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Evaluating Design Tradeoffs in On-Chip 
Power Management for CMPs 

 
 

Abstract 
The continual scaling of process technology has resulted in a larger number of transistors 

available on a single chip and has thus enabled the dawn of Chip Multiprocessors (CMPs), 
where multiple processor cores are placed on a single chip. Additionally, power consumption 
remains a concern due to the thermal and reliability issues that result from high power 
dissipations. Dynamic power management techniques employed in current processors are 
designed for individual processor cores. With the shift towards multi-core chips, it is 
necessary to augment such per-core techniques with a larger chip-level control. 

In this paper, we first model such a centralized power management unit in a full-system 
simulation environment. We implement asynchronous interfaces where needed to allow the 
individual cores of the CMP to operate at different voltages/frequencies and we also 
introduce the ability to adjust the fetch bandwidth of each processor core. Our model 
accounts for the cost of transition between power modes, as well as the control sampling time 
granularity constraints. To show the utility of our model, we then explore the design-tradeoffs 
associated with CMP power management solutions. We show that global power management 
solutions outperform the solutions that locally manage power per-core without any global 
chip-wide control. We then show that global power management is most effective at relatively 
fine granularities that allow it to adapt to changing workload behavior quickly and thus 
conclude that on-chip hardware solutions for CMP power management are important for 
future CMP microprocessors. 

 

1. Introduction  
The power consumption of modern microprocessors is of increasing concern due to the thermal 

and reliability issues that arise when the power consumptions become excessively large. In order to 

mitigate these power concerns, contemporary microprocessors typically employ some form of 

dynamic power management within the processor core. These power management techniques have 

largely been designed and optimized for single-core microprocessors. 

Recently, however, there has been a shift towards the designs that place multiple processor cores 

on a single chip [21, 23]. Many modern industrial processors make use of such Chip Multiprocessor 

(CMP) designs [10, 11, 13, 18]. In light of this trend towards more aggressively scaled-out chips, it is 

necessary to explore the use of an additional layer of power management at the chip-level. This 

additional layer of control has a global view of the power and performance demands of the individual 
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processor cores as well as those of the entire chip. Using this information, the chip-wide power budget 

can be distributed among the processor cores so as to maximize the overall performance while meeting 

the chip-wide power budget. 

To this end, we examine the need for a global on-chip power manager that redistributes power 

among multiple processors cores and explore the design-tradeoffs associated with such a manager. To 

explore the design-tradeoffs we choose to use simple power-control knobs, such as fetch throttling 

[17], as well as complex power-control knobs such as Dynamic Voltage/Frequency Scaling (DVFS) 

[4]. To evaluate the complex control knobs that result in on-chip asynchrony, we develop a 

methodology that allows such asynchrony to be modeled in the IBM Mambo [2] full-system simulator. 

The ability to model such complex systems is important in order to evaluate design-tradeoffs and to 

determine whether the development of such complex systems is indeed worthwhile. Furthermore, 

knowledge gained through such early stage evaluation is crucial in driving the direction of future 

microprocessor systems. We show the usefulness of our framework by evaluating the CMP power 

management solutions. 

Specifically, we make the following contributions: 

• We develop a modeling infrastructure that permits us to examine the use of various power 

management solutions in a full-system simulation environment. 

• We compare global chip-wide power management solutions to those that manage power locally 

within each core. 

• We compare the power management techniques that treat all cores homogeneously, forcing the 

same power controls to be applied to all cores at the same time, to those that treat the cores 

heterogeneously and allow the cores to operate at different power modes. 

• We examine the impact of varying the control sampling time between the cores and the global 

power manager. 
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For both simple and complex control knobs, we show that global power management solutions 

outperform the solutions that locally manage power per-core without any global chip-wide control. We 

then show that global power management is most effective at relatively fine granularities that allow it 

to adapt to changing workload behavior quickly and thus conclude that on-chip hardware solutions for 

CMP power management are important for future CMP microprocessors. 

The rest of the paper is organized as follows. Section 2 provides an overview of possible power 

management solutions for CMPs. In section 3, we describe the details of our simulation infrastructure. 

Section 4 describes the details of the power management variations examined in the paper. Section 5 

presents the results, section 6 discusses the related work, and we offer our concluding remarks in 

section 7. 

2. Overview 
With the steady increase in the number of cores and active threads, it is clear from existing or prior 

studies that built-in mechanisms (like clock-gating [25]) alone will not suffice to mitigate the power 

concerns. This is especially true, when the objective is to reduce not just the average power, but also to 

ensure that the maximum power consumption is within affordable limits, without significantly 

compromising the overall performance. The modern power management problem is really a multi-

variate optimization exercise, since the parameters involved are (at least) the power, temperature and 

performance levels at the local (core and non-core components) and global (chip) levels. Power-aware, 

static (or built-in) design techniques for each core and non-core component are of course necessary to 

increase the baseline energy-efficiency. Fine-grain clock-gating, power-efficient clocking and latch 

designs are examples of such static techniques; although, even with such built-in enhancements, the 

power savings can be a function of the input workload. In addition, however, on-chip dynamic power 

management has now become a necessity. That is, the ability to allocate, deallocate and reconfigure 

core and non-core resources in tune with the changing workload demand, is the modern server chip 

requirement. And, the goal is both average and maximum power management, as well as adherence to 
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peak temperature limits. Since the trade-off analysis requirement is multi-variate, and spans several 

cores and other resources on the chip, the on-chip power-performance manager needs to be architected 

as a hierarchical controller, with both local (per-resource) and global (chip-level) monitoring-and-

response functions. The control function can be entirely “reactive and open-loop”, with no feedback-

directed attempt to correct, extend or curtail the response. It can also be implemented as a partly or 

fully “closed-loop” function, with feedback-directed control to correct overshoots and undershoots. In 

general, a hybrid approach with both open- and closed-loop control elements may be used to provide 

robust management functionality at affordable cost and complexity. 

In an effort to optimize the resource usage efficiency through such dynamic adaptation, the aim of 

course is to minimize any performance impact. Only in rare cases of very significant overload, where 

all or most of the cores are subject to worst-case workload demand, should the global power manager 

function invoke a corrective response that significantly degrades the performance of one or more 

threads.  

Prior research in the field of power-aware microarchitecture design has yielded a “bag of tricks” to 

reduce power while maintaining the original performance target within a specified range. Ideally, one 

would like to invoke a subset of these tricks, depending on the workload (or a particular phase of the 

workload) and the machine state. This is exactly where the global power manager function comes in. 

This “monitor-and-control” facility is architected in such a way that it would sense the workload 

demand and machine state and dynamically invoke particular mechanisms from within the full 

repertoire of architected techniques for power reduction and control. 

As workload phase behavior can occur at granularities varying from very coarse (e.g. at the scale 

of hundreds or thousands of milliseconds) to very fine grain (nano and microseconds), conceptually, 

one would formulate the dynamic power management problem as a hierarchical feedback control 

algorithm involving hardware (fast) and software (slow) elements. This work focuses on the design of 
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the micro- and milli-second level fast control mechanisms affected by a global on-chip hardware 

controller. 

2.1 Power Manager Design Alternatives 
There are many possibilities for the design of a power management solution for CMPs. These 

solutions can be classified as either local management techniques or global management techniques.  

Local solutions naively off-load the power management responsibilities to the individual cores. In 

this case, each core is responsible to locally manage its own individual power consumption without 

any global communication. This type of control requires the fewest changes to current designs and can 

be employed by simply using the existing techniques for single-core microprocessors. The drawback 

to such a design, however, is that opportunities for global optimization can be missed. 

On the other hand, global solutions employ a power manager that can communicate with all of the 

individual cores. This globally aware power manager can then make power adjustment decisions in a 

way that is optimal for the entire chip. Such “global” power managers benefit from their 

comprehensive view of power and performance of the entire chip, as well as the individual 

contributions of each core. These types of power managers may be implemented in either hardware or 

software, as long as a communication link exists connecting the manager and all the cores. 

Global power managers can be further classified as those that treat the cores homogeneously and 

those that treat the cores heterogeneously. With homogeneous solutions, all cores receive equal 

portions of the total power budget and every power adjustment affects all cores. Heterogeneous 

solutions go further and provide a dynamic redistribution of power among the cores.  While 

heterogeneous solutions can better adapt to workloads with large inter-thread variations, homogeneous 

solutions may be less costly to implement and verify. This is because of the requirement of on-chip 

asynchrony and separately controllable voltage/frequency islands implied by the heterogeneous 

solutions. Therefore, in order for the heterogeneous solutions to be attractive, we surmise that the 

performance delta between heterogeneous and homogeneous techniques has to be quite large. 
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Little work has been done to explore the design trade-offs associated with each of these classes of 

power managers. This work makes several contributions to this end. First, we show that global power 

managers outperform the local managers in general because of the opportunity to take advantage of 

global optimizations afforded by such designs. Next, we show that there is little performance 

difference between the global-homogeneous and global-heterogeneous designs. This, coupled with the 

additional complexities associated with the global-heterogeneous designs, makes the global-

homogeneous solutions the most attractive design point. We show that these conclusions hold true for 

both simple and complex power control knobs. Finally, we show that the global-homogeneous 

solutions are most effective a fine time granularities, and therefore necessitate an on-chip hardware 

implementation. 

3. Methodology and Simulation Details 
In this section, we describe the simulation methodology developed in order to evaluate the design-

tradeoffs associated with various power-management solutions for CMPs. We begin by describing the 

steps used to model the on-chip asynchrony resulting from per-core DVFS. Then, we describe the 

power modeling methodology used in the paper. 

3.1 Simulating On-Chip Asynchrony 

In order to evaluate the design trade-offs associated with such power management solutions, we 

needed a simulation environment that permits the individual cores of the CMP to operate at different 

frequencies and allows those frequencies to be adjusted dynamically. Modeling such on-chip 

asynchrony is non trivial in today’s simulation infrastructures. While the detailed implementation of 

an asynchronous processor is beyond the scope of this paper, our interests lie in the availability of a 

basic model with which to begin to explore the design space of CMP power management from a 

research perspective in order to evaluate whether a more detailed, full blown investigation is warranted. 

To address this deficiency, we chose to build on top of the IBM Mambo full system simulator [2]. 

The simulator is execution-driven and has the ability to boot and run a full operating system. We 
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modeled an IBM POWER5-like processor with 4 cores and run Linux as the operating system within 

the simulations. 

Table 1: Range of frequencies examined 

Ratio Percentage of Nominal Frequency 
55/55 100.00% 
54/55 98.18% 
53/55 96.36% 
52/55 94.55% 
51/55 92.73% 
50/55 90.91% 
49/55 89.09% 
48/55 87.27% 
47/55 85.45% 
46/55 83.64% 
45/55 81.82% 

We first defined the range of target operating frequencies that we would like to examine. For these 

studies, we choose to examine 10 frequency steps in the range of about 80%-100% of the nominal 

frequency, which yields 11 discrete operating points. This implies that each step should adjust the 

frequency by 20% / 11 = ~1.81%, or more precisely, 1/55th. Therefore, we consider the frequencies in 

the range of 55/55 * Fn to 45/55 * Fn, where Fn is the nominal frequency for the processor, as shown 

in Table 1. 

After determining the frequency ratios to examine, we modified the simulator by increasing the 

frequency of the “simulator clock” and adjusting the number of “simulator clock ticks” that are 

mapped to a single “processor clock cycle”. For example, in a traditional single processor event-driven 

simulator, events are scheduled based on the number of cycles between the current cycle and the cycle 

in which the event will occur. Instructions then schedule an event to occur in the cycle in which they 

will complete a given pipeline stage. When that event occurs, the instruction removes itself from the 

current pipeline stage and advances to the next stage, scheduling another event to occur in the cycle in 

which it will complete that stage. Typically, these delays are expressed in the number of processor 

clock cycles until the even occurs (i.e. 1 cycle, 2 cycles, 10 cycles, etc). This assumes a one-to-one 

mapping between “simulator ticks” and “processor cycles”. However, this one-to-one mapping is not 
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necessary. It is possible to map one “processor cycle” to 2 “simulation ticks”, in which case a request 

for an instruction to delay “one processor cycle” will be interpreted as a request to delay by “two 

simulation ticks”. Notice that if this mapping applies to the scheduling of every single processor event, 

then the net simulation is exactly the same as with the one-to-one mapping, except that twice as many 

“simulation ticks” will have transpired in order to simulate the same number of “processor clock 

cycles”. In general, one “processor cycle” can be mapped to n “simulation ticks” by mapping each 

event request to delay by d “processor cycles” to d*n “simulation ticks”. 

3.2 Power Estimation Methodology 

For estimating the power of each processor core, we employ a utilization based power model using 

the following equation: 

PowerCORE =  ActivityIFU * WeightIFU + ActivityIDU * WeightIDU + ActivityISU * WeightISU + 

 ActivityFXU * WeightFXU + ActivityFPU * WeightFPU + ActivityLSU * WeightLSU 

 + Hold (switching) Power + Leakage_Power 

 

This model tracks the activity of the key processor components and each activity factor is 

multiplied by a “weight” that represents the corresponding component’s contribution to the 

unconstrained chip power as extracted from real power measurements. Essentially, this abstract model 

expresses the power of a given unit j, as: 

Pj  =  Lj + Hj + (Sjmax – Hj) * Aj  

where, Lj is the leakage power (independent of activity or utilization); Hj is the active (switching) hold 

power that is consumed when the unit is idle; Aj (1 μ  Aj  μ 0) is the activity factor, that captures the 

degree to which the unit is utilized over the period of measurement; Sjmax is the maximum (or 

unconstrained)  active (switching) power that is consumed when the unit is fully utilized (i.e. for Aj = 

1). The weight of the jth unit then is Wj = (Sjmax – Hj).  
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We derive our unit-level “weights” from the detailed circuit-level power measurement data that 

were used to project the active power pie chart of [3]. The total chip active power is known, and the 

individual unit fractional powers are as reported in [3]. The active hold power for each unit is available 

by adding up the macro-level hold powers for that unit (available from circuit-level simulation). The 

leakage power for each unit (which, like the active hold power, is a constant adder in our linear power 

model) is also available from circuit-level, macro-wise gate-width analysis. However, for the purposes 

of our study, a simpler abstraction that models leakage as a parameterized multiplier (fraction) of the 

active hold power (Hj) is used.  Note that the unit-level component active powers, built up from 

macro-level characterization at the circuit level [3] assumed a constant (average) data switching factor 

for a given unit. These data switching factors were derived by running representative test cases on the 

RTL (VHDL) model of the processor, and averaging the measured data switching factors over all 

macros constituting that unit. A pictorial illustration of the unit-level power model formulation is 

shown in Figure 1. 

Figure 1.  Power model for jth modeled unit within a processor core. Lj is the constant leakage power; Hj is 
the active hold power; Sjmax is the maximum value of the active (switching power component) when the 
activity factor, Aj = 1.  A constant (average) data switching factor is implicitly assumed for the unit, based 
on measured values for representative test cases run on the RTL (VHDL) model. 

Power, Pj 

Lj 
Hj 

0 1.0 0.5 
Activity Factor, Aj   

Sjmax 
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In our experience, this type of abstract power model, constructed (in a bottom-up manner) from 

detailed macro-level power measurements of a POWER4/5-class processor [3], has been found to be 

quite accurate for multi-core power-performance tradeoff analysis research. The emphasis in such 

research is on understanding how multi-core (active) power budgets can be managed and redistributed 

across the cores, as the input workload changes, without giving up much throughput performance. 

Detailed characterization of intra-core power and thermal redistribution is not of direct interest in this 

research. Furthermore, in a physical implementation of an on-chip power management unit, the 

measurement of real, calibrated power consumption in hardware is a difficult task and it is therefore 

likely that such a utilization based power model will be used as a practical approximation. The goal of 

the power manager would be to always keep the total power within some safe limit such that 

calibrated on-chip thermal limit sensors do not keep triggering to invoke brute-force shutdown or 

slowdown mechanisms.  To drive such a power management algorithm, a very precise measurement of 

per-core power is not necessary. Note that this power model is used to estimate the power of only the 

processor cores, and not the non-core elements. Non-core power can again be approximated as a 

constant adder, as needed. 

We simulated several benchmarks from the SPLASH-2 application suite [24]. These are multi-

threaded applications and are configured to run with four threads. For all simulations, the applications 

are run to completion and the results are reported for the entire run. 

In choosing the power budgets, we first ran all benchmarks with no power manager and measure 

the power consumptions. Then, we choose power budgets as a percentage of the peak power 

consumption for each benchmark. For DVFS, we choose these power budgets to be 65%, 75%, 85%, 

and 95% of the peak power consumption. Since fetch throttling does not adjust the voltage, however, 

it is limited in the range of power reductions possible. Therefore, for fetch throttling, we choose power 

budgets of 85%, 89%, 93% and 96% of the peak power consumption. 
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4. Power Management Variations Examined 
This section describes the power management variations examined in this work. We consider both 

a simple power control knob (fetch throttling) and a complex control knob (Dynamic 

Voltage/Frequency Scaling). 

4.1 Power Management via Fetch Throttling 
Fetch throttling is the ability to control the number of instructions a processor fetches each cycle. 

Typically, a processor core is permitted to fetch instructions every cycle. When fetch throttling is used, 

the core is only allowed to fetch instructions one out of every t cycles, where t is the level of fetch 

throttling. For example, when t is set to 2, the core can only fetch instructions every other cycle. By 

reducing the speed at which instructions are fetched, the activity throughout the core can be reduced. 

Assuming that there is prevalent clock gating throughout the core, the power consumption will 

decrease with the decrease in activity. 

We examine three variations for power budget distribution via fetch throttling. First, we examine a 

local fetch throttling approach where each core individually controls its own throttling level. Here, the 

total chip power budget is divided evenly among the cores and each core then manages its own fetch 

throttling level in order to meet its individual power budget, without any global knowledge about the 

power consumptions of the other cores. With this scheme, all cores need not be throttled evenly. For 

example, one core may naturally meet its power budget without any fetch throttling while at the same 

time another core may need to invoke a very high level of throttling to meet its budget. 

Next, we examine a global-homogeneous fetch throttling approach that monitors the total chip 

power consumption and throttles all cores evenly to meet the chip-wide power budget. This variation 

does not have any individual information about the power and performance of each core and simply 

relies on total chip power measurements, as well as the set chip-wide power budget, in making 

throttling decisions. With this scheme, all of the cores on the chip are throttled evenly at any given 

time. Because of this, one power-hungry core can push the entire chip over budget and therefore force 



 12

throttling to occur for all of the cores on the chip. This may be undesirable, especially if these cores 

are running threads from different applications. 

The last variation is a global-heterogeneous fetch throttling approach that monitors the power 

consumption on the global level and has knowledge of the total chip power consumption as well as the 

contributions for each individual core. The throttling level for each core is then set so as to maximize 

the performance of the total chip while meeting the given power budget. The power redistribution 

algorithm works by evaluating all of the possible combinations of throttling levels for each core, and 

then chooses the one that maximizes the performance while meeting the power budget. To accomplish 

this, it assumes a linear scaling of power and performance with the throttling level. Furthermore, the 

algorithm is limited to not exceed the throttling level 8 for any core (beyond which point excessive 

performance degradations are incurred). 

4.2 Power Management via Dynamic Voltage/Frequency Scaling 
While fetch throttling has a linear relationship between power reduction and performance 

degradation, DVFS has a cubic relationship. Specifically, with DVFS it is possible to achieve a 1x 

reduction in performance for a 3x reduction in power [4]. This is because the (active) power is 

proportional to V2F, while the performance is (roughly) proportional to F, which is (roughly) 

proportional to V.  Thus, DVFS is an attractive approach for providing large power reductions at 

relatively small performance impact. However, the additional design and verification complexity 

required to support DVFS (especially on a per-core basis) is known to be quite significant. Despite 

these known roadblocks, we examine its potential from a research perspective in order to gauge 

whether or not it is an avenue worth pursuing. Previous work has examined the use of a CMP power 

manager using DVFS [8] using three power modes (i.e. voltage/frequency pairs). We extend this to 

incorporate 10 power modes and examine two variations of power management that use this 10-mode 

DVFS. 
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The first is a heterogeneous-global solution that implements the maxBIPS algorithm of [8]. This 

algorithm tries to optimize the overall system throughput by examining all voltage/frequency pairs for 

each core and selecting the one that meets the power budget while achieving the highest level of 

performance. The cores are permitted to operate at different voltages and frequencies. For a detailed 

analysis of the algorithm, we refer the reader to [8]. 

We also examine a global-homogeneous power manager using DVFS, which we refer to as chip-

wide DVFS. Here, the voltage and frequency can only be adjusted at the chip level, so all cores 

operate at the same voltage/frequency at any given time. While the performance of this variation is 

limited by the chip-wide power modes, it may be more feasible to implement than per-core DVFS. 

5. Results 
This section examines the results of the various power management solutions. 

5.1 Fetch Throttling Control Knob 
We begin by examining the power management solutions using fetch throttling as a power control 

knob. Figure 2 presents the average BIPS3/Watt across the simulated benchmarks for various power 

budgets, presented relative to the baseline machine BIPS3/Watt. We choose to present the results in 

terms of this metric because it takes both power and performance into account. Considering power 

savings or performance degradation alone is not sufficient because there is a subtle tradeoff between 

power and performance. Therefore, considering the combined effect on both metrics is important. 

Since the goal of the examined power managers is to maximize performance given a power budget, we 

choose the BIPS3/Watt metric1 because it weighs the performance impact more than the power savings. 

The first two bars show the results for the global homogeneous technique at 1μs and 1ms 

granularities, respectively. The next two bars show the results for the global heterogeneous solution 
                                                 
1 BIPS stands for the standard performance metric of billions of instructions per second. The (performance)3/watt 
is an [energy * (delay)2 ] metric that is commonly used to measure power-performance efficiency, especially for 
evaluating the efficiency of active power management techniques in server-class processors: e.g. see D. Brooks 
et al., “Power-aware microarchitectures: design and modeling challenges for next generation  microprocessors”,  
IEEE Micro, vol. 20, no. 6, pp. 26-44, Nov. 2000; and V. Zyuban et al., “Integrated analysis of  power and 
performance for pipelined microprocessors,” IEEE Trans. on Computers, vol. 53, no. 8, Aug. 2004. 
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at 1μs and 1ms granularities, and finally the last two bars present the results for the local solution at 

the 1μs and 1ms granularities. 

As seen from the graph, all of the global solutions outperform the local solutions quite 

significantly at both time granularities. Specifically, for the techniques invoked every 1μs with a 

power budget of 96%, the reduction in the average BIPS3/Watt is 3.4% for the global homogeneous 

technique, 3.2% for the global heterogeneous technique, and 29.1% for the local technique. The local 

technique is inefficient because it lacks a chip-wide view of power and performance and therefore 

misses many opportunities for global optimization. Specifically, although one particular core (say 

CoreN) may consume more than its share of the power budget at a given time, the total chip power at 

this time may still be within the total chip power budget if the other cores consume less than their 

share of the power budget. In other words, the power budget can be met by having one core with high 

power consumption and three cores with relatively low power consumption. However, this situation 

can not be detected by the local technique and thus the local power manager for CoreN will invoke 

fetch throttling unnecessarily, therefore directly reducing the performance/power efficiency as 

reflected in the BIPS3/Watt results presented in the figure. 

The next trend to observe is that both the global homogeneous and global heterogeneous 

techniques achieve similar results in terms of the BIPS3/Watt metric for all the examined power 

budgets. Even examining the per-benchmark results (not presented due to space constraints), we see 

that although global homogeneous is better in some cases and global heterogeneous is better in others, 

there is generally very little difference between the two. Furthermore, we find only small differences 

between the techniques invoked every 1μs and those invoked every 1ms. 
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Figure 2: BIPS3/Watt relative to the baseline machine for various fetch-throttling power management 
solutions and various power budgets. These results are presented for the average across the simulated 

benchmarks.  

To further distinguish between the global homogeneous and global heterogeneous approaches, we 

now analyze the average budget overshoots. We define the overshoot as the percentage of time that the 

measured power is greater than the given power budget multiplied by the average amount (in Watts) 

that the measured power exceeds the power budget. Therefore, lower values of the overshoot are better 

whereas high values of the overshoot indicate an inefficiency at meeting the given power budget. As 

seen from Figure 3, the average overshoot is very small for all schemes at the 1μs granularity, but the 

overshoot becomes large when the granularity is increased to 1ms. This is because, at the 1ms 

granularity, the power manager can not react quickly enough to the changing workload behavior in 

order to prevent the large budget overshoots.  
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Figure 3: Average overshoot across all benchmarks for various fetch-throttling power management 

solutions. (average overshoot is defined as the percentage of time that the measured power is greater than 
the given power budget multiplied by the average amount (in Watts) of these overshoots.) 
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5.2 DVFS Control Knob 
We now examine the results for the power management techniques using DVFS as the power 

control knob. Figure 4 presents the BIPS3/Watt, relative to the baseline machine, for various power 

budgets. The first two bars show the global homogeneous solution at 500μs and 10ms time 

granularities, respectively, while the last two bars show the results for the global heterogeneous 

solution at 500μs and 10ms time granularities, respectively. As seen from the graph, there is very little 

difference between these techniques in terms of energy-efficiency. Notice that this result is different 

than that of [8], which found a large difference between these two alternatives. This is a result of the 

fact that we use 10 levels of DVFS, while the work of [8] uses only 3. When only 3 levels of DVFS 

are used, the global homogeneous technique is quite limited in its choice of power modes and 

therefore is forced to select a mode that results in large performance degradations. 

An interesting trend to note on the graph is that as the power budget decreases, the energy 

efficiency increases. This is an artifact of DVFS in that lower power budgets force the 

voltage/frequency to be lowered, resulting in a more efficient power/performance tradeoff. 

Specifically, we know that the power consumption is roughly related to V3. The BIPS, however, scales 

down better than linearly with the frequency because the effective memory latency is reduced as the 

frequency goes down. Assuming that the voltage and frequency scale linearly, we can then expect the 

BIPS3 to scale better than V3, while the power (Watts) scales with V3. The net result is an increase in 

the BIPS3/Watt with lower power budgets, albeit at the cost of a significant performance degradation.  
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Figure 4: BIPS3/Watt relative to the baseline machine for various DVFS power management solutions and 

various power budgets. These results are presented for the average across the simulated benchmarks. 
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Figure 5: Average overshoot across all benchmarks for various power management DVFS solutions. 

 
Now we examine the average overshoots for the power management systems harnessing the 

DVFS control knob, as presented in Figure 5. Lower values of the overshoot are better because an 

algorithm with less overshoot is more easily controlled by the setting of the power budget. If the 

overshoot is excessively large, then the given power budget is essentially meaningless. 

As seen from the graph, the overshoot increases with the time granularity of control. For example, 

for the power budget of 85%, the overshoot of the global homogeneous solution increases from 0.3 to 

1.5 as the time granularity goes from 500μs to 10ms. This is because when the time granularity is too 

coarse, all power management solutions have a difficult time enforcing the power budget because 

changes in the program phase that occur within that time period can not be adapted to. This is the main 

limitation of the techniques with a time granularity in the order of several milliseconds. 
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Also notice that for all power management solutions, as the power budget is decreased, the over 

shoot increases. This is because the smaller power budgets are more difficult to meet, and therefore 

often result in a larger overshoot. 

Finally, we find that the global heterogeneous solution suffers a larger overshoot than the global 

homogeneous solution. The reason behind this is that, while the homogeneous solution has only one 

knob to control (i.e. global DVFS), the heterogeneous solution has 4 knobs (i.e. DVFS for each core). 

Therefore, it is more difficult for the heterogeneous solution to estimate what the exact 

power/performance implications will be of changing all 4 knobs at once, resulting in many cases 

where the prediction is incorrect. On the other hand, the homogeneous solution only has one knob to 

adjust and can therefore better estimate the impact of its power management decisions. 

6. Related Work 
The work most closely related to ours is that of [8], which examined the design of a power 

manager for CMPs using DVFS. Our work extends that of [8] in several key ways. First, we evaluate 

power management solutions in a full-system simulation environment, as opposed to the trace-driven 

environment of [8]. We provide a taxonomy for classifying CMP power management solutions as 

local or global and homogeneous or heterogeneous. We also examine the use of both simple and 

complex control knobs and evaluate both at different control sampling time granularities. Furthermore, 

we evaluate the design alternatives using multi-threaded (as opposed to multi-programmed) workloads. 

Juang et al. [9] also look at CMPs with dynamically configured voltage and frequencies. However, 

their work adjusts individual core executions to improve power-performance trade-offs by balancing 

inter-thread producer-consumer rates. Kotla et al. [12] consider a CMP system with multiple effective 

frequency domains achieved by throttling each core at a different rate. They demonstrate that memory 

intensive applications can be run on a slower core without significant performance loss. In comparison 

to these, our work develops policies that can adapt each core’s behavior under fixed power budgets. 
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Li and Martinez [14, 15] investigate methods to identify the optimal operating point on a CMP in 

terms of number of active cores and DVFS settings for parallel applications. They consider dynamic 

configurations under limited performance and power constraints and develop analytical models for 

attainable speedups. They consider application of chip-wide DVFS to manage parallel regions of 

applications and perform few explorations guided by heuristics to reach an optimal operating point. In 

contrast, our work focuses on comparing the per-core to chip-wide power management actions guided 

by policies that predict different power mode behaviors. 

Another line of prior work also considers dynamic management under power budget constraints. 

Merkel et al. [19, 20] present system level methods that adjust processor execution to fit target budgets. 

They develop an energy-aware scheduling policy to meet uniform budgets for each core to eliminate 

thermal emergencies. Grochowski et al. [7] discuss latency and throughput trade-offs under chip 

power constraints. They survey different adaptation techniques and suggest asymmetric cores with 

DVFS as the most promising alternative. In a related study, Annavaram et al. [1] consider a real 

implementation example with both static and dynamic asymmetric multiprocessors (AMP) and 

improve performance of multithreaded applications under fixed power budgets. These works discuss 

adaptations in response to the available thread parallelism in applications, while our work investigates 

core power adaptation policies for fully-utilized CMPs based on predictive power and performance 

models at different power modes. 

There is a wide range of different prior studies that focus on the design and control of CMP 

systems under power, thermal or area constraints [5, 6, 16, 22]. Most of these management techniques 

guide independent local actions or OS level scheduling decisions. In contrast, our work focuses on 

policies that perform power/performance management by adjusting the behavior of individual cores 

under global chip-wide power budgets with the supervision of global monitoring and control. 
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7. Concluding Remarks and Future Work 
The power consumption of modern microprocessors is of utmost concern due to the thermal and 

reliability concerns that arise with high power dissipation. As the trend towards multi-core CMPs 

continues, it is important to consider the power management alternatives for such a system so as to 

reduce the impact on the overall system performance. However, modeling and analyzing the effects of 

techniques such as Dynamic Voltage/Frequency Scaling (DVFS) that result in on-chip asynchrony are 

not trivial in today’s simulation environments. 

To overcome this limitation, we developed a full-system simulation environment in which to 

model such asynchrony at the processor core level. We show the usefulness of such a tool to examine 

the design trade-offs associated with various CMP power management alternatives. We showed that 

chip-wide solutions are necessary in order to take advantage of the global optimization opportunities. 

Furthermore, we show that the choice of time granularity for the power manager can significantly 

impact its ability to maintain a power budget. When the time granularity is too coarse (i.e. several 

milliseconds), it becomes increasingly difficult to enforce the power budget because quick changes in 

program phase can not be detected. Therefore, we find small time granularities (in the order of several 

milliseconds) to be most effective for CMP power management and conclude that on-chip, hardware, 

global power manager designs may be necessary to meet these timing constraints. 

Based on these findings, we feel that a combined solution that uses both a complex control knob 

and a simple control knob may provide the best trade-off. For example, implementing coarse-grained 

chip-wide DVFS with fine-grained per-core fetch throttling could provide the ability to both react 

quickly to changing workload behavior and at the same time achieve the attractive power/performance 

tradeoffs associated with DVFS. We leave the exploration and design of such a system to future work. 
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