
RC24063 (W0609-132) September 27, 2006
Computer Science

IBM Research Report

Comprehensive Change Management for SoC Design

Sunita Chulani, Stanley M. Sutton Jr., Gray Bachelor*, P. Santhanam
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

*IBM Global Business Services
PO Box 31

Birmingham Road
Warwick CV34 5JL

United Kingdom

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

IP/SOC 2006
Comprehensive Change Management for SoC Design

Sunita Chulani1, Stanley M. Sutton Jr.1, Gary Bachelor2, and P. Santhanam1

1IBM T. J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532 USA

2IBM Global Business Services, PO BOX 31, Birmingham Road, Warwick CV34 5JL UK

ABSTRACT Systems-on-a-Chip (SoC) are becoming
increasingly complex, leading to corresponding
increases in the complexity of SoC design and
development. SoC are composed of IP from multiple
sources. These IP components and other elements of
the SoC may be subject to change for various reasons
and at varying rates. Uncontrolled changes can lead to
widespread verification failures and performance
problems, triggering redesign and reverification and
greatly increasing SoC development times and costs.

We propose to address this problem by introducing
comprehensive change management for SoC
development. Change management, which is widely
used in the software industry, involves
controlling when and where changes can be
introduced into a system under development and
tracking the dependencies between components so that
changes can be propagated quickly, completely, and
correctly.

This recommendation is based on in-depth discussions
with more than 30 experts in electronic design from
across IBM. They identified over 20 significant
change management problems in commercial chip
development. A priority was to “bring everything
under change control.”

In this paper we address two main topics: One is
typical scenarios in electronic design; these provide a
framework for determining where change
management can be supported and leveraged. The
other the specification of a comprehensive schema to
illustrate the range of data and relationships that are
important for change management in SoC design.

1. INTRODUCTION
SoC designs are becoming increasingly complex. At
the same time, pressures on design teams and project
managers are rising because of shorter times to
market, more complex technology issues, more
complex organizations, and multi-partner and
geographically dispersed teams with varied “business
models” and higher “cost of failure.”

Current methodology and tools for designing SoC
need to evolve with market demands in key areas:
First, multiple streams of inconsistent hardware (HW)
and software (SW) processes are often integrated only
in the late stages of a project, leading to unrecognized
divergence of requirements, platforms, IP and so on,

resulting in unacceptable risk in cost, schedule, and
quality. Second, even within a stream of HW or SW,
there is inadequate data integration, configuration
management, and change control across life cycle
artifacts. Techniques used for these are often ad hoc
or manual, and the cost of failure is high. This makes
it difficult for a distributed group of engineers to be
productive and inhibits the early, controlled reuse of
design products and IP. Finally, the costs of
deploying and managing separate dedicated systems
and infrastructures are becoming prohibitive.

We propose to address these shortcomings through
comprehensive change management, which is the
integrated application of configuration management,
version control, and change control across software
and hardware design. Change management is widely
practiced in the software development industry. There
are commercial change-management systems available
for use in electronic design, such as MatrixOne
DesignSync [4], ClioSoft SOS [2], IC Manage Design
Management [3], and Rational ClearCase/ClearQuest
[1], as well as numerous proprietary, “home-grown”
systems. But to date change management remains an
under-utilized technology in electronic design.

In SoC design, change management can help with
many problems. For instance, when IP is modified,
change management can help in identifying blocks in
which the IP is used, in evaluating other affected
design elements, and in determining which tests must
be rerun and which rules must be re-verified. To take
another example, when a new release is proposed,
change management can help in assessing whether the
elements of the release are mutually consistent and in
specifying IP or other resources on which the new
release depends for correct functioning.

More generally, change management provides the
ability to analyze the potential impact of changes by
tracing to affected entities and the ability to propagate
changes completely, correctly, and efficiently. For
design managers, this supports decision-making as to
whether, when, and how to make or accept changes.
For design engineers, it helps in assessing when a set
of (new or modified) design entities is complete and
consistent and in deciding when it is safe to make (or
adopt) a new release.

In this paper we focus on two elements of this
approach for SoC design. One is the specification of

representative use cases in which change management
plays a critical role. These show places in the SoC
development process where information important for
managing change can be gathered. They also show
places where appropriate information can be used to
manage the impact of change. The second element is
the specification of a generic schema for modeling
design entities and their interrelationships. This
supports traceability among design elements, allows
designers to analyze the impact of changes, and
facilitates the efficient and comprehensive propagation
of changes to affected elements.

The following section provides some background on a
survey of subject-matter experts that we performed to
refine the problem definition. Section 3 then presents
high level use cases that in combination address the
major activities in typical SoC design processes.
Section 4 gives an overview of the change-
management schema, describing key elements and
illustrating a small example of the application of the
schema to electronic-design data. Section 5 looks at a
particular use case, Implement Change, in more detail
and shows where the use case can make use of various
elements from the schema. Finally, we present our
conclusions.

2. BACKGROUND
At the outset of this investigation we conducted a
survey of some 30 IBM subject-matter experts (SMEs)
in areas of electronic design, configuration and change
management, and design data modeling. Our SMEs
identified 26 problem areas relating to change
management in electronic design. These could be
categorized as follows:

• visibility into project status
• day-to-day control of project activities
• organizational or structural changes
• design method consistency
• design data consistency

Major themes that crosscut these categories included:

• visibility and status of data
• comprehensive change management
• method definition, tracking, and enforcement
• design physical quality
• a common approach to problem identification and

handling
We held a workshop with the SMEs to prioritize these
problems, and two emerged as the most significant:
First, the need for basic management of the
configuration of all the design data elements and
resources of concern within a project or work package
(libraries, designs, code, tools, test suites, etc.);
second, the need for designer visibility into the status
of data and configurations in the context of the work
package.

To realize these goals, at least two basic kinds of
information are necessary. One is an understanding of
how change management may occur in SoC design
processes. The other is an understanding of the kinds
of information and relationships needed to manage
change in SoC design. We addressed the former by
specifying change-management use cases; we
addressed the latter by specifying a change-
management schema. These are discussed in the
following sections.

3. USE CASES
This section describes typical use cases in the SoC
design process. Change is a pervasive concern in
these use cases—they cause changes, respond to
changes, or depend on data and other resources that
are subject to change. Thus, change management is
integral to the effective execution of each of these use
cases. We identified nine representative use cases in
the SoC design process, which are shown in Figure 1.
(In the following text, terms in Helvetica font refer to
items in the figures.)

In general there are four ways of initiating a project:
New Project, Derive, Merge and Retarget. New
Project is the use case in which a new project is
created from the beginning. The Derive use case is
initiated when a new business opportunity arises to
base a new project on an existing design. The Merge
use case in initiated when an Actor wants to merge
configuration items during implementation of a new
CM scheme or while co-working with
teams/organizations outside of the current CM
scheme. The Retarget use case in initiated when a
project is restructured due to resource or other
constraints. In all of these use cases it is important to
institute proper change controls from the outset. New
Project starts with a clean slate; the other scenarios
require changes from (or to) existing projects.

Once the project is initiated, the next phase is to
update the design. There are two use cases in the
Update Design composite state. New Design
Elements addresses the original creation of new
design elements. These become new entries in the
change-management system. The Implement
Change use case entails the modification of an
existing design element (such as fixing a bug). It is
triggered in response to a change request and is
supported and governed by change-management data
and protocols.

The next phase is the Resolve Project and consists of
3 use cases. Backout is the use case by which changes
that were made in the previous phase can be reversed.
Release is the use case by which a project is released
for cross functional use. The Archive use case protects
design asset by secure copy of design and environment

4. CHANGE-MANAGEMENT
SCHEMA
The main goal of the change-management schema is
to enable the capture of all information that might
contribute to change management in electronic design.

4.1 Overview
The schema, which is defined in the Unified Modeling
Language (UML) [5], consists of several high-level
packages, as shown in Figure 2.1

The package Data represents various types of data
elements for the representation of design data and
metadata. Package Objects and Data defines types
for objects and data. Objects are containers for
information, data represent the information. The main
types of object include artifacts (such as files),
features, and attributes. The types of objects and data
defined in this package are important for change
management because they represent the principle work
products of electronic design: IP, VHDL and RTL
specifications, floor plans, formal verification rules,
timing rules, and so on. It is changes to these things
for which management is most needed.
The package Types defines types to represent the
types of objects and data. This enables some types in
the schema (such as those for attributes, collections,
and relationships) to be defined parametrically in
terms of other types, which promotes generality,
consistency, and reusability of schema elements.

The package Specifications defines types of data
specification and definition. Specifications specify an

1 In UML, a package groups related modeling elements,
which can be considered to form a sub-model or sub-schema.
We have used packages to group model elements relating to
particular areas of concern in change management for SoC.

The package Attributes defines more specific types of
attribute. The basic notion of an attribute is just that
of a name-value pair that is associated to an object.
(More strongly-typed subtypes of attribute have fixed
names, value types, or attributed-object types, or
combinations of these.) Attributes are one of the main
types of design data, and they are also important for
change management because they can be used to
represent the status or state of design elements (such
as version number, verification level, timing and noise
characteristics, and so on).

Figure 1. Use cases in SoC design

Package Collections defines types of collections.
These include collections with varying degrees of
structure, member typing, and constraints. Collections
are important for change management in that changes
must often be coordinated for collections of design
elements as a group (for example, for a work package,
verification suite, or IP release). Collections are also
used as the basis for several other elements in the
schema (for example, baselines and change sets).
The package Relationships defines types of
relationships. The basic relationship type is an
ordered collection of a fixed number of elements.
Subtypes provide directionality, element typing, and
extrinsic and intrinsic semantics. Relationships are
especially important for change management because
they can define various types of dependencies among
design data and between design data and resources.
Some examples would include the use of macros in
cores, the dependence of timing reports on floor plans
and timing contracts, and the dependence of test
results on tested designs, test cases, and test tools.
Explicitly modeled dependency relationships support
the analysis of change impact and the efficient and
precise propagation of changes.

informational entity; definitions are data that denote a
meaning and are used in specifications
The package Resources represents things (other than
design data) that are used in design processes, for

ts. Events are

 behaviors or

 about a

artifacts and attributes that are changed, and it links

e

senting change explicitly. These

es to those requests. A change

example, design tools, simulators, IP, design methods,
design engineers and project managers, and so on.
Resources are important for change management in
that resources are used in the actions that cause change
and resources are used in the actions that respond to
changes. Indeed, minimizing the resources needed to
handle changes is one of the goals of change
management. Resources are also important in that
changes to a resource may require changes to design
elements that were created using that resource (for
example, when changes to a simulator may require
reproduction of simulation results).
The package Events defines types and instances of
events, including composite even
important in change management because changes are
a kind of event, and signals of change events can
trigger processes to handle the change.
The package Actions provides a representation for
things that are done, that is, for the
executions of tools, scripts, tasks, method steps, etc.
Actions are important for change in that actions cause
change. Actions can also be triggered in response to
changes and can handle changes (such as by
propagating changes to dependent artifacts).

The subpackage Action Definitions defines the type
Action Execution, which contains information
particular execution of a particular action (like an
execution-log record). It refers to the definition of the
action and to the specific artifacts and attributes read
and written, resources used, and events generated and
handled. Thus an action execution indicates particular

those to the particular process or activity by which
they were changed, the particular artifacts and
attributes on which the changes were based, and the
particular resources by which the changes were
effected. Through this information particular
dependency relationships can be established between
the objects, data, and resources. This is the specific
information needed to analyze and propagate concrete
changes to artifacts, processes, resources, and so on.

Package Baselines defines types relating to baselines:
mutually consistent set of design elements that can be
used together. Baselines are important for chang

Figure 2. Packages in the change-management schema

management in several respects. The elements in a
baseline must be protected from arbitrary changes that
might disrupt their mutual consistency, and the
elements in a baseline must be changed in mutually
consistent ways in order to evolve a baseline from one
version to another.
The final package shown in Figure 2 is the Change
package. This package defines several types that are
important for repre
include managed objects, which are objects with an
associated change log, change logs and change sets,
which are two types of collection that contain change
records, and change records, which record specific
changes to specific objects. They can include a
reference to an action execution for the action that
caused the change.
The subpackage Change Requests includes several
types for modeling requests for changes and the
subsequent respons
request has a type, description, current state, priority,
and owner. It can have an associated action definition,
which may be the definition of the action to be taken
in processing the change request. A change request
also has a change-request history log.

Fi
gu

re
 3

.
E

xa
m

pl
e

of
 c

ha
ng

e-
m

an
ag

em
en

t d
at

a

4.2
An exam

diagram

(identif
repres

term

Execu
defines
schem
the gen

subtyp
VHDLFloor
instanti
explan
appendix

5.

Change
activiti
use case

Example
ple of the use of the change-management

schema is shown in Figure 3. Here, the clear boxes
(upper part of diagram) show general types from the
schema and the shaded boxes (lower part of the

) show types (and a few instances) specially
defined to represent parts of a specific project at IBM

ying details obscured). The example
ents elements from a high-level design process.

It shows a dependency relationship between two types
of design artifact, VHDLArtifact and
FloorPlannableObjects. The relationship is defined in

s of a compiler that derives instances of
FloorPlannableObjects from instances of VHDLArtifact.

tion of the compiler constitutes an action that
the relationship. The specific

aelementsfor this example are defined based on
eral schema using a variety of object-oriented

modeling techniques, including specialization or
ing (e.g., VHDLArtifact), parameterization (e.g.

plannableObjectsDependency), and
ation (e.g., Compile1). Some additional

ation of the UML notation is found in the
.

USE CASE IMPLEMENT
CHANGE
Here we present an example use case, Implement

, with details on its activities and how the
es use the schema presented in Section 4. This

 is illustrated in Figure 4.

5.1 Use Case Details
The Implement Change use case addresses the
modification of an existing design element (such as
fixing a bug). It is triggered by a change request. The
first steps of this use case are to identify and evaluate
the change request to be handled. Then the relevant
baseline is located, loaded into the engineer’s
workspace, and verified. At this point the change can
be implemented. This begins with the identification of
the artifacts that are immediately affected. Then
dependent artifacts must be identified and changes
propagated to them according to dependency
relationships. (This may entail several iterations of
change propagation.) Once a stable state is achieved,
the modified artifacts are verified and regression
tested. Depending on test results, more changes may
be required. Once the change is considered
acceptable, any learning and metrics from the process
are captured and the new artifacts and relationships are
promoted to the public configuration space.

5.2 Combination of Use Cases and
Schema
The SoC design use cases and the SoC change-
management schema can be used independently but
they are designed to be used together. When used
together, the activities in the use cases can be refined
to reference specific data types defined in the schema.
To give an idea of the correlation between the use
cases and schema, and Table 1 shows the schema
types that are used by various activities in the
Implement Change scenario.

Figure 4. State diagram for use case Implement Change

Table 1. Correlation of use-case activities and change-management schema elements for use case Implement Change
(shaded elements indicate that the activity in the indicated row uses the data element in the indicated column).

6. CONCLUSIONS
This paper explores the role of comprehensive change
management in the design, development, and delivery
of SoC. Based on the comments of over thirty
experienced electronic design engineers from across
IBM, we have captured the essential problems and
motivations for change management in SoC projects.
We have described design scenarios, highlighting
places where change management applies, and
presented a preliminary schema to show the range of
data and relationships change management may
incorporate. Change management can benefit both
design managers and design engineers. It is
increasingly essential for improving productivity and
reducing time and cost in SoC design.

ACKNOWLEDGMENTS
Contributions to this work were also made by Nadav
Golbandi and Yoav Rubin of IBM’s Haifa Research
Lab. Much information and guidance were provided
by Jeff Staten and Bernd-josef Huettl of IBM’s
Systems and Technology Group. . We especially thank
Richard Bell, John Coiner, Mark Firstenberg, Andrew
Mirsky, Gary Nusbaum, and Harry Reindel of IBM’s

Systems and Technology Group for sharing design
data and experiences with us. We are also grateful to
the many other people across IBM who contributed
their time and expertise.

REFERENCES
1. http://www-
306.ibm.com/software/awdtools/changemgmt/
enterprise/index.html
2. http://www.cliosoft.com/products/index.html
3. http://www.icmanage.com/products/index.html
4. http://www.ins.clrc.ac.uk/europractice/software/
matrixone.html#matrixone
5. http://www.uml.org/

Im
Ob

plement- Change
Activity ject Types Referenced

 Arti-
fact

Base-
line

Base-
line

Cata-
log

Base
-line
Set

Change
Log

rce
ce

Change
Record

Change
Request

Change
Set

Obj-
ect

Attri-
bute

Rel-
ation-
ship

Resou
Instan

Identif
chang

y and evaluate
e request

Locate relevant baseline

Load
into w

relevant baseline
orkspace

Identif
imme

y artifacts for
diate change

Upda
as nec

te identified artifacts
essary

Identif
ships

y affected relation-
and artifacts

Upda
ships

ted affected relation-
and artifacts

Verify
chang

 and regression test
ed modules

Evalu
test results

ate verification and

Captu
metri

re learning and
cs

Prom
of tar

ote baseline to head
get stream

APPENDIX
Here we give a v

ery brief additional explanation of the

UML notation (especially as used in Fig
The boxes mainly r ent type pes are
typica y represented ther face ich
have multiple implementations) or cl

plementations). Operations or
 the types are shown by elem ts withi

arameterized, in which case
 w th par etric elements in a

 right.
pes shown,

FloorplannableObjectTyp ef,
ef. The are sp ific dat ents

in other data elements in the
le.

boxes represent v rious kin s of
between types

o head indicates that the type at
ubtyp e type at the head (e.g.,

b pe of Artifact).

Solid lines without heads represent bi-directional
ements, e.g., a VHDLFloor-

ndency is associated with both a
VHDLArtifact and a FloorplannableObjectsArtifact, and

s f ti FloorplannableObje
Art a sso d rs ith
VHDLFloorplannableObjectsDepe . Sol d lines
with open narrow heads indicate a directed
as ciation.
Arrows with open heads indicate directed associat .
Lines with a diamond shape at the head indicate that
the element the head as a col ction or aggregation
of elements at the tail (such as an ArtifactType
constituting a collectio of Artifa).
Arrows shown with dotted lines represent various
kinds of dep ency, e nature f whic icated
by stereotype labels “<<…>>”. Thus, Compile1 is an
instantiation of the t ActionDefinition, the pe
ActionDefinition (a class) is a subtype implementation
of the type (an interface), and the pe
VHDLFloorplannableObjectsDepe imports the
element VHDLTypeDef (among others).

ure 2).
s. Ty
s (wh
asses (which

epres
as ei

 data
 interll may

embody specific im
fields on en n the
boxes. Types can be p
they are shown i am
superimposed box to the upper
Three of the boxes represent instances of ty
namely Compiler1
VHDLTypeD

,
se

eD
 thatec a elem

are used in defin
examp

g

The lines between th
association

e
the

a d
:

An arrow with a cl
the tail is a s

sed
e of th

VHDLArtifact is a su ty

associations between el
PlannableObjectDepe

in tances o
ifact m

VHDLAr
y be a

fact and
ciate

cts-
 a conve

ndency
ely w

i

so
ions

at h le

n cts

end th o h is ind

 ype ty

DataDefinition ty
ndency

	1. INTRODUCTION
	2. BACKGROUND
	3. USE CASES
	4. CHANGE-MANAGEMENT SCHEMA
	4.1 Overview
	4.2 Example

	5. USE CASE IMPLEMENT CHANGE
	5.1 Use Case Details
	5.2 Combination of Use Cases and Schema

	6. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
	1. http://www-306.ibm.com/software/awdtools/changemgmt/ enterprise/index.html
	2. http://www.cliosoft.com/products/index.html
	3. http://www.icmanage.com/products/index.html
	4. http://www.ins.clrc.ac.uk/europractice/software/ matrixone.html#matrixone
	5. http://www.uml.org/
	 APPENDIX

