
RC23943 (W0604-125) April 25, 2006
Computer Science

IBM Research Report

Architecture for Service Oriented Solution Delivery
Using Grid Systems

Vijay K. Naik, Pawel Garbacki*, Ajay Mohindra
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

*Delft University of Technology

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Architecture for Service Oriented Solution Delivery Using Grid Systems

Vijay K. Naik
IBM T. J. Watson Res Center

vkn@us.ibm.com

Paweł Garbacki
Delft University of Technology

p.j.garbacki@tudelft.nl

Ajay Mohindra
IBM T. J. Watson Res Center

ajaym@us.ibm.com

Abstract

Today, service delivery environments are increasingly re-
quired to handle complex service requests requiring config-
uration and deployment of customized solutions. Managing
and delivering such services using grid based infrastructure
has many attractions including flexible resource manage-
ment framework, the ability to handle heterogeneous work-
load and heterogeneous resources, and the ability to in-
corporate and share resources from multiple administrative
and policy domains. However, existing grid systems lack
critical system management services such as automated
configuration, deployment, and life-cycle services that are
taken for granted on other large scale systems. In this paper,
we describe Harmony II — an architecture for delivering
customized solutions using an approach that is amenable to
automation in configuration and deployment of solutions on
grid resources. These automations are made possible by us-
ing resource virtualization, workload and resource capacity
predictions, and on-line matching of workload requirements
with available resource capacities.

1. Introduction

In an IT service delivery environment, clients submit re-
quests for services and the requested service is delivered to
the requestor as per the client specification or according to a
predetermined service delivery specification. In such envi-
ronments an IT solution is delivered in response to a request
such that the requestor is not involved in the configuration,
deployment, and any other aspect of the life-cycle manage-
ment of preparing, delivering, and termination of the ser-
vice. This means the requestor does not need to know the
internal details of the solution configuration or deployment.
Typically, the service delivered is not an out-of-box solu-
tion, but requires some customization and integration. It
may require configuration and integration of one or more
applications, middleware components, and subsystems of
OS, network, and file systems. Ideally, all such manage-
ment aspects should handled transparent to the requestor by
the entities managing the service delivery.

The separation of service management aspects from ser-

vice specification and consumption aspects has opened up
many opportunities. Service users can leverage this ab-
straction to realize complex service compositions and think
in terms of requesting and receiving complex business so-
lutions on-demand to suit business needs. At the same
time, service delivery vendors can think of managing the re-
quested solutions in terms of managing workflows of large
number of integrated tasks. By pooling together requests
from multiple customers, vendors can realize resource and
skill pool consolidation. They can also benefit from the
economies of scale by processing and delivering IT services
to a large pool of customers by using standardized service
components. Realizing this in practice, however, involves
creating customer specific solutions that need to be config-
ured, deployed, and managed on-demand. Standardizing
these practices is not straightforward.

Grid abstractions provide the flexibility required for han-
dling heterogeneous set of service requests and servicing
the components using a common set of resources. Grid ab-
stractions also provide the ability to harvest and aggregate
resources from multiple administrative domains to achieve
delivery specific business goals such as high throughput,
preferential treatment of client requests, and so on. Grid re-
sources belonging to individual administrative domains can
enforce their own policies for usage, sharing, and collabo-
ration. Service provisioning on shared resources allows ag-
gregation of resources on-demand and provides the ability
to control the utilization of resources. From a management
and administration point of view, grid model is highly desir-
able since control points can be defined and policies can be
applied to control individual resource usages and the quality
of service delivered. Thus, the grid computing model can
be directly adopted in an environment consisting of multi-
ple workloads each requiring customized IT services using
a common set of resources. Furthermore, if the fluctuations
in the workloads are not correlated, then with grid comput-
ing model it is possible to achieve higher operational effi-
ciencies and utilization than is possible by using dedicated
resources for each workload.

While there are compelling reasons to adopt the grid
model in a request oriented service delivery environment,

in practice, there are many challenges that need to be over-
come before realizing the full potentials of grid computing
in a service delivery environment. One difficulty is the lack
of grid mechanisms for automating configuration and de-
ployment operations. Another difficulty is in controlling re-
source sharing by grid workload. A third difficulty is the
absence of services for detecting and handling faults in the
physical resources. For commercial workloads, these im-
portant characteristics are taken for granted on traditional
platforms such as the mainframe systems.

In this paper, we describe a framework called Har-
mony II that provides a platform for service execution on
a grid infrastructure using standardized service manage-
ment practices. In the context of the grid resource sharing
model, Harmony II can be viewed as an extension of the
grid framework optimized for a high level of automation
of the deployment and provisioning of customized services.
Harmony II does not replace existing grid middleware, but
rather builds on top of it.

The seamless integration of Harmony II with the exist-
ing grid infrastructures is possible through the use of re-
source virtualization. Service executions are orchestrated
such that their performance impact on each other and ex-
ternal workloads is kept within the limits prescribed by the
resource usage policies even in the presence of faulty or ma-
licious services. With the use of multiple, customizable vir-
tual machine templates, we allow the delivered services to
fully customize their execution environments, which are no
longer dependent on the fixed configuration of the grid re-
sources.

The rest of the paper is structured as follows. The
overview of the Harmony II system architecture is provided
in Section 2. Section 3 discusses the automation aspects of
service management in our architecture. The most impor-
tant details regarding the Harmony II implementation are
given in Section 4. The results of the performance eval-
uation are presented in Section 5. Finally, the concluding
remarks and prospects for the future work are described in
Section 6.

2. Harmony II Architecture

Harmony II architecture is guided by the following re-
quirements: (i) Support for heterogeneous service requests,
(ii) Support for heterogeneous resources, (iii) Support for
grid-based service configuration, deployment, and provi-
sioning, (iv) Optimization of system throughput, resource
utilization, and service availability, (v) Flexibility in defin-
ing local resource usage policies, and (vi) Adaptability to
changes in resource availability and client demands.

As shown in Figure 1, Harmony II architecture consists
of three functional components: (i) Service Provisioning In-
frastructure, (ii) Service and Resource Management Infras-
tructure, and (iii) System Data. We describe these in some

detail in the following.

���� �����	�
��������� ��������	����

Service Provisioning Infrastructure consists of four lay-
ers that manage the dependencies between the service in-
stances, the virtual resources that they occupy, and the phys-
ical grid resources that host the virtual resources.

The services provided by Harmony II are invoked by ei-
ther batch or interactive applications called here the Ser-
vice Clients. The complexity of the underlying distributed
service providing infrastructure is hidden from the service
clients behind the abstraction of the Access Layer encapsu-
lated by the Gateway component. Gateway is a well known
access point to the system where service clients direct their
requests. Those requests are then repacked and rerouted to
an appropriate service instance where the requests are pro-
cessed. The responses are returned to the Gateway, which
then routes then back to the service client. The client re-
quest routing is performed by the Gateway in a transparent
manner, meaning that clients do not have any influence on
or knowledge of the selection of the service instance that
will handle the request. The Gateway may also perform a
few other functions such as service client authentication and
authorization, tracking the status of client requests in case
of asynchronous service invocations, and providing service
orchestration, if necessary. In Harmony II, there is one log-
ical Gateway. However, for achieving scalability, multiple
physical entry points may be provided, with client traffic
balanced among these physical Gateways, in a way trans-
parent to the clients. For the purpose of this paper, we
consider the system architecture that consists of one logi-
cal Gateway, which maps onto one physical Gateway.

The service instances, which form the Service Layer,
are not deployed directly on the physical resources, but are
rather embedded inside Virtual Machines (VM). Services
may have multiple instances deployed inside different VMs.
Depending on the policy defined by the services and com-
patibility issues between service deployments, multiple ser-
vice instances may reside inside a single VM. Deploying
multiple service instances inside one VM trades the ser-
vice environment isolation aspects offered by the single-
service deployments for the physical resource capacity sav-
ings brought by reducing the number of VMs in the system.

The Virtual Resources Layer consists of the virtualized
resources and the associated control infrastructure. Every
VM in our system is controlled from inside the VM by the
Virtual Machine Manager (VMM). The VMM, which runs
as a privileged process or a daemon, is responsible for col-
lecting the CPU, memory, and disk resources usage of its
VM. When the resource consumption of the controlled VM
exceeds an acceptable level, the VMM performs a graceful
shutdown of the VM.

The Physical Resources Layer consists of the resources

Service Clients

Configuration
Deployment

&

Engine

Resource
Matcher

Predictor

Active
State

Repository

Grid
Resource
Manager

Software
Repository

State
Database

Configuration
Database

S
e

rv
ic

e
L

a
y
e

r

Instance of
Service 1

Instance of
Service 2

Instance of
Service 3

Instance of
Service 2

Virtual
Machine
Manager

Virtual
Machine

Physical
Machine

Host
Agent

Virtual
Machine

Instantiator

Gateway

V
ir

tu
a

l
R

e
s
o

u
rc

e
s

L
a

y
er

P
h
y
s
ic

a
l
R

e
s
o

u
rc

e
s

L
a
y
er

A
c
c
e

s
s

L
a

y
e

r

Physical
Machine

Host
Agent

Virtual
Machine

Instantiator

Virtual
Machine
Manager

Virtual
Machine

Virtual
Machine
Manager

Virtual
Machine

Service Provisioning Infrastructure Service and Resource Management Infrastructure System Data Infrastructure

Service Request/Response

Mapping

Component Dependency

Legend

Figure 1. The components of Harmony II architecture.

associated with Physical Machines. Resources may join and
leave this layer dynamically. Typically, the owner of a re-
source determines when the resource may participate in the
grid environment, and puts a limit on the acceptable load
exercised by the service computations. This could be done
by defining a policy or by a direct intervention. Collectively,
the Physical Resources Layer forms the basis for all the re-
sources available to the services and, ultimately, the quality
of the services delivered by Harmony II is determined by the
quality of the resources available in the Physical Resources
Layer.

The key component in enforcing policies of physical re-
source usage is the Host Agent (HA). HA is as a privileged
process running directly on the physical resource OS, mon-
itoring the CPU, memory, and disk resources usage by the
VMs and ensuring that none of the local policies is being
violated. The specific task of instantiating VMs on physical
resources is assigned to Virtual Machine Instantiator (VMI).
VMI is not a constantly running service, but rather an ap-
plication which is activated only when a new VM is to be
created. Consequently, in a stable situation, VMI does not
consume any of the local resources.

���� �����	� �� ������	� �������� ��
�������	����

In a grid environment as the one considered here, the
management infrastructure has to ensure that there are ad-
equate physical resources available to host the virtual ma-

chines while enforcing local policies, and at the same time
fulfill certain QoS requirements. Providing this function-
ality requires coordination of the actions taken at different
layers of the Service Provisioning Infrastructure. In Har-
mony II , the components providing the management func-
tionality across the Service Provisioning Infrastructure lay-
ers are collectively called Service and Resource Manage-
ment Infrastructure.

The resource monitors (HA and VMM) report the col-
lected usage statistics to the Active State Repository (ASR).
AST provides a set of interfaces that give the decision mak-
ing components access to the gathered system data. To re-
duce the amount of data transferred over the network, ASR
partially processes the data locally and sends only the com-
puted statistics over the network.

The Predictor generates forecasts of the future service
workload characteristics and resource availability based on
the current system state as well as historical data. Fore-
casting of grid resource usages has been shown to be a
difficult problem [7]. Service behavior may vary over the
time, and there is no single prediction algorithm that fits all
different service workloads. With generality in mind, we
have integrated with our predictor a wide range of forecast-
ing algorithms, starting with simple methods such as run-
ning mean or exponential smoothing, to end up with cur-
rent state-of-the-art approaches such as ARIMA, Holt Win-
ters, FFT, Wavelet, or Kalman Filter. For each prediction

method, we measure its accuracy in a certain context, e.g.,
estimation of a load exercised by the clients of a particular
service, and select the most reliable method for this context.
In this respect, our prediction approach is similar to the one
adopted in the Network Weather Service [11].

The responsibility of the Resource Matcher is to select
the physical machine that will host a service instance em-
bedded inside a VM. The selection of the physical resource
is done based on two factors: the compatibility with service
requirements and predicted resource capacity. The compat-
ibility aspects address the suitability of the resource hard-
ware/software configuration to host the service instance.
The resource capacity predictions, on the other hand, help
to ascertain that the resource will be able to handle certain
level of service load in the future. For details on the archi-
tecture and design such a Resource Matcher, we refer the
interested reader to [8].

The variety of the resources, so typical in a grid envi-
ronment, in combination with the diversity of the supported
services requires a highly flexible solution for configuring
these services on the grid resources. In Harmony II, the
component that customizes the process of instantiation of
new VMs and installation of services and dependent soft-
ware components inside those VMs is the Configuration
and Deployment Engine (CDE). The customization of the
configuration and deployment process is achieved through
the use of deployment scripts with detailed description of
the installation procedure. Deployment scripts have a form
of XML documents and are, thus, portable across multiple
operating systems.

The Grid Resource Manager (GRM) deals with the high
level QoS aspects of the service provisioning infrastructure.
The objective of GRM is to guarantee that there are enough
resources allocated to services to meet certain QoS require-
ments, while ensuring that the service workload does not
violate the resource usage policies. To achieve those objec-
tives, GRM determines the amount of the physical resource
capacity that should be assigned to each service and defines
how client requests should be distributed among available
service instances. The responsibility of the GRM is limited
to defining the system-wide policies directing the Service
Provisioning Infrastructure adaptation, not enforcing these
policies, which is left to other components such as Gate-
way, Configuration and Deployment Engine, and Resource
Matcher.

���� ������ ���� ��������	����

The System Data Infrastructure consists of the databases
and repositories storing the static information about service
requirements and configuration instructions, as well as dy-
namic system state.

The Software Repository provides the software pack-
ages, e.g., application server binaries or database drivers,

Predictor

Grid
Resource
Manager

Virtual
Machine
Manager

Virtual
Machine

Instance of
Service 3

Service Clients

Gateway

Active
State

Repository

State
Database

1: Monitor
2: Report

usage
statistics

3: Archive
collected

data

4: Provide
usage

statistics

5: Predict
future
load

6: Update
routing
table

Figure 2. Interactions between workload
management components.

which are required by the service runtime. The Software
Repository is accessed whenever a new service needs to be
configured inside a target VM. The repository provides all
the software packages that have to be installed on the target
VM before deploying the service.

The Configuration Database contains description of the
inter-software package dependencies and special-case con-
figuration options that are translated by the CDE to config-
uration commands in a deployment script. The information
stored in the Configuration Database is service specific in
the sense that it describes for each service the configuration
options that conform to the requirements of that service.

State Database provides a backend storage for the statis-
tics collected by the Active State Repository. Current and
historical resource usage characteristics, service client ar-
rivals, loads of service instances are the types of data stored
in the State Database.

3. Automation of Service Management

The automation of service management is provided in
our system at three levels: (i) adaptive workload manage-
ment, (ii) resource discovery, virtualization and aggrega-
tion, and (iii) on-demand service provisioning.

���� �������� ���� ��� ��������

The requests of service clients are routed taking into ac-
count the changes in the resource availability as well as ser-
vice level agreements between resource owners and service
providers.

Figure 2 presents the interactions between the compo-
nents involved in the adaptive workload management. The
Virtual Machine Manager monitors the services deployed
inside its VM, collecting information about the virtual re-
source usage (interaction 1 in Figure 2). The collected
resource usage statistics are periodically reported by the
VMM at the Active State Repository (2), and are eventu-

Predictor

Grid
Resource
Manager

Virtual
Machine

Active
State

Repository

Physical
Machine

Host
Agent

Virtual
Machine

Instantiator

Resource
Matcher

Configuration
Deployment

&

Engine

Software
Repository

1: Monitor

2: Report
usage

statistics

3: Allocate
virtual

resources

5: Predict
physical

resources
availability

4: Provide
usage

statistics

6: Configure
virtual

resources7: Instantiate
VM

9: Create
VM

8: Provide
VM template

Figure 3. Interactions between resource dis-
covery, virtualization and aggregation com-
ponents.

ally archived in the State Database (3). The resource us-
age statistics are continually analyzed by the Grid Resource
Manager (4). Predictor plays an important role in this anal-
ysis, providing estimates of the future load (5). The fore-
casted resource load combined with the information on the
resource usage policies, provide a basis for constructing
client request routing rules for the Gateway (6). These rules
are described by a data structure called routing table. The
routing table contains a list of all service instances with as-
signed weights. The weight represents a fraction of client
requests that should be directed to this particular service in-
stance.

���� ��������� ������	� ���	�����! "�����
� �#���� �� ����������

Resources in Harmony II are discovered and virtualized
only when they are ready to share capacity. The resource
administrator has the full authority to define the conditions
under which a resource is allowed to host services. Har-
mony II supports services that require a set of resources
(e.g., one resource may be the database, the other — the ma-
chine running the application server). In general, services
are provisioned with the aggregation of resources satisfying
the service requirements.

Figure 3 depicts the interactions between components
providing the resource discovery, virtualization, and aggre-
gation functionalities. Host Agent continuously monitors
local VMs (1) reporting their resource consumption to the
Active State Repository (2). At some point, the Grid Re-
source Manager may decide, based on the request arrival
rate estimates, that a new service instance is required to
handle the increasing clients’ load. In such a case, a mes-
sage requesting allocation of virtual resources for the new
service instance is sent to the Resource Matcher (3). The
Physical Machine that will host the VM encapsulating the
new service instance is selected by the Resource Matcher
based on the predicted resource availability computed from
the historical data provided by the ASR (4 and 5). Once the
target physical resource is selected, the Configuration and
Deployment Engine takes over, and initiates the process of

Active
State

Repository

Configuration
Deployment

&

Engine

Software
Repository

1: Provide
script

template
Virtual

Machine

Instance of
Service 3

Virtual
Machine
Manager

Configuration
Database

Gateway

2: Execute
deployment

script

3: Provide
required
software

5: Report
new service

instance
availability

4: Deploy
service

instance

Figure 4. Interactions between service provi-
sioning components.

configuring a new VM (6). CDE cooperates with the Vir-
tual Machine Instantiator running on the target physical ma-
chine to determine which VM template is compatible with
both the physical machine OS and the service which is go-
ing to be deployed inside the VM (7). Finally, the selected
VM template is fetched from the Software Repository (8),
configured, and instantiated (9).

���� $������ �����	�
���������

The number of instances of a particular service depends
on two factors: clients demand on this service and the avail-
ability of resources which are capable of hosting service in-
stances. In response to increased client demand, new ser-
vice instances are automatically deployed on available re-
sources.

Figure 4 describes the process of configuring a new ser-
vice instance. After the VM was instantiated from a tem-
plate, the Virtual Machine Manager contacts the Configura-
tion and Deployment Engine requesting instructions on how
to configure and deploy the service in the virtual environ-
ment. CDE constructs a deployment script which describes
the steps that have to be followed to configure the service
execution environment and to deploy the service. Deploy-
ment scripts are created from templates stored in the Con-
figuration Database (1). The deployment script consists of
a list of OS independent instructions which are translated
to the OS specific commands by the VMM (2). The de-
ployment script may contain instructions to install new soft-
ware packages, which are then obtained from the Software
Repository (3). After the configuration of the virtual envi-
ronment is finished, the service itself can be deployed (4).
Once the service is operational, the Active State Repository
is informed about its availability (5). The Grid Resource
Manager will include the new service instance in the gen-
erated routing table, such that Gateway can start redirecting
client requests to this new service instance.

4. Harmony II Implementation

We have developed a prototype implementation of the
Harmony II architecture. Here we describe and motivate the

selection of particular programming languages and third-
party components used by this prototype.

The request router in the Gateway is implemented as a
servlet which exploits the filtering technique [6] to intercept
the service client requests. The type of the service to be in-
voked is determined from the information included in the
request header (e.g., the SOAP header in case of web ser-
vice requests made over the SOAP protocol). The request
is then redirected to a service instance selected according to
the routing table, and the service response is sent back to the
client. The redirection is fully transparent to the client who
is oblivious to the intermediary proxy. Although currently
Gateway supports service requests send over the HTTP pro-
tocol only, the extension with additional protocols such as
SMTP, JMS or even raw TCP is quite straightforward.

A particular hypervisor solution which we use in Har-
mony II is the VMWare Workstation [5]. The choice for
VMWare is motivated with the simplicity in which VMs
can be created and maintained, and the flexibility of chang-
ing the VM configuration even after the VM image was cre-
ated. The VM templates in Harmony II are configured with
Red Hat Enterprise Linux as the guest operating system.

Host Agent, as the only component continually running
on each physical resource, has to be lightweight so that its
local resource consumption is negligible. Keeping this in
mind, we have implemented HA in C++ programming lan-
guage. HA uses a low level operating system API to access
the local resource usage statistics. Currently, we provide
the HA implementation compatible with the MS Windows
family operating systems.

The Virtual Machine Instantiator and Virtual Machine
Manager are invoked only when a new VM is created, so
they could be implemented with less consideration of min-
imal resource usage than HA. For portability reasons we
have written both the VMI and VMM in the Java program-
ming language.

The components of the Service and Resource Manage-
ment Infrastructure are encapsulated as web services. These
services are described in WSDL and communicate with
each other using SOAP over HTTP. The Predictor service
uses the advanced statistical models for time series analy-
sis provided by the R-Project [3]. The functionality of the
R-Project is accessed through R-Serve [4], a network server
which enables remote access to R-Project computation en-
gine. The prediction algorithms are described in a high level
mathematical modeling language, the R language. The con-
sequence of this modular design of the Predictor is that a
new prediction algorithm can be easily added to the frame-
work without any changes in the Predictor core.

The Software Repository is simply an FTP server that
stores the software packages and VM templates in the file
system. The State Database is built on the IBM DB2
DBMS. The Configuration Database has a form of a collec-

tion of XML-based templates of deployment scripts. The
Configuration and Deployment Engine customizes these
templates for a particular service and resource instance,
converting them into deployment scripts. As a particular
format of a deployment script we use the Apache Ant [1]
language. The Apache Ant project defines a set of OS-
independent primitives which enable installation and con-
figuration of software packages. Moreover, Apache Ant
provides a Java-based, OS-portable interpreter of the Ant
scripts, which we integrated with the VMM.

5. Evaluation

%��� &'�������� �����

We evaluate the performance and scalability of Har-
mony II infrastructure using the following setup: the Gate-
way, Active State Repository, Grid Resource Manager, and
Configuration and Deployment Engine are deployed inside
a WebSphere server running on a Windows XP, Pentium IV
3GHz CPU, 1GB RAM machine. The Resource Matcher
and Predictor reside on a Windows 2K server with dual
Xeon 2.6 GHz CPU and 2.3 GB RAM. The FTP server of
the Software Repository is installed on a Red Hat Enter-
prise Linux host with dual Xeon 2.6 GHz CPU and 1 GB
RAM. Both the State and the Configuration Database run
on a Win2K, dual Xeon 2.6 GHz CPU and 2.3 GB RAM.

The grid resources are represented by a set of 13 hetero-
geneous hosts, running 5 different operating systems. The
resources of 10 among these hosts are shared between Har-
mony II services and external workload, and 3 are dedi-
cated to run only the Harmony II services. The shared hosts
are the desktops and laptops of developers in our lab. The
shared hosts are actively used during our experiments, re-
sulting in non-trivial external load being present on these
hosts. The detailed configurations of all the 13 hosts are pre-
sented in Table 1. The last column of Table 1 describes the
local resource sharing policies defined for the non-dedicated
machines. For the purpose of the experiments we use sim-
ple policies that set the limits on the number and memory
consumptions of the VMs that are allowed to run simulta-
neously on the physical machine. Additionally, the Host
Agents running on the shared hosts do not allow the Har-
mony II service load (measured in CPU and memory us-
age) to excess a certain threshold of the total host capacity
in the presence of an external load (when the hosts are being
actively used by other applications).

To show the diversity of the types of services supported
by Harmony II , we configure the experimental environment
with three different services. The first service is the Weather
Forecast described in [10]. Weather Forecast is a popular
application server benchmark implemented as a web ser-
vice that makes use of a backend database (in our case a
DB2 database running on a dedicated dual Xeon 2.6 GHz
CPU and 2.3 GB RAM machine, shared by all instances

Host names Host configuration VM instantiation policy
Beat1, Beat2 Win2K Server, 2 x Xeon 2.6GHz CPU, 2.3 GB RAM 2 x 512 MB RAM

Beat3 Win2K Server, 2 x Xeon 2.6GHz CPU, 2.3 GB RAM 1 x 512 MB RAM
Beat6 Win2003 Server, 2 x PIII 866MHz CPU, 1 GB RAM 1 x 512 MB RAM, 1 x 384 MB RAM

Ritmo0, Ritmo1, Ritmo2 Win2003 Server, 2 x PIII 866MHz CPU, 3 GB RAM 2 x 512 MB RAM
Beat0 ESX Server, 2 x PIII 900MHz CPU, 1.7 GB RAM Dedicated machine

Megha-0 WinXP, PIII 1.2 GHz, 1 GB RAM 1 x 512 MB RAM
Jolly-boy WinXP, PIII 790 MHz, 512 MB RAM 1 x 384 MB RAM

Amsterdam WinXP, PIII 1.2 GHz, 512 MB RAM 1 x 384 MB RAM
Beat4, Beat5 RedHat EL 3.0, 2 x Xeon 2.4GHz CPU, 1.5 GB RAM Dedicated machines

Table 1. Configuration of physical and virtual resources used in experiments.

0

200

400

600

800

1000

1200

1400

1600

B
e
a
t1

B
e
a
t2

B
e
a
t3

B
e
a
t6

R
itm

o
0

R
itm

o
1

R
itm

o
2

B
e
a
t0

M
e
g
h
a
-0

J
o
lly

-b
o
y

A
m

s
te

rd
a
m

B
e
a
t4

B
e
a
t5

Host name

T
im

e
[s

e
c

]

Service configuration time

VM startup time

VM configuration time

Figure 5. Weather Forecast service deploy-
ment times for different hosts.

of the Weather Forecast service). The second service used
in our experiments is the BidBuy auction web service from
the Jakarta Tomcat test applications suite. The instances
of BidBuy run inside Jakarta Tomcat application servers.
The third tested service is very different from the previous
two as it has a form of an application executed in batch
mode rather than as a web service. The application that
we use, FracGen [2], generates complex fractals, which is
a resource and time consuming process. It is, thus, natural
that clients requesting fractal generation do not wait at the
Gateway until the computation is finished, but rather dis-
connect immediately after submitting the fractal generation
request, and then periodically check if the results are avail-
able. Note, that the batch application is a typical example
of a grid job.

%���
�������	� ���� ��

5.2.1. Service Deployment Performance

In the first series of experiments we assess the performance
of the service deployment process. For each machine in the
simulated grid environment we compute the time required
to deploy a new service instance on that machine. As ex-
plained in Section 3, service deployment is a multi-stage
process. Figure 5 presents the duration of the three stages

of the Weather Forecast service deployment measured for
the hosts listed in Table 1. The VM configuration time rep-
resents the time required to fetch the VM template from the
Software Repository and configure it according to the lo-
cal resource usage policies. The VM startup time describes
how long it takes to boot the VM and start the VMM. Fi-
nally, the service configuration time is the duration of the
service execution environment configuration and service in-
stantiation. The Weather Forecast service, in particular, re-
quires a WebSphere server and DB2 client to be installed
and configured inside the VM before the service itself can
be instantiated.

For all the machines, but one the total service deploy-
ment time is between 10 and 16 minutes. The higher over-
head of the Beat6 machine comes from the fact that that
machine has a significantly slower network interface, which
results in a longer time required to obtain the VM template
from the Software Repository. Beat0 is running ESX Server
OS which offers a native support for VM technology. In-
stead of fetching a VM template from the Software Reposi-
tory each time a new service is deployed, Beat0 keeps a pool
of ’empty’ VMs that are available for deploying of new ser-
vices. Consequently, the VM configuration and VM startup
phases are excluded from the service deployment process
on Beat0. Beat4 and Beat5 are running service instances
directly on the host OS. Although we did not describe such
a setup in Section 2, the generality of the Harmony II de-
sign allows to eliminate the Virtual Resource Layer, which
improves the performance of the service deployment and
execution. We allow, however, to omit the Virtual Resource
Layer only on dedicated machines, where no local resource
usage policies are present.

5.2.2. System Throughput
In the second experiment we study the effect of the amount
of resources delegated to run service instances on the sys-
tem throughput. For this experiment, we have created a
multi-threaded request generator, that generates service re-
quests at an increasing rate until the system becomes satu-
rated and some requests are dropped. The instances of all
three service types, Weather Forecast, BidBuy and FracGen

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7

T
hr

ou
gh

pu
t [

re
qu

es
ts

/s
ec

]

Number of service instances

Figure 6. System throughput.

are present in the system during this experiment. The target
service for each generated request is selected randomly and
uniformly.

Figure 6 presents the throughput as a function of the
number of service instances, averaged for the three service
types. System throughput increases rapidly with the number
of service instances, indicating that Harmony II is capable
of handling proportionally higher workload by adding more
resources. The fact, that the throughput does not increase
linearly with the number of service instances has a few rea-
sons. First, the capacities of individual hosts and VMs dif-
fer between each other. Second, there are only 13 physical
machines in the system, while in our experiment we config-
ure up to 21 service instances (7 instances for each of the 3
service types). In consequence, multiple service instances
share the hosts competing for access to physical resources.

6. Concluding Remarks

In this paper we have described the Harmony II archi-
tecture and the design and implementation of a prototype
system based on this architecture. The primary goal of the
Harmony II system is to deliver customized IT solutions us-
ing resources managed as a grid. Based on the client re-
quests, in Harmony II, customized solutions are composed
from a standardized set of component templates. The tem-
plates provide sufficient flexibility so the composed solu-
tions perform seamlessly. The solution is delivered by de-
ploying the components on resources that are managed as
a grid based system. Preliminary performance results from
the implemented prototype system indicate that the system
is capable of configuring and deploying customized solu-
tions on demand and provide the desired level of automation
in delivering requested services.

The Harmony II approach brings automation to the con-
figuration and deployment of service components taking
into account current demands on the system as well as the
availability and constraints on the underlying physical re-
sources. Our approach does not require service requesters
to be aware of how a service is composed or how it is deliv-

ered. All service management aspects are handled transpar-
ently to the requestor. Similarly, the system provides con-
trol points for service delivery teams to prioritize workloads
and to control the degree of resource sharing and hence the
quality of service delivered to clients.

Existing grid-based systems provide facilities to manage
physical resources, but those decisions are exposed to the
grid clients. Moreover, the grid clients are required to adopt
their requests to the allocated physical grid resources. Ex-
isting configuration and deployment mechanisms also tend
to be hardwired and specific to the target system. Run-time
systems based on such mechanisms tend to be brittle and
unable to withstand any failure in the underlying physical
infrastructure. Harmony II, on the other hand, maintains a
layer of indirection between the physical resources and the
service requests in the form of the virtual resource layer.
This allows the system to manage fluctuations in the under-
lying physical infrastructure transparently from the service
layer and vice versa. We note here that the work described
by Siddiqui et al. has similar goals as ours [9]. However,
the focus of their work is on application-level component
management to enable automatic deployment of software
components. The focus of our work is on service manage-
ment taking into account generic workloads and a generic
set of grid resources.

References

[1] Apache ant project page. http://ant.apache.org/.
[2] Fracgen project page. http://shapeshifter.se/code/fracgen/.
[3] R-project page. http://www.r-project.org/.
[4] R serve project page. http://stats.math.uni-

augsburg.de/Rserve/.
[5] Vmware project page. http://www.vmware.com/.
[6] The essentials of filters. Sun Developer Network, March

2005. http://java.sun.com/products/servlet/Filters.html.
[7] N. H. Kapadia, J. A. B. Fortes, and C. E. Brodley. Predictive

application-performance modeling in a computational grid
environment. In High Performance Distributed Computing,
Redondo Beach, California, USA, August 1999.

[8] V. Naik, C. Liu, L. Yang, and J. Wagner. Online resource
matching in a heterogeneous grid environment. In IEEE In-
ternational Symposium on Cluster Computing and the Grid
(CCGrid 2005), Cardiff, UK, May 2005.

[9] M. Siddiqui, A. Villazon, J. Hofer, and T. Fahringer. Glare:
A grid activity registration, deployment and provisioning
framework. In Proceedings of SC 2005, Seattle, WA,
November 2005.

[10] U. Wahli, T. Kjaer, B. Robertson, F. Satoh, F.-J. Schneider,
W. Szczeponik, and C. Whyley. Web Services Handbook
Development and Deployment. IBM Red Book, July 2005.

[11] R. Wolski. Experiences with predicting resource perfor-
mance on-line in computational grid settings. ACM SIG-
METRICS Performance Evaluation Review, 30(4):41–49,
March 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

