RC23944 (W0604-126) April 25, 2006
Computer Science

|BM Resear ch Report

On-line Evolutionary Resour ce Matching for Job Scheduling
In Heter ogeneous Grid Environments

Vijay K. Naik
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 218
Y orktown Heights, NY 10598

Pawel Garbacki

Delft University of Technology
P.O. Box 5031

2600 GA Ddlft, The Netherlands

Krishna Kummamuru
IBM India Research Lab
EGL Business Park
Bangalore 560071, India

Yong Zhao
Computer Science Department
University of Chicago
Chicago, IL 60637

— = Research Division

i :=:_=?=_ Almaden - Austin - Beijing - Haifa - India- T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on theinternet at http://domino.watson.ibm.com/library/CyberDig.nsf/home.




On-line Evolutionary Resource M atching for Job Scheduling in Heter ogeneous
Grid Environments

Vijay K. Naik
IBM T. J. Watson Research Center
P. 0. Box 218
Yorktown Heights, NY 10598
vkn@us.ibm.com

Pawet Garbacki
Delft University of Technology
P. O. Box 5031
2600 GA Delft, The Netherlands
p.garbacki@ewi.tudelft.nl

Krishna Kummamuru
IBM India Research Lab
EGL Business Park
Bangalore 560071, India
kkummamu@in.ibm.com

Yong Zhao
Computer Science Dept
University of Chicago
Chicago, IL 60637
yongzh@cs.uchicago.edu

Abstract

In this paper, we describe a resource matcher (RM) de-
veloped for the on-line resource matching in heterogeneous
grid environments. RM is based on the principles of Evo-
lutionary Algorithms (EA) and supports dynamic resource
sharing, job priorities and preferences, job dependencies
on multiple resource types, and resource specific and site-
wide policies. We describe the evolutionary algorithm and
the models used for representing the resource requirements,
preferences, and policies. We evaluate three different meth-
ods for bootstrapping RM. We then describe a Evolution-
ary Matcher (EM) Service — a Web Service based architec-
ture, design and implementation of RM for on-line resource
matching. Preliminary performance results indicate that
the EM service is efficient in speed and accuracy and can
keep up with high job arrival rates — an important criterion
for on-line resource matching systems. The service oriented
architecture makes the EM service scalable and extensible
and can be integrated with already existing grid services in
a straightforward manner.

1. Introduction

We consider the resource matching problem in grid en-
vironments where resources are heterogeneous, not always
available, belong to multiple administrative domains, jobs
require multiple types of resources, and system managers
often set conflicting policies such as continuous resource
sharing, load balancing, high resource utilization and/or

throughput. In such an environment, the conditions for
resource matching evolve dynamically and are subject to
resource specific and system-wide policies. A resource
matcher must be able to handle all such requirements.

The problem of matching independent jobs to hetero-
geneous resources is known to be NP-complete [5]. This
means a resource matcher must use a heuristic-based ap-
proach. For dynamic grid environments, such an approach
must be adaptive and efficient. To be adaptive, the resource
matcher must be able to adjust to the dynamic changes in
the system and produce reasonable matchings even under
high variability. An efficient resource matching algorithm
should be able to match jobs with resources in an on-line
manner, i. e. it should be fast enough to keep up with the
job arrival rate. In this paper, we present a fast and effi-
cient on-line resource matching algorithm that belongs to
the class of Evolutionary Algorithms (EA) [1].

The contributions of this paper are as follows. We de-
scribe an approach for modeling resource requirements for
jobs, job preferences and simultaneous applications of dif-
ferent policies. We express the resource matching problem
as an optimization problem and solve it using an evolution-
ary algorithm. We discuss three alternatives for bootstrap-
ping the EA based matcher. With our approach, we can han-
dle a wide class of job resource requirements, preferences
and affinities, job priorities, resource capacity constraints,
resource usage and sharing policies. Another contribution
of this work is the design of a service based architecture and
a prototype implementation of the resource matcher suitable
for large-scale grid environments.

The rest of the paper is organized as follows. In Sec-



tion 2, we describe the resource matching problem and in-
troduce our terminology and a model for representing re-
source characteristics and job requirements. In Section 3,
we discuss our EA based resource matching algorithm. In
Section 4, we describe the Web service based architecture
for the Evolutionary Matcher. Some preliminary perfor-
mance results are presented in Section 5. Section 6 dis-
cusses the related work and we conclude the paper in Sec-
tion 7.

2. Resource Matching in Grid Environments

In this section, we describe the problem of resource
matching in a heterogeneous grid environment and intro-
duce the terminology used in the rest of the paper.

2.1. Model of a Grid Environment

A Grid environment consists of a set of resources. Each
resource is an instance of a resource type. Examples of
resource types are servers, file systems, network subsys-
tems, middleware components, databases, applications, etc.
Each resource type has one or more static attributes and
zero or more dynamic attributes. For example, a resource
type “server” may have the following static attributes: host
name, CPU architecture, CPU speed, number of CPUs,
number of network adapters, speed of each network adapter,
IP address, OS name, an so on. Examples of dynamic at-
tributes of a resource type “server” are: availability status
(e.g., up or down), current CPU load, memory usage, avail-
able disk space, etc.

Grid resources provide the infrastructure for executing
jobs. Each job describes its resource requirements by pro-
viding a set of resource dependencies on one or more types
of resources. Each dependency places attribute constraints
on the attribute values of the resources of a specific type.
For example, a job may depend on a resource of type
“server” with CPU speed of at least 600 MHz. In addition, a
job may define optional temporal and location constraints.
An example of a temporal constraint is a specific job com-
pletion time deadline. The location constraint, on the other
hand, is specified by a job requesting a set of resources
that are collocated; i.e., on the same machine, within the
same subnet, or at the same site. In addition to the con-
straints, a job may specify preferences. Preferences pro-
vide selection criteria when multiple resource sets satisfy
dependencies associated with a job. A job may specify its
preferences either by providing a method of ordering qual-
ifying resources or by simply identifying specific resource
instances by attribute value or by name. Finally, each job
defines the expected usage values (consumptions) for the
dynamic attributes of the dependent resources. The con-
straints resulting from resource dependencies, temporal and

location restrictions, preferences, and attribute usage values
together constitute the requirements of a job. To prioritize
jobs, system administrators may assign job priorities to the
in-coming jobs. Job priorities are relative and may depend
on the current workload.

2.2. Policies

Just as jobs have preferences for resources, resources
may have preferences for the class of jobs that can use those
resources. In some cases, a resource may allow only certain
class of jobs to run during certain times of the day. These
and other resource usage directives are specified as resource
specific policies.

The overall use of resources by jobs and arbitration
among jobs competing for resources are governed by
system-wide policies or goals set by site administrators.
Some examples of such policies are: (i) find resource
matches for as many jobs as possible (maximize through-
put), (ii) match higher priority jobs first and then match
lower priority jobs (maximize prioritized throughput), (iii)
balance the workload evenly across the resources (load
balance), (iv) minimize the number of resources matched,
and (v) match high priority jobs with high performance re-
sources.

The system wide policies guide the selection of re-
sources for matching with jobs. In the resource matching
problem, these policies are modeled as objective functions
or fitness values. In some cases, system administrators may
want to set complex goals as a combination of one or more
simpler goals listed above.

2.3. Matching Jobs with Resources

The resource matching problem can be described as find-
ing a match between the jobs and the resources taking into
account job requirements and available resource capacities,
while optimizing one or more objective functions. In the
following, we first clarify the notion of “job requirement”
by introducing some additional terminology.

We define the Qualifying Resource Collection (QRC) for
a job as a minimal (in the sense of inclusion) set of resources
that need to be assigned to the job to satisfy its require-
ments. For each resource in the QRC it is specified how
much of its capacity and in which time interval is required
by the job. For a given job, there may exist many QRCs,
and they collectively represent all possible assignments of
the resources to the job. Figure 1 shows the problem graph.
It represents the job dependencies on QRCs and the map-
pings from QRCs to resources as a directed acyclic graph.

A solution to the resource matching problem can be rep-
resented by a subgraph of the problem graph. Figure 2
shows a solution graph for the problem graph in Figure 1.



Figure 1. A directed graph representing job
dependencies on QRCs and mapping from
QRCs to resources.

Figure 2. An example of a Solution graph.

An edge between a job and a QRC indicates that the require-
ments and consumptions of the job are met by the resources
in the corresponding QRC. Since a single resource may be
shared by multiple jobs, it may occur in many QRCs de-
fined for different jobs. Consequently assigning a certain
QRC to a job may render some QRCs infeasible for other
jobs because of the resource capacity constraints. An edge
in the problem graph guarantees the compatibility of the
job requirements with the resource capacities, where as an
edge in the solution graph additionally ensures that job con-
sumptions do not exceed resource capacities. The process
of finding a feasible/valid solution is to identify the edges
of a solution graph.

In this paper, we further extend the requirements accord-
ing to the resource matching algorithm by constraining its
execution time. Regardless of the complexity of the job re-
quirement specifications and the system size measured in
the number of available resources, it should be possible to
match jobs with resources in an on-line manner. In other
words, the algorithms used for resource matching should
be fast enough to keep up with job arrival rate. Obviously,
the higher the system complexity and the job arrival rate,
the poorer the quality of the matchings. The matching al-
gorithm should be able to dynamically adjust to the current
conditions producing reasonable matchings even under high
system load.

3. Evolutionary Resource Matching

In this section, we describe a resource matcher that we
have developed using an evolutionary algorithm. Evolution-
ary Algorithms (EASs) are optimization methods inspired by
the nature [1, 3]. EAs perform a focused random search by
simulating an evolution of a population of solutions. EAs
iteratively simulate evolution of a constant size population
of solutions. During each iteration, mutation, recombina-
tion, and selection operators are applied to the current pop-
ulation of solutions. The mutation operator randomly per-
turbs a selected solution. The recombination operator pro-
duces new solutions. The selection operator prevents the
population size from growing. Evolutionary algorithms are
shown to converge under certain conditions to a global op-
timum [12, 13].

3.1. Overview of Evolutionary Matcher

We apply the evolutionary approach to the problem of re-
source matching in heterogeneous grid environments. The
pseudocode of our algorithm is shown in Figure 3. The
resource matcher maintains a constant-size population of
solutions. Each solution represents an assignment of re-
sources to jobs taking into account job, resource, and pol-
icy specific constraints. As shown in Figure 3, an EA is
an iterative procedure, where a number of solutions are ini-
tialized before the iterations begin. We have developed a
few alternative initialization methods, which we describe in
Section 3.2. The iterations continue until some optimiza-
tion criteria is met. In each iteration, a new set of solutions,
referred to as offspring, is created by mutating the existing
solutions. The offspring solutions are added to the popula-
tion as candidate solutions for evolving the next generation.
After the mutation step, a subset of solutions are selected ac-
cording to their fitness values. The fitness value represents
the quality of a particular solution with respect to a selected
objective function. Our evolutionary matcher supports any
(combination) of the objective functions introduced in Sec-
tion 2. The cycle of mutation and selection is repeated until
the termination criteria is met. In the following, we explain
the key steps in more detail.

3.2. Initialization

In [4], the author has discussed the benefits of initializ-
ing the solution populations using domain specific knowl-
edge. Following this approach, we propose three alternative
schemes to compute the initial solutions.

Random initializer. As in a typical evolutionary algorithm,
the solutions in the initial population are generated ran-
domly and independently of one another. The initializer



Input:

A set of resources with their attributes and capacities
A set of jobs with their dependence on resources

A set of policies

Output: A solution graph

Evolutionary Matcher:
Initialize the population with P solutions
do {
Mutate each solution with a probability
to generate an offspring solution
Perform selection from original and mutated solutions
based on their fitness values to obtain P solutions
} whi | e (Termination condition is not met)
r et ur n the best solution found so far.

Figure 3. Evolutionary Matcher

randomly matches jobs with available QRCs without vio-
lating the capacity constraints.

Greedy initializer. Some problem instances may have very
simple solutions. Evolutionary algorithms, with all their
sophistication and generality are cost-ineffective in case of
such problems. A simple greedy algorithm, which follows
the problem solving meta-heuristic of making a locally op-
timal choice, may find a solution of the same quality as the
evolutionary algorithm, but at a much lower cost [8]. To
overcome this shortcoming, we include a solution from a
greedy algorithm in the initial solution populations. The
remaining solutions are still computed with the random al-
gorithm. If the solution found by the greedy approach is
optimal, it will quickly dominate other solutions in the ini-
tial population, which will, in turn, seriously decrease the
number of iterations of the evolutionary algorithm. We use
the first-fit strategy as the greedy heuristic. Our algorithm
considers jobs in non-increasing priority order and tries to
match the highest priority unassigned job with a QRC. Any
job that cannot be matched within the capacity constraints
is omitted from the solution.

Backtrackinginitializer. The natural extension of the pop-
ulation initialization with a greedy algorithm is to use more
complex heuristics. Striking a balance between the initial-
izer cost and the range of solution space it opens up for ex-
ploration, we consider an initializer based on limited-depth
backtracking. This algorithm matches jobs, one-at-a-time
and in the order of their priorities, with the available re-
sources. When a job cannot be matched, the algorithm
backtracks to the most recent successful job assignment,
and tries an alternative of assignment for that job. When
all alternatives are exhausted, it tries the alternative assign-
ments for the next previous successful job assignment. If
there are no more choice points, the matching omits the cur-
rent job and moves to the next one. Because the worst case

execution cost of the backtracking algorithm is exponential,
we put a bound on the number of backtracking steps per-
formed in the process of matching each job.

3.3. Mutation

The mutation operation is used to create a new solution
from an existing solution. First, a small fraction of job-QRC
matchings in an existing solution are selected according to
a random distribution biased towards jobs with lower prior-
ities. For the selected matchings, the job-QRC assignment
is removed with a predefined mutation probability. This re-
leases some of the resource capacities creating opportunities
for other job-resource assignments. Next, new job-resource
matchings in the solution are determined as follows: (i) an
unmatched job is selected randomly with a probability bi-
ased towards jobs with higher priorities, (ii) the selected job
is randomly assigned to one of its QRCs that will not vi-
olate resource capacity constraints using a probability dis-
tribution biased by job specified resource preferences, and
(iii) the capacities of the resources in the selected QRC are
reduced to reflect the assignment. The above steps are re-
peated until no more job-resource matchings are possible.
This creates a single new solution offspring. At the end of
the mutation step, a constant multiple of existing solutions
are created and added to the population.

Note that we use a domain-specific mutation operator
and a domain-specific representation of solutions. Note also
that a solution is always in the feasible region and the mu-
tation operator is able to explore the entire feasible region.

3.4. Selection

In the selection phase, the over-sized population of so-
lutions is reduced back to the initial number of solutions.
Each solution in the population is assigned a reproduction
probability depending on its fitness value. Using these prob-
abilities, a fraction of solutions from the pool of the old and
offspring solutions are selected to form the solution popu-
lation for the next generation. Additionally, the selection
algorithm guarantees that a constant fraction of the fittest
solutions in the over-sized population will be retained in the
new population.

3.5. Termination condition

The on-line aspect of the resource matching problem, in-
troduces a constraint on the maximal execution time for the
evolutionary algorithm. The incremental and evolutionary
nature of the EA approach allows one to stop the execu-
tion at the end of any iteration and still get an approxima-
tion to the optimal solution. Naturally, the longer the al-
gorithm runs, the better the quality of the final solution. In



Job Queue

Matcher Model Evolutionary
Interface Builder Matcher

Job
Submitters

Layer

Resource Matching

Resource Resource Resource -
Providers Repository Slat_e [« > Resource
Interface Repository Database

Resource State
Management Layer

Figure 4. Architecture of the on-line resource
matching system.

our system, any of the following three conditions terminates
the execution of the evolutionary matcher: (i) the execution
time of the matcher exceeds a specified limit, (ii) the num-
ber of iterations exceeds a predefined maximal value, (iii)
the best found solution has remained unchanged for n it-
erations, where n is a configurable parameter. When the
resource matcher terminates, the best solution found so far
is output as the solution to the resource matching problem.

4. Architecture of On-line Evolutionary
Matcher

We have designed and implemented an on-line resource
matching system, referred to as the Evolutionary Matcher
(EM) Service, based on the evolutionary matching algo-
rithm described above. Inputs to EM are: the resource
requirements for a batch of jobs, job priorities and prefer-
ences, current resource states, and resource and site specific
policies. EM models the resource matching problem as an
optimization problem and solves it for the specified input.
Figure 4 shows the architecture of EM. The components of
EM can be divided into two functional layers: the Resource
State Management Layer and the Resource Matching Layer.
Resource State Management (RSM) Layer. This layer
keeps track of the current state of each resource available
for job execution. Various resource providers specify the
static resource attributes and the current values of dynamic
attributes. An example of a resource provider is a site ad-
ministrator, who may specify for a resource instance its re-
source type, static attribute values, and sharing policies for
that resource. The available capacities of the dynamic at-
tributes are updated periodically to reflect the current re-
source usage. Usually the update is performed by a resource
usage monitor, which also acts as a resource provider.

The resource attribute information is input to the RSM
Layer as XML documents by making a Web service call
to the Resource Repository Interface (RRI). (See Figure 4.)
RRI is a Web service for translating the resource specific

information from the XML documents to the internal data
format of the Resource State Repository (RSR). RSR main-
tains the state and other resource specific information for
all resources in a Resource Database. In addition, RSR per-
forms job requirement-specific intelligent query parsing and
query optimizations by caching information.

Resource Matching (RM) Layer. The components in this
layer perform the actual matching of jobs with resources.
Job submitters submit jobs asynchronously by invoking
Matcher Interface. The resource requirements, consump-
tions and preferences of the submitted jobs are described in
XML. The Matcher Interface is a Web service that translates
the job descriptions to the internal EM data structures and,
after the matching is finished, performs a reverse operation
of creating and sending an XML document describing the
matched resources to the job submitters.

Job Queue caches all arriving jobs if the resource
matcher is busy processing jobs that arrived earlier. Model
Builder consults RSR to obtain the current state of all re-
sources relevant to a batch of jobs waiting in the Job Queue
and constructs a model which is used by the EA-based Re-
source Matcher.

5. Performance Evaluation

We now describe a prototype implementation of EM and
present the performance results obtained with this imple-
mentation.

5.1. Experimental Setup

We have implemented the evolutionary resource match-
ing algorithm described in Section 3 and encapsulated it in
a Web service using the architecture described in Section 4.
All EM components are implementation is in Java and are
developed for deployment on IBM WebSphere Application
Server with the Resource Database implemented on top of
IBM DB2 database server. The performance results pre-
sented here were obtained with the Application Server run-
ning on a Windows XP, Pentium M 1.8GHz CPU, 1GB
RAM machine and the DB2 server running on a Windows
2000, dual Xeon 2.6GHz CPU, 3GB RAM server.

Our implementation provides both a browser-based and
a command line interface for defining resource character-
istics and job requirements. For testing and performance
studies, we have implemented a random resource and job
generator, which is capable of generating a range of het-
erogeneous resources and jobs with different requirements.
This generator takes as input an XML template file specify-
ing a set of rules that are followed in generating the resource
and job instances. For the experiments reported in the fol-
lowing, we use a template for defining four resource types
each with 3 to 7 attributes. The actual attribute values are



400

350 Maximum achievable sum of Collective Resource Values

300 -

250 -

150 |

100 f-

Sum of Collective Resource Values
N
3
3

50 |

. Optimal primary objective achieved Backtracking initializer

edy initializer — — —
) Randorq ininalizer‘ -----

L L L L L
0 100 200 300 400 500 600 700 800 900 1000

[

Iteration number

Figure 5. Effect of the initializers on the
performance of the evolutionary resource
matcher. The results presented are for a sys-
tem with 20 jobs and 20 resources.

selected randomly from a predefined range or a probability
distribution specified in the template. Similarly, the job de-
scription template allows specification of job priorities as a
range or as a probability distribution. For the experiments
reported here, job priorities were selected randomly from
a uniform distribution over a range 1 to 20. Each job had
dependencies on four resource types with consumption re-
quirements and preferences specified on up to four resource
attributes.

For the experiments, we set the solution population size
in the EA implementation to 20. The optimizations were
carried out using a multi-objective function. The primary
objective was to maximize the sum of the priorities of the
matched jobs and the secondary objective was to maximize
the sum of the Collective Resource Values (CRV) of all the
matchings in a solution. The Collective Resource Value of
the matchings to a job is the product of the Resource Pref-
erence Values (RPV) for the assigned resources as specified
by the job. Note that the a resource may have different Pref-
erence Values for different jobs. The primary objective has
higher priority over the secondary objective meaning that
when comparing two solutions the value of the secondary
objective is taken into account only if the values of the pri-
mary objective are equal for these solutions. In all the ex-
periments, the EA terminated if the best solution did not
change in 500 consecutive iterations.

5.2. Experimental Results

In the first set of experiments, we compare the quality
of the matchings when the EA is initialized with random,
greedy, and backtracking algorithms (see Section 3.2). We
made ten optimization runs on a system with 20 resources
and 20 jobs. The average of the ten runs are shown in Fig-
ure 5, where we plot the sum of the CRVs of the match-
ings in the best solution found as a function of number of

12000 ——————T—T—————————— T T—T—T 71— —T T T T
Matching time s
Initialization time —=

10000

8000

6000

4000

Execution time [msec]

2000

5 10 15 20 25 30
Random initializer

5 10 15 20 25 30
Greedy initializer
Number of jobs

5 10 15 20 25 30
Backtracking initializer

Figure 6. Effect of the initializers on the to-
tal execution time of the evolutionary algo-
rithm as a function of the numbers of jobs in
a batch. The results are for a system with 20
resources.

iterations. The initialization cost is included in the first it-
eration. For each run, we used a different random seed to
initialize the EA but we kept the same set of resources and
jobs, which were generated randomly as described in Sec-
tion 5.1. Only the matcher initialized with the backtracking
algorithm achieves a close-to-optimum value for the sec-
ondary objective. However, all three variants of the matcher
find solutions that maximize the primary objective. Due to
the space limitations, we do show the sum of the job priori-
ties (primary objective) in the best solution as a function of
the number of iterations. Instead, in Figure 5 we indicate
the iteration number when the matcher achieved the max-
imal value for the primary objective function. Note that
the optimal value for the primary objective function was
achieved in the initialization phase itself when the greedy
and the backtracking initializers were used.

In the second set of experiments, we measure the exe-
cution time of the EM as a function of the number of jobs
in a batch. The execution times for different variants of
the EM, again averaged over 10 runs, are shown in Fig-
ure 6. The execution time is the sum of the initialization
time and the matching time. The random initialization has
clearly the lowest overhead, which is close to zero even for
larger batch sizes. The backtracking algorithm based initial-
izer has the most overhead. Nevertheless, the results show
that even with the overhead in the initialization phase, the
total execution time for the matcher is significantly lower
when greedy or backtracking initializers are used. Thus,
with non-random initializers, the EA produces better qual-
ity matchings in lesser time. Clearly, proper solution ini-
tialization has a significant impact on the EM performance.
We also measured the time overhead incurred in making
the Web service call to the Matcher Interface and the time
overhead of fetching the resource state information from the
RSR while building the model. Both overheads were con-



stant for the range of jobs considered and for the size of the
resource repository.

6. Related Work

In our previous work [11] we have addressed the prob-
lem of on-line resource matching using a linear program-
ming based approach. In that work, the optimization ability
of the linear programming matcher is limited to a single ob-
jective function at a time.

A certain class of evolutionary algorithms, the genetic
algorithms [3], have been applied in the past to job shop
scheduling [16] and resource allocation in highly avail-
able distributed systems [7], and other NP-complete prob-
lems [6]. They have also been explored in multi-objective
optimization and their convergence has been analyzed [15,
2, 13]. However, none of these approaches were optimized
for on-line resource matching in heterogeneous grid envi-
ronments.

A combination of a genetic algorithm and a greedy op-
timizer has been studied in [8]. A design and evaluation of
a genetic grid super-scheduler that assigns jobs to resources
based on multiple criteria has been presented in [10]. The
execution time of the super-scheduler, measured in tens of
minutes for 32 jobs, excludes it, however, as an on-line ser-
vice. The existing on-line job schedulers based on genetic
algorithms, e.g., [14], are domain-specific and do not sup-
port the general class of jobs considered in this work.

The concept of combining features from evolutionary al-
gorithms and simulated annealing has been described and
evaluated in [9].

7. Conclusions

Efficient and accurate resource matching is crucial in
grid environments. We have presented an Evolutionary Al-
gorithm based matcher for matching heterogeneous grid re-
sources with heterogeneous jobs taking into account the re-
source usage policies, the job requirements, and job pref-
erences. The EM described here is capable of finding so-
lutions that meet multi-objective function criteria. We in-
troduce several alternative initialization methods and prove
experimentally that appropriate initialization leads to sig-
nificant improvements in the quality and matching perfor-
mance. We also describe the design and implementation of
a web service based on-line resource matching system. The
performance results obtained with the EM service indicate
that it is able to produce good quality resource matching
results even at job arrival rates in excess of 200 jobs per
minute.

References

[1] D.B. Fogel. Evolutionary Computation: Toward a New Phi-
losophy of Machine Intelligence. IEEE Press, Piscataway,
NJ, 1995.

[2] C. M. Fonseca and P. J. Fleming. An overview of evolution-
ary algorithms in multiobjective optimization. Evolutionary
Computation, 1(3):1-16, 1995.

[3] D. E. Goldberg. Genetic Algorithms in Search, Optimiza-
tion and Machine Learning. Addison-Wesley, Reading, MA,
1989.

[4] J. J. Grefenstette. Genetic Algorithms and Smulated An-
nealing, chapter Incorporating problem specific knowledge
in genetic algorithms. Morgan Kaufmann, 1987.

[5] O. H. Ibarra and C. E. Kim. Heuristic algorithms for
scheduling independent tasks on nonidentical processors. J.
ACM, 24(2):280-289, 1977.

[6] K.A.D.Jongand W. M. Spears. Using genetic algorithms to
solve np-complete problems. In J. D. Schaffer, editor, Proc.
of the 3rd Int’| Conf. on Genetic Algorithms, pages 124-132,
San Mateo, CA, 1989. Morgan Kaufmann.

[7] K. Krishna and V. K. Naik. Application of evolutionary
algorithms in controlling semiautonomous mission-critical
distributed systems. In Proc. of the 5th Joint Conf. on Infor-
mation Sciences, pages 1015-1018, 2000.

[8] W. B. Langdon. Scheduling planned maintenance of the na-
tional grid. In Selected Papers from Al SB Workshop on Evo-
lutionary Computing, pages 132-153, London, UK, 1995.
Springer-Verlag.

[9] D. Levi. Hereboy: a fast evolutionary algorithm. In In Proc.
of the Second NASA/DoD Workshop on Evolvable Hard-
ware, pages 17-24, 2000.

[10] V. D. Martino. Sub optimal scheduling in a grid using ge-
netic algorithms. In Proc. of the 17th IEEE IPDPS 03, 2003.

[11] V. K. Naik, C. Liu, L. Yang, and J. Wagner. Online resource
matching in a heterogeneous grid environment. In In Proc.
of the 6th IEEE CCGrid' 05, Cardiff, UK, 2005.

[12] G. Rudolph. Convergence analysis of canonical genetic al-
gorithms. |EEE Trans. Neural Networks, 5(1):96-101, 1994,

[13] G.Rudolph. On a multiobjective evolutionary algorithm and
its convergence to the pareto set. In Proc. of the IEEE Int’|
Conf. on Evolutionary Computation(ICEC’ 98), pages 511—
516, Piscataway NJ, 1998. IEEE Press.

[14] S. Song, Y.-K. Kwok, and K. Hwang. Security-driven
heuristics and a fast genetic algorithm for trusted grid job
scheduling. In Proc. of the 19th |EEE IPDPS 05, 2005.

[15] N. Srinivas and K. Deb. Multiobjective optimization using
nondominated sorting in genetic algorithms. Evolutionary
Computation, 2(3):221-248, 1994.

[16] F. Zhang, Y. F. Zhang, and A. Y. C. Nee. Using genetic al-
gorithms in process planning for job shop machining. |EEE
Trans. Evolutionary Computation, 1(4):278-289, 1997.



