
RC24318 (W0707-145) July 23, 2007

Computer Science

IBM Research Report
Map Feature Language (MFL) Specification, V1.0

Jonathan P. Munson

IBM Research Division

Thomas J. Watson Research Center

P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Copyright 2004 IBM Corporation. All rights reserved.

IBM UCL and IBM WRC

TOPAZ

Map Feature Language (MFL) Specification

Version 1.0

 ii

Copyright Notice

Copyright 2005 IBM Corporation. All rights reserved.

 iii

TABLE OF CONTENTS

1 INTRODUCTION...................................... 5

2 STRUCTURAL ELEMENTS......................... 5

2.1 THE FEATURESET ELEMENT ..5
2.1.1 scaleRange..6
2.1.2 description ..7
2.1.3 style...7
2.1.4 Color Elements ...7

2.2 THE FEATURE ELEMENT...8
2.2.1 attribute Element ..8

3 RENDERABLE ELEMENTS......................... 9

3.1 ICON...9
3.1.1 Point ... 10

3.2 IMAGE .. 10
3.2.1 Box.. 11

3.3 LINESTRING ... 11
3.4 MULTILINESTRING .. 13
3.5 POINTSHAPE... 13
3.6 POLYGON ... 14

3.6.1 The LinearRing element.. 16
3.7 MULTIPOLYGON .. 16
3.8 TEXT .. 16

4 MAP VIEWER IMPLEMENTATION

SUGGESTIONS .. 18

4.1 A SIMPLE MAP PROJECTION... 19
4.2 INITIAL SETTINGS... 19
4.3 MISCELLANEOUS FEATURES .. 20

4.3.1 Layer controls and pan/zoom controls ... 20
4.3.2 Showing labels.. 21
4.3.3 Pop-up descriptions.. 21
4.3.4 Favorites... 21
4.3.5 Pre-set views and view history.. 21
4.3.6 Drawing controls .. 22

5 MAPWEB FEATURE SERVERS 22

5.1 MWFS PROTOCOL ... 22
5.2 FEATURE CACHING .. 24

6 REFERENCES... 24

 iv

 5

1 Introduction

The Map Feature Language, MFL, is an XML language that enables content providers to

provide map-based content without supplying the entire map. It supports a model where

content from different providers can be overlaid on the same map. MFL was defined as

part of the MapWeb project at IBM’s T. J. Watson Research Center.

MFL was designed to enable commonly portrayed map features to be defined textually.

Currently, MFL supports the following kinds of features: icons, point-shapes, text,

linestrings, polygons, multi-linestrings, multi-polygons, and image tiles. The geometry of

each feature is described in geographic coordinates. (MFL allows the geometries to be

described in any well-known geographic coordinate system, but MFL viewers are only

required to support the common latitude and longitude of WGS-84 coordinates.) The

presentation of each feature is described using presentation attributes such as color, line-

width, font and font-size. This integration of geographic coordinates with presentation

information is what gives MFL its unique role as presentation language for map features.

Feature geometry in MFL is specified with elements from the Basic Features

specification of the Geography Markup Language (GML), defined by the Open

Geospatial Consortium. Implementors of MFL interpreters should consult the GML

specification directly [GML]. For convenience, some elements of GML are described

here. Readers should note that the descriptions here are based on GML 2, whereas the

latest version is GML 3. Some elements of GML 2 are deprecated in GML 3.

1.1 MFL Basic and MFL Tiny

Following the example of SVG Mobile [SVGM], two subsets of MFL are defined: MFL

Basic and MFL Tiny. MFL Basic is a proper subset of MFL and is designed to

accommodate the limitations of devices such as PDAs. MFL Tiny is a proper subset of

MFL Basic and is designed to accommodate the further limitations of devices such as cell

phones.

Features that are not supported in MFL Basic or MFL Tiny are noted as such in their

description.

2 Structural Elements

2.1 The FeatureSet Element

FeatureSet is the root element of an MFL document.

Attributes

id (Optional) Uniquely identifies this feature-set among all others

returned by a MapWeb Feature Server from the same URL. Useful for

distinguishing between zoom levels for a given feature-set.

 6

Sub-elements

title A title for the feature-set.

scaleRange See Section 2.1.1.

description See Section 0.

style See Section 2.1.3.

Feature See Section 2.2.

Example
<?xml version="1.0" encoding="UTF-8"?>
<!-- Created:Thu Jan 20 10:14:42 KST 2005 -->

<FeatureSet xmlns:gml="http://www.opengis.net/gml">

 <title>FeatureSet having a number of features</title>
 <Feature id="1">

 <label>LineString feature</label>
 <gml:LineString>

 <gml:coord><x>126.97245025634766</x><y>37.554317474365234</y></gml:coord>
 <gml:coord><x>126.97300720214844</x><y>37.55436325073242</y></gml:coord>

 </gml:LineString>
 <style>

 <fillColor rgb="255,0,51" opacity="50%"/>
 <lineColor rgb="255,51,51" opacity="50%"/>

 <lineWeight>8.0</lineWeight>
 </style>

 </Feature>
 <Feature id="2">

 <label>LineString feature</label>
 <gml:LineString>

 <gml:coord><x>126.97566986083984</x><y>37.559471130371094</y></gml:coord>
 <gml:coord><x>126.97586822509766</x><y>37.55970001220703</y></gml:coord>

 </gml:LineString>

 <style>
 <fillColor rgb="255,0,51" opacity="50%"/>

 <lineColor rgb="255,51,51" opacity="50%"/>
 <lineWeight>8.0</lineWeight>

 </style>
 </Feature>

</FeatureSet>

2.1.1 scaleRange

The scaleRange element gives the range of view scales (in pixels-per-degree-latitude)

that the feature-set creator considers acceptable for this feature set. If not included, the

feature set is considered acceptable at any view scale. A MapWeb Feature Server is

expected to return, for any given feature set, scale ranges that are contiguous.

Attributes

gt (Mandatory) The view scale should be greater than this value.

le (Mandatory) The view scale should be less than or equal to this value.

eq (Optional—used when the feature-set consists of MFLImage

 7

elements) The exact scale of the images in the feature set.

The scaleRange element enables viewers and feature servers using the MWFS protocol

(Section 5) to implement a “distributed zoom” capability. Viewers implement limited

scaling of features within the scale ranges of the feature-sets that are loaded, and when

the viewer scale goes outside the scale range of any feature-set, the viewer re-requests the

feature-set from the feature server it came from, including in the request the new scale

factor.

2.1.2 description

The description element provides an informational description of the feature or

feature-set. If the href attribute is included, the MFL viewer is expected to offer the user

means of loading the HTML indicated by the URL.

Attributes

href (Optional) An absolute or relative URL that links to extended

information or other content related to the feature or feature set.

2.1.3 style

The style element specifies presentation attributes for a feature, or if included in a

feature-set, for all features included in the feature set. A feature-set style is overridden, in

whole, by a feature style.

Sub-elements

fillColor The fill color of a closed shape. See Section 2.1.4. Default is none.

lineColor The color of a shape. See Section 2.1.4. Default is black.

textColor The color of a shape’s text, if a text shape. See Section 2.1.4. Default is

black.

lineWeight The width (in pixels, floating-point) of a shape’s lines. Default is 1.0.

2.1.4 Color Elements

Attributes

rgb (Mandatory) A triple of the form [0–255],[0–255],[0–255] which

represents, in order, the red component value, the green component

value, and the blue component value.

opacity (Optional) The opacity of the color, as a percent. 100% is fully

opaque; 0% is fully transparent.

Basic/Tiny: Color transparency is not supported in the MFL Basic or

MFL Tiny profiles.

 8

2.2 The Feature Element

The Feature element defines a visual map feature. A Feature element may contain

multiple renderable elements, which are described in Section 0. An MFL viewer must

render the renderable elements in the order in which they appear in the MFL. The style

element applies to all renderable elements.

Sub-elements

label A text-only element containing a label for the feature-set. A

viewer MUST offer means to display the label when the feature is

selected or otherwise indicated by the user.

description See Section 0.

style See Section 2.1.3.

attribute See Section 2.2.1.

Icon See Section 3.1.

Image See Section 3.2.

LineString See Section 3.3.

MultiLineString See Section 3.4.

Point See Section .

PointShape See Section 3.5.

Polygon See Section 3.6.

MultiPolygon See Section 3.7.

Text See Section 3.8.

2.2.1 attribute Element

The attribute element is used to describe a feature through a set of attributes. These

can be used by a viewer to filter the features shown on the map. This usage is optional,

and is not further described in this document.

Attributes

name The name of the attribute.

value The value of the attribute.

type The type of the attribute, controlling how the value attribute is

interpreted. type may be one of: Integer, Float, String, or Date.

If not specified, the type is assumed to be String.

 9

3 Renderable Elements

Renderable elements are those that are drawn on the map. A Feature element contains

one or more renderable elements. Renderable elements in MFL are distinguished from

those in vector-based drawing languages such as SVG in their use of geographical

coordinates for location. A map viewer uses a coordinate transformation to transform

geographical coordinates into screen coordinates. An example of such a transformation is

given in Section 4.1.

Some renderable elements are defined by GML [cite], and others are defined by MFL.

Elements defined by GML are noted as such in the element descriptions below, and

should have the “gml:” namespace prefix.

3.1 Icon

The Icon element is used to position an image at a geographic point. The image is drawn

so that it is centered on the given point. The image may be supplied via a relative or

absolute URL or as Base-64 encoded image data. If supplied as a URL, the viewer must

first resolve the URL to an absolute URL, then load the image via the scheme indicated

in the URL (http, file, etc.). Image caching can significantly improve performance

with icon images because they may often be repeated in a feature-set.

Sub-elements

href A text-only element containing an absolute or relative URL address

from which to load the icon image.

iconData The image data in Base 64 encoding.

Point The location of the icon. See Section 3.1.1.

Example
<?xml version="1.0" encoding="UTF-8"?>
<FeatureSet xmlns:gml="http://www.opengis.net/gml">

 <title>Icon feature created on Thu Jan 20 15:44:39 KST 2005</title>
 <Feature id="1">

 <label>Icon feature</label>
 <Icon>

 <href>map_icon_SpeedTrap.GIF</href>
 <gml:Point>

 <gml:coord><x>126.97272491455078</x><y>37.55672073364258</y></gml:coord>
 </gml:Point>

 </Icon>
 </Feature>

</FeatureSet>

 10

3.1.1 Point

Point is a GML element for representing a pair of coordinates. It contains a single coord

element.

Sub-element

coord Gives one pair of coordinates, as <x>…</x><y>…</y>, where x and y

are WGS-84 longitude and latitude, respectively.

3.2 Image

The Image element is used to draw a square image within a given rectangle expressed in

geographic coordinates. The image may be supplied via a relative or absolute URL or as

Base-64 encoded image data. If supplied as a URL, the viewer must first resolve the URL

to an absolute URL, then load the image via the scheme indicated in the URL (http,

file, etc.). Image caching can be used to improve performance.

Image elements differ from Icon elements in that the image must be scaled to fit within

the given geographical coordinates. The geographical coordinates are first transformed to

screen coordinates using the viewer’s projection transformation, then the image is drawn

within the resulting rectangle.

Sub-elements

href A text-only element containing a URL address from which to load the

 11

icon image.

imageData The image data in Base 64 encoding.

Box A GML element containing the bounding box of the image. See Section

3.2.1.

Example
<?xml version="1.0" encoding="UTF-8"?>
<FeatureSet xmlns:gml="http://www.opengis.net/gml">

 <title>Seoul Basemaps</title>
 <Feature id="1">

 <Image>
 <href>northern_seoul2.JPG</href>

 <gml:Box>
 <gml:coord><x>126.03258055555555</x><y>37.556605555555555</y></gml:coord>

 <gml:coord><x>126.99630833333333</x><y>37.576966666666666</y></gml:coord>
 </gml:Box>

 </Image>
 <label>Northern Seoul basemap</label>

 </Feature>
 <Feature id="2">

 <Image>

 <href>southern_seoul.JPG</href>
 <gml:Box>

 <gml:coord><x>127.08558055555555</x><y>37.49928055555556</y></gml:coord>
 <gml:coord><x>127.11639444444444</x><y>37.51956388888889</y></gml:coord>

 </gml:Box>
 </Image>

 <label>Southern Seoul basemap</label>
 </Feature>

</FeatureSet>

The above shows the use of the Image element in providing a basemap based on tiles.

(Basemap tiles would normally be contiguous, although in this example they are not.)

3.2.1 Box

Box is a GML element representing a bounding area. It contains exactly two coord

elements.

coord Gives one pair of coordinates, as <x>…</x><y>…</y>, where x and y

are WGS-84 longitude and latitude, respectively.

3.3 LineString

The LineString element is a GML element, and should have the “gml:” namespace

prefix. A LineString may contain either a sequence of coord elements, or a single

coordinates element. See [GML] for the definitive definition.

Sub-elements

coord Gives one pair of coordinates, as <x>…</x><y>…</y>, where x and y

are WGS-84 longitude and latitude, respectively.

 12

coordinates An alternative format for coordinates, in which a sequence of

coordinates is given as a single text element. See [GML] for a

description of this element.

Example
<?xml version="1.0" encoding="UTF-8"?>

<!-- Created:Thu Jan 20 10:14:42 KST 2005 -->
<FeatureSet xmlns:gml="http://www.opengis.net/gml">

 <title>LineString feature created on Thu Jan 20 10:12:52 KST 2005</title>
 <Feature id="1">

 <label>LineString feature</label>
 <gml:LineString>

 <gml:coord><x>126.97245025634766</x><y>37.554317474365234</y></gml:coord>

 <gml:coord><x>126.97300720214844</x><y>37.55436325073242</y></gml:coord>
 <gml:coord><x>126.97303771972656</x><y>37.55604934692383</y></gml:coord>

 <gml:coord><x>126.97267150878906</x><y>37.55685043334961</y></gml:coord>
 <gml:coord><x>126.97476959228516</x><y>37.55933380126953</y></gml:coord>

 <gml:coord><x>126.97516632080078</x><y>37.5594482421875</y></gml:coord>
 <gml:coord><x>126.97566986083984</x><y>37.559471130371094</y></gml:coord>

 <gml:coord><x>126.97586822509766</x><y>37.55970001220703</y></gml:coord>
 <gml:coord><x>126.97605895996094</x><y>37.56022644042969</y></gml:coord>

 <gml:coord><x>126.977294921875</x><y>37.560726165771484</y></gml:coord>
 <gml:coord><x>126.97852325439453</x><y>37.56100082397461</y></gml:coord>

 </gml:LineString>
 <style>

 <fillColor rgb="255,0,51" opacity="50%"/>
 <lineColor rgb="255,51,51" opacity="50%"/>

 <lineWeight>8.0</lineWeight>
 </style>

 </Feature>
</FeatureSet>

 13

3.4 MultiLineString

MultiLineString is a GML element that is a container for a set of LineString

elements. See [GML] for the definition of this element.

3.5 PointShape

The PointShape element is used to draw geometric shapes at geographic locations.

Ellipse and rectangle are the currently defined shapes.

Sub-elements

shape An attributes-only element that specifies the shape to use. Attributes:

type: “ellipse” or “rectangle”

width: the width of the shape, in pixels

height: the height of the shape, in pixels

Point The location of the icon. A GML element, see

Example
<?xml version="1.0" encoding="UTF-8"?>
<!-- Created:Fri Aug 19 13:30:25 KST 2005 -->

<FeatureSet xmlns:gml="http://www.opengis.net/gml">
 <title>PointShape feature created on Fri Aug 19 13:29:34 KST 2005</title>

 <Feature id="1">
 <label>PointShape feature</label>

 <PointShape>

 14

 <shape type="ellipse" width="50.0" height="20.0"/>

 <gml:Point>
 <gml:coord><x>126.97328186035156</x><y>37.554481506347656</y></gml:coord>

 </gml:Point>
 </PointShape>

 <style>
 <lineColor rgb="255,0,51" opacity="100%"/>

 <lineWeight>5.0</lineWeight>
 </style>

 </Feature>
</FeatureSet>

(Due to a bug in Swing, the red ellipse in the example above appears as a diamond.)

3.6 Polygon

Polygon is a GML element used for rendering closed regions. A Polygon consists of an

outer boundary (the outerBoundaryIs element) and, optionally, an inner boundary (the

innerBoundaryIs element) consisting of one or more rings. Inner rings will form holes

in the polygon. This can be used for lakes with islands, for example.

Sub-elements

outerBoundaryIs Contains one LinearRing element forming the outer boundary of

the polygon.

innerBoundaryIs If present, contains one or more LinearRing elements forming

the inner boundaries of the polygon.

 15

LinearRing See Section 3.6.1.

Example
<?xml version="1.0" encoding="UTF-8"?>

<!-- Created:Fri Aug 19 13:45:55 KST 2005 -->
<FeatureSet xmlns:gml="http://www.opengis.net/gml">

 <title>Polygon feature created on Fri Aug 19 13:45:41 KST 2005</title>
 <Feature id="1">

 <label>Polygon feature</label>
 <gml:Polygon>

 <outerBoundaryIs>

 <gml:LinearRing>
 <gml:coord><x>126.97310638427734</x><y>37.559898376464844</y></gml:coord>

 <gml:coord><x>126.97085571289062</x><y>37.5579948425293</y></gml:coord>
 <gml:coord><x>126.97124481201172</x><y>37.55580520629883</y></gml:coord>

 <gml:coord><x>126.97386932373047</x><y>37.55424118041992</y></gml:coord>
 <gml:coord><x>126.9761734008789</x><y>37.55424118041992</y></gml:coord>

 <gml:coord><x>126.97795104980469</x><y>37.555564880371094</y></gml:coord>
 <gml:coord><x>126.9781265258789</x><y>37.55751419067383</y></gml:coord>

 <gml:coord><x>126.97602844238281</x><y>37.55975341796875</y></gml:coord>
 <gml:coord><x>126.97307586669922</x><y>37.559898376464844</y></gml:coord>

 <gml:coord><x>126.97266387939453</x><y>37.55953598022461</y></gml:coord>
 <gml:coord><x>126.97266387939453</x><y>37.55953598022461</y></gml:coord>

 <gml:coord><x>126.97310638427734</x><y>37.559898376464844</y></gml:coord>
 </gml:LinearRing>

 </outerBoundaryIs>
 </gml:Polygon>

 <style>
 <lineColor rgb="204,51,0" opacity="100%"/>

 <lineWeight>4.0</lineWeight>

 </style>
 </Feature>

</FeatureSet>

 16

3.6.1 The LinearRing element

A LinearRing element contains a sequence of coordinates, either as a sequence of coord

elements or as a coordinates element. See Section 0, “Sub-elements,’ for a description

of these elements.

According to the GML specification, the first and last points of a LinearRing element

should be coincident. However, we recommend that MFL interpreters allow the

closedness of a LinearRing element to be implicit. That is, they should not require the

first and last coordinates to be coincident.

3.7 MultiPolygon

MultiPolygon is a GML element that is a container for a set of Polygon elements. See

[GML] for the definition of this element.

3.8 Text

MFL’s Text element allows text to be drawn on the map. Text can be drawn in any font,

style, and size, and can be drawn at an angle. An “anchor” feature enables text to be

placed in different positions relative to the specified location.

Sub-elements

text The text to be drawn.

 17

font The font name, style, and size, as attributes. Attributes:

name: A font name recognized by the underlying platform. (A future

version of MFL will adopt a standard font set.)

style: “BOLD”, “ITALIC”, or “BOLD_ITALIC”. Anything else will

result in the normal style of text.

size: The point size of the font.

baseline Specifies the location of the text. The baseline is specified as a Point,

and angle, and a placement anchor.

Point The point of the text anchor position.

angle The angle at which to draw the text. The angle is degrees counter-

clockwise from horizontal.

Basic/Tiny: Text angle is not supported in the MFL Basic or MFL Tiny

profiles. Text will be drawn at an angle of 0°.

anchor One of: BOTTOMLEFT, BOTTOMMIDLEFT, BOTTOMCENTER,

BOTTOMMIDRIGHT, BOTTOMRIGHT, TOPLEFT, TOPMIDLEFT,

TOPCENTER, TOPMIDRIGHT, TOPRIGHT, CENTERLEFT,

CENTERMIDLEFT, CENTER, CENTERMIDRIGHT, CENTERRIGHT. See

Section 3.8.1.

3.8.1 The anchor element

The figure below illustrates the meaning of the various anchor element constants.

The text should be drawn such that the given Point is at the location—relative to the

text—specified by the anchor element. If the anchor location is not specifed, the default

is BOTTOMLEFT.

Example
<?xml version="1.0" encoding="UTF-8"?>

<!-- Created:Tue Nov 01 15:38:51 EST 2005 -->
<FeatureSet xmlns:gml="http://www.opengis.net/gml">

 <title>Cities, towns, and other municipalities</title>
 <description>Cities, towns, and other municipalities from the ESRI U.S. PLACES data set</description>

 <Feature id="places_5up:14527">
 <label>Bergenfield</label>

 <PointShape>

 <shape type="rectangle" width="4.0" height="4.0"/>

TOPLEFT

TOPMIDLEFT
TOPCENTER

TOPRIGHT

TOPMIDRIGHT

BOTTOMLEFT

BOTTOMMIDLEFT
BOTTOMCENTER BOTTOMRIGHT

BOTTOMMIDRIGHT

CENTERLEFT

CENTERMIDLEFT

CENTERRIGHT

CENTERMIDRIGHT

The text to be rendered CENTER

 18

 <gml:Point>

 <gml:coord><x>-73.998795</x><y>40.923748</y></gml:coord>
 </gml:Point>

 </PointShape>
 <Text>

 <text>Bergenfield</text>

 <baseline>
 <gml:Point>

 <gml:coord><x>-73.998795</x><y>40.923748</y></gml:coord>
 </gml:Point>

 <angle>0</angle>
 <anchor>BOTTOMCENTER</anchor>

 </baseline>
 </Text>

 <style>
 <fillColor rgb="0,0,255" opacity="100%"/>

 <textColor rgb="0,0,255" opacity="100%"/>
 </style>

 </Feature>

</FeatureSet>

4 Map Viewer Implementation Suggestions

In this section we offer various suggestions concerning how map viewers may be

implemented.

 19

4.1 A Simple Map Projection

Drawing a map implies, either implicitly or explicitly, selection of a map projection. The

projection used in an MFL viewer is implementation-dependent. A map viewer may use

some algorithm for choosing the projection based on the zoom level of the map and the

area of the globe that is being viewed, or it may simply treat the latitude and longitude

values as coordinates in a simple Cartesian reference frame.

The map pictures in this document were produced using map viewers that used a simple

map projection that is easy to implement and renders suitable maps for small areas, which

is typically how interactive maps are used. The projection uses a two-dimensional

geometrical transform, which is defined as follows.

We use an object-oriented notation that is based on documentation for the

java.awt.geom.AffineTransform class, which models a 2-D homogeneous

transformation matrix. I is the identity matrix, and scale and translate are methods that

apply scaling and translation transforms, respectively.

Let c be the (x, y) coordinate pair to project, and let p be the projected result. sx and sy are

the scale factors in the x (east/west) and y (north/south) directions, respectively, in units

of pixels per degree (to match the units of the coordinates).

T = I.scale(sx, sy).scale(1, –1).translate(xul, yul)

p = T c

The scale factor sy is set by the map viewer. The scale factor sx should be a function of sy

and the latitude of the current view window. A simple formula for sx is:

sx = sy cos(y)

where y is the latitude in radians. For convenience, a viewer may simply use yul as this

value, but it must be converted to radians.

4.2 Initial Settings

When a map viewer is initialized, it should display some “home” map view that the user

has configured. These “home” settings should include the following:

• The location of the view in geographical coordinates. The upper left corner of the

map is convenient for coordinate-transformation purposes (which is xul, yul in the

section above).

• The view scale. Pixels per degree latitude is convenient for coordinate

transformation purposes (this is sy in the section above).

• The view-pane size (pixel width by pixel height).

 20

• A list of feature-set URLs to load as basemap layers.

Here is a sample XML format that may be used for these purposes.

<?xml version="1.0" encoding="UTF-8"?>

<MapViewerConfig>
<!-- view-pane properties set the viewer’s initial view -->

 <viewPaneProperties name=”Home”>
 <upperLeftCoordinates x="126.5" y="37.29999923706055"/>

 <!-- the view scale, in pixels-per-degree latitude -->
 <pixelsPerDegreeScale value="123900.0"/>

 <!-- the size of the window may be ignored in clients
 where the view-pane size is fixed -->

 <dimension width="1280" height="960"/>
 <backgroundColor value="#8ba9ed"/>

 </viewPaneProperties>
<!-- basemap layers are loaded automatically upon startup -->

 <basemapLayers>

 <FeatureSetDescriptor isBase="true">
 <title>Northern Seoul Basemap</title>

 <!-- the url can point to an MWFS server, or can simply be a
 file or http url for an MFL file containing a basemap -->

 <url>mwfs://kr000802b:9080/TOPAZ-MapServer/MapServerServlet?featureset=basemap</url>
 <source>TOPAZ Demo MapWeb Feature Server</source>

 <!-- this the extent of the geographic region served by
 the feature server given above -->

 <bounds>126.5 37.292152 126.58072 37.2999</bounds>
 </FeatureSetDescriptor>

 </basemapLayers>
</MapViewerConfig>

4.3 Miscellaneous Features

The following sections describe certain viewer features that we have found useful in one

or more implementations that we have done. Implementations for some contexts, such as

viewers for embedded environments such as a telematics client, may not require all

features.

4.3.1 Layer controls and pan/zoom controls

It is important for map viewers to give users control of the map view. To prevent

overcrowding of the map, viewers should give users the ability to turn the visibility of a

feature-set on and off, and to remove feature-sets that are no longer desired. Users should

be able pan the map in any direction and zoom in and out in order to focus on the area

they desire. An implementation may also offer features that pan and zoom automatically:

• A viewer for a telematics client may pan automatically to follow the path of the

vehicle.

• The view may be controlled by an application that wants to show users features

that it just pushed to the map, or to show detail of a particular feature (such as a

complicated set of turn instructions).

 21

For environments where the user’s attention is limited, implementations of these features

must focus on ease-of-use.

Viewers for limited-function devices such as cell phones may not be able to support

continuous zooming because they may lack the ability to scale images, which may be

contained in basemap feature sets. Upon a request from the user to zoom, these viewers

can re-request the basemap feature-set from the server, including the desired scale in the

request. The server is expected to make a best effort to produce images using this scale.

However, the viewer should use the actual scale of the images returned by the feature

server to determine its own scale setting.

4.3.2 Showing labels

A map viewer should enable the user to display a feature’s label. Cursor mouse-over is a

possible implementation, but this may be practical in viewer implementations that rely on

touch-screen controls.

4.3.3 Pop-up descriptions

A map viewer should enable users to view feature descriptions. A mechanism for this is

to use pop-up windows. In implementations where screen space may not permit this, a

viewer can alternatively simply switch to a window where the description has been

loaded.

4.3.4 Favorites

Users may wish to bookmark feature-sets that they find particularly useful. Viewers can

enable users to store URLs for these feature-sets, in the same manner that Web browsers

enable users to store Web page URLs as bookmarks.

4.3.5 Pre-set views and view history

Users may wish to have pre-set view settings that they would like to load in one action.

For example, they may wish to frequently view a map that contains their entire commute

path. A map viewer may wish to record view settings in named views which, when

selected, change the map view settings to the recorded ones.

These named view settings must be persistent. The example file format for initial settings,

above, has a distinguished named view, called “Home”. Other named views may be

added to this file.

Viewers may also want to revert to view settings used recently. A map viewer can record

a view-settings history and allow users to go back through the history to return to an

earlier view.

 22

4.3.6 Drawing controls

Map viewers for desktop environments may want to offer drawing tools that enable users

to create their own map features. Fuller discussion of this is beyond the scope of this

document.

5 MapWeb Feature Servers

An MFL feature-set can be as large, in geographic extent, as desired. Feature-sets that

represent basemap layers may cover very large areas, up to the entire globe. If these are

detailed layers designed for high zoom levels, these feature-sets can be extremely large,

in terms of the amount of data, and thus are not practical to send to map viewers in their

entirety. Therefore, associated with the MFL specification, there is a simple protocol

defined for communicating with Web servers serving these large feature-sets, which

enables them to send only that part of the feature-set that will be rendered by the viewer.

The protocol consists of predefined query parameters in an ordinary HTTP GET request.

We refer to this as the MWFS protocol. Associated with this protocol is a cooperative

caching scheme implemented by both the viewer and the server (but is optional for both).

5.1 MWFS Protocol

A request to an MWFS server consists of an HTTP GET request with the following query

parameters:

featureset Names the feature-set requested. A feature server may serve many

different feature-sets, which could be different basemaps for different

purposes (e.g., political boundaries or geographical features).

bounds The area requested, as a bounding box (see format below). This should

typically be the actual bounding box of the current view. The server

must return features covering at least this area. A feature server may

return features for a larger area, in order to reduce the number of

requests on the server; a viewer may also increase the area beyond the

current view’s bounding box for the same purpose, and as a prefetch

mechanism.

The format of the bounds parameter is “lng-min lat-min lng-max

lat-max”, where lng and lat are longitude and latitude, respectively.

Note that the spaces separating the coordinate values must be encoded

as “+” signs, per the HTTP specification.

scale A floating-point parameter that is the current scale used by the viewer,

in pixels-per-degree-latitude. This enables the feature server to return a

feature-set appropriate for that scale. The feature server should return a

feature-set with a scaleRange element that indicates the scale range

that the feature-set is appropriate for.

 23

useCache A boolean parameter that permits the feature server to remember which

features it has served a client in a particular client session. It can then

elect to not return features that it has already sent a client in the current

session. This is designed to reduce the average size of the feature-sets

returned to the client. A client will set this to true only if it merges the

features received in successive requests for a feature-set into a single

feature-set object.

Below is an example of a request to an MWFS server:

http://safari.watson.ibm.com:9080/mwfs/MapServerServlet

?featureset=basemap

&bounds=126.9658+37.55883+126.99674+37.5769

&scale=41451.57

&useCache=true

This particular request

An MWFS server returns an MFL document. If a feature server returns the same features

for a given scale range, then each such feature should have a distinct identifier (in the

FeatureSet element’s id attribute), and should be contained in a feature-set with a

unique identifier (in the Feature element’s id attribute). This enables the client to cache

features, as described in the section following. Below is the MFL returned by the request

above. The scale range is given as 0.0 to 3.4028235E38, meaning effectively all scale

values are in range. The same effect is achieved by not including a scaleRange element.

Example
<?xml version="1.0" encoding="UTF-8"?>
<!-- Created:Thu Nov 03 13:33:49 EST 2005 -->

<FeatureSet id="basemap-1" xmlns:gml="http://www.opengis.net/gml">
 <scaleRange gt="0.0" le="3.4028235E38"/>

 <title>Basemap from TOPAZ demo map server</title>
 <description>Images created from (source of images)</description>

 <Feature id="11.JPG">
 <label>11.JPG</label>

 <Image>
 <href>tileImages/11.JPG</href>

 <gml:Box>

 <gml:coord><x>126.94383</x><y>37.572506</y></gml:coord>
 <gml:coord><x>126.9673</x><y>37.58948</y></gml:coord>

 </gml:Box>
 </Image>

 </Feature>
 <Feature id="12.JPG">

 <label>12.JPG</label>
 <Image>

 <href>tileImages/12.JPG</href>
 <gml:Box>

 <gml:coord><x>126.9673</x><y>37.572506</y></gml:coord>
 <gml:coord><x>126.99076</x><y>37.58948</y></gml:coord>

 </gml:Box>
 </Image>

 24

 </Feature>

 <Feature id="21.JPG">
 <label>21.JPG</label>

 <Image>
 <href>tileImages/21.JPG</href>

 <gml:Box>
 <gml:coord><x>126.94383</x><y>37.55553</y></gml:coord>

 <gml:coord><x>126.9673</x><y>37.572506</y></gml:coord>
 </gml:Box>

 </Image>
 </Feature>

 <Feature id="22.JPG">
 <label>22.JPG</label>

 <Image>
 <href>tileImages/22.JPG</href>

 <gml:Box>
 <gml:coord><x>126.9673</x><y>37.55553</y></gml:coord>

 <gml:coord><x>126.99076</x><y>37.572506</y></gml:coord>
 </gml:Box>

 </Image>

 </Feature>
</FeatureSet>

5.2 Feature Caching

Map viewers can significantly include viewer response time by caching feature-sets from

MapWeb Feature Servers. Feature-sets are cached in two ways. The first is similar to the

way Web pages are cached, by URL, but the fact that different zoom levels result in

different feature-sets returned means that the cache key should be the URL plus the

feature-set id. This technique relies on the feature servers to return the same id for

feature-sets within a given scale range.

Map viewers also cache features by merging feature-sets for the same URL and feature-

set id. The ability to do this relies on the feature server using unique ids for features

belonging to the same feature-set and scale range.

6 References

[GML] OpenGIS® Geography Markup Language (GML) Encoding Specification

(Version 3.1.1, Document #03-105r1). Open Geospatial Consortium,

www.opengeospatial.org. April, 2004.

[SVGM] Mobile SVG Profiles: SVG Tiny and SVG Basic.

http://www.w3.org/TR/SVGMobile/

