Laures, H. Meyer, and M. Breest

Author Index

Anand, Sriram, 25

Breest, Martin, 79

Chang, Elizabeth, 33
Chao, Kuo-Ming, 53
Chung, Jen-Yao, 53

Decker, Gero, 17
Drira, Khalil, 61

Eidson, Bill, 1
Erradi, Abdelkarim, 25

Feuerlicht, George, 43

Ghose, Aditya K., 69
Guennoun, Karim, 61

Huang, Chun-Lung, 53

Kulkarni, Naveen, 25

Laures, Guido, 79
Li, Shiyan, 69
Lo, Chi-Chun, 53
Lu, Zheng, 69

Maron, Jonathan, 1
Meyer, Harald, 79
Misic, Vojislav, 9

Padmanabhuni, Srinivas, 25
Pavlik, Greg, 1
Potdar, Vidyasagar, 33

Raheja, Rajesh, 1
Rennie, Michael, 9

Wang, Ping, 53
Wu, Chen, 33

