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ABSTRACT

The problem of tracking end-to-end service-level transactions in

the absence of instrumentation support is considered. The trans-

action instances progress through a state-transition model and

generate time-stamped footprints on entering each state in the

model. The goal is to track individual transactions using these

footprints even when the footprints may not contain any to-

kens uniquely identifying the transaction instances that generated

them. Assuming a semi-Markov process model for state transi-

tions, the transaction instances are tracked probabilistically by

matching them to the available footprints according to the max-

imum likelihood (ML) criterion. Under the ML-rule, for a two-

state system, it is shown that the probability that all the instances

are matched correctly is minimized when the transition times are

i.i.d. exponentially distributed. When the transition times are

i.i.d. distributed, the ML-rule reduces to a minimum weight bi-

partite matching and reduces further to a first-in first-out match

for a special class of distributions. For a multi-state model with

an acyclic state transition digraph, a constructive proof shows

that the ML-rule reduces to splicing the results of independent

matching in bipartite systems.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed systems, Perfor-
mance evaluation

General Terms
Performance, Theory
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Transaction monitoring, maximum-likelihood tracking, semi-Markov

process, bipartite matching.

∗
Major part of this work was performed during A. Anandkumar’s

internship at IBM Research. She is also supported in part by the
Army Research Office under Grant ARO-W911NF-06-1-0346.

1. INTRODUCTION
Imagine a small discount brokerage firm that distinguishes

itself by providing its customers a web-portal that can be
“personalized”. As competitors catch up, it keeps itself ahead
of the pack by offering a plethora of new options to enhance
the user-experience. It grows rapidly over a five-year period
as its IT staff struggles to keep pace with the rapid growth
of the customer base as well as growth in the number of ap-
plications that run behind the scenes to provide new utilities
and options to its customers. IT infrastructure that started
as a collection of ten-twenty servers laid down neatly in a
tiered architecture becomes a spaghetti bowl of five hundred
servers without a clear picture of how the response time or
the availability of a behind-the-scenes application impacts
the response time of a utility or an option exposed to the
customer. Worse still, if customers complain about aborted
or time-consuming transactions, then the IT staff lacks vis-
ibility for efficient troubleshooting. It is not unusual for
problem resolutions to take days of manual debugging.

In an ideal scenario, as the brokerage firm grew, its IT
staff would adhere to the best practices such as those ad-
vocated by the ITIL specifications to keep track of its IT
infrastructure. It would use industry standards such as the
open-group ARM instrumentation [1] to generate transac-
tion correlators or tokens that may be used to track the flow
of transactions. However, that rarely is the case — often
what one ends up with is an IT infrastructure that is at best
partly documented and partly instrumented. The challenge
then is to provide end-to-end monitoring of transactions in
such environments with minimal expense and disruption to
the operations. We use the term transaction not in the sense
of a backend database update [7], but an end-to-end busi-
ness operation spanning multiple applications, servers, mid-
dleware and backend databases, e.g., an entire online trading
transaction with login, order creation, payment, etc.

A solution to end-to-end transaction monitoring will com-
prise of three pieces: (a) discovery of IT artifacts, such as
servers and applications, on which the transaction depends,
(b) modeling of relationships among these IT artifacts in the
context of the transaction, and (c) monitoring of IT artifacts
to draw conclusions regarding the status of a transaction.
Each of these pieces will pose different challenges depending
on the degree of information and instrumentation available
in the system. For example, discovery and modeling can
be partly accomplished by tapping into and examining the
network flows, by correlating the message headers in mes-
saging middleware, or by looking at the J2EE EJB rela-
tionships. The study presented in this paper is part of a
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Figure 1: Tracking transactions in state-transition
model using footprints without token information.

broader activity developing for each of the above pieces in a
variety of IT environments, where there is access only to the
time-stamped transaction footprints. A footprint is gener-
ated when a transaction is processed by an application and
is recorded in the application logs. The goal is to find funda-
mental limits on the performance of methods that use such
footprints to track and monitor transactions in a figurative
spaghetti bowl described above.

If all the footprints left by a transaction contain tokens,
i.e., an identifier unique to the transaction, then tracking
the transaction is simple. Unfortunately, only a small num-
ber of footprints may contain tokens, e.g., in Fig.1, other
than the footprints at state S0, none of the other foot-
prints contain tokens. In such cases, it may not be pos-
sible to identify the unique source of each footprint with
certainty, except for simple cases such as a strictly ordered
process scheduling like first-in-first-out (FIFO) or last-in-
first-out (LIFO). In general, parallel processing of transac-
tions leads to random ordering of transaction operations in
distributed and multi-threaded environments. Hence, there
is uncertainty in tracking transaction instances, leading to
maximum-likelihood (ML) estimates.

These issues lead to a range of questions: can we provide
bounds or guarantees on the probability of correctly tracking
the transaction instances as they pass through the IT infras-
tructure? Which transaction models maximally confound
the tracking system; in other words, how does the state
model of a transaction affect the tracking probability? Can
the algorithms for tracking transactions be implemented in
a decentralized manner with reasonable complexity? If to-
kens are present in footprints generated at certain states,
then what is the improvement in the tracking precision?

1.1 Technical Approach
We model the progress of a transaction through the IT

infrastructure using a state-transition model. A transaction
generates a footprint on entering each state in the model,
stamped with the time of entry. The state-transition model
has a unique start state, denoted by S0, where each trans-
action starts, and a set of end states, in one of which, each
transaction ultimately ends. An example of state-transition
digraph is shown in Fig.1 with start state S0 and end state
S4. There are three footprints in S0 indicating that three
transactions entered the system, while the two footprints in
S4 indicate that two transactions have left the system. We
assume that the state transitions follow a Markov chain, and
additionally, that the time spent by a transaction instance
at a state is only dependent on the current and the next
state to which it transitions. This model is applicable when
the time taken for a transaction to execute an application

(represented as a state in the model) is only dependent on
its outcome (represented as another state) and not on the
past history of the transaction. Formally, such a model is
known as a semi-Markov process, defined in Section 2.1.

By tracking a set of transaction instances, we mean find-
ing the most likely sequence of states visited by each of
these transaction instances and the estimates of the times
spent in these states by each instance. When only footprints
are available, this reduces to matching footprints at various
states to the individual transaction instances that gener-
ated them. We take a probabilistic approach by incorporat-
ing the available (statistical) information about transition
times between different states. In our approach, optimal
tracking refers to using the maximum-likelihood (ML) rule
that maximizes the probability that all the footprints are
matched correctly to the transactions that generated them.

1.2 Contributions
In general, optimal tracking involves searching over all

possible correspondences between footprints and transaction
instances, which can be exponential in the number of foot-
prints. The goal of this paper is to find tractable polynomial-
time solutions for special cases of the system model. The
contribution of this work is four-fold: firstly, we show through
a constructive proof that optimal tracking for a multi-state
acyclic semi-Markov process (SMP) without any tokens can
be done by splicing the results of independent optimal track-
ing in a series of bipartite graphs or two-state systems, each
consisting of a “high-level” start and end state. Hence, the
complexity of optimal tracking is determined by the num-
ber of such bipartite systems and when the state-transition
digraph of the SMP is a tree, we show that it is the number
of non-terminating states in the tree.

Secondly, we show that for a two-state system, under
i.i.d. transition times, optimal ML-tracking reduces to a
minimum-weight perfect matching. We further compare the
performance of optimal tracking with the simple FIFO rule,
which matches footprints according to the order of their
timestamps, and provide a class of transition-time distribu-
tions for which the two rules coincide. We also analyze the
effect of footprints arriving in the correct/incorrect temporal
order at the monitoring engine.

Thirdly, we derive worst-case performance bounds for op-
timal ML-tracking in two-state systems. We show that ML-
tracking has the worst performance when the transition times
of the transactions are drawn from i.i.d. uniform or expo-
nential distributions, for the case when all the transactions
have completed their operations and exited the system. On
the other hand, when some transactions are still resident in
the two-state system, only the i.i.d. exponential distribu-
tion has the worst performance. In both the above cases,
the worst-case ML-probability that all the transactions are
matched correctly to their footprints is equal to the recipro-
cal of the number of unique valid matches between them.

Lastly, we consider the case when each footprint at cer-
tain model states contains a token, unique to the transaction
generating it. For the special case of a linear SMP with to-
kens available at the start and the terminating state, we
show that the ML-tracking can still be decentralized to a
series of bipartite matchings, as in the tokenless case. Here,
the ML-rule first finds the matches among all the tokenless
footprints to form the most-likely intermediate paths, and
then jointly matches the tokenized footprints to these inter-



mediate paths. When the problem is extended to the case
where the state transition digraph is a tree, with only cer-
tain terminating states tokenized, the ML-rule reduces to a
transportation problem with exclusionary side constraints,
an NP-hard problem, and not to bipartite matching.

Taken together, these contributions provide a foundation
on which an efficient tracking solution can be built. To the
best of our knowledge, there are only few prior works fo-
cusing on tracking concurrent individual transactions (see
Section 7), and we present its first careful study here. We
consider the use of a semi-Markovian model with i.i.d. tran-
sitions and (mostly) tokenless footprints as both a contribu-
tion and a limitation. On one hand, this model leads to a
considerable simplification of the optimal ML-tracking into
a series of bipartite matchings. Further, this model serves
as a benchmark for tracking performance, since a tracking
system is maximally confounded. On the other hand, un-
der such extreme assumptions, even optimal tracking with
acceptable accuracy is only possible when the number of
interleaving instances and model states are small.

The paper is organized as follows. In Section 2, we provide
a formal definition of the system model and optimal track-
ing. In Section 3, we consider tracking in two-state systems
and then consider a general SMP in Section 4, and finally
tracking with tokens in Section 5. Section 6 has the simula-
tions results, Section 7 has the related work and Section 8
concludes the paper.

2. SYSTEM MODEL

2.1 Notations and Definitions
Let fX(x) be the probability density function (pdf) of a

continuous random variable X and F̄X(x) := P [X > x]
its complementary cumulative distribution function (ccdf).
For a matrix A, let A(i, j) denote the element in its ith row
and jth column. Let π denote a permutation vector over
{1, . . . , n}, log x, the natural logarithm of x and, |A|, the
cardinality of a set A. For sets A and B, let A\B = {i : i ∈
A, i /∈ B}.

For an undirected graph G = (V, E), let (i, j) denote the
edge between i and j and deg(i) be the degree of node i.
For a bipartite graph G = (V0 ∪ V1, E), the edges are rep-
resented by a 0-1 biadjacency matrix A = [A(i, j)], where
A(i, j) = 1 indicates an edge between V0(i) and V1(j). A
matching M ⊂ E is a set of pairwise non-adjacent edges,
i.e., no two edges share a common vertex. A maximum car-
dinality matching is a matching that contains the largest
possible number of edges. A perfect matching is a matching
where there is no unmatched vertex and a minimum weight
perfect matching minimizes the sum of the matched edge
weights. For a directed graph (digraph), when there is an
edge from i to j, j is an immediate successor of i, and i an
immediate predecessor of j. The set of all immediate suc-
cessors of i is denoted by N (i), and the set of all immediate
predecessors by P(j). A directed acyclic graph (DAG) has
at least one source (start state) with no incoming edges and
at least one sink (end state) with no outgoing edges.

We now define a semi-Markov process (SMP) [12]. Let
Si, i = 0, . . . , Ns denote the ith state of the process and let
Ti,j denote the (random) time to transition from state Si

to state Sj . A process is said to be semi-Markov if the se-
quence of states visited is a Markov chain, with transition
probability matrix denoted by P = [P (i, j)], and each tran-
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Figure 2: Timestamps of instances Y0 and footprints
Y1 and possible transitions in 2-state system.

sition time Ti,j is a random variable that depends only on
the states Si and Sj involved in the transition. We assume
that each transaction progresses through the system accord-
ing to a general SMP with each transition time Ti,j drawn
from a known pdf fTi,j having a continuous interval as its
support.

We consider a connected state transition digraph for the
SMP, since otherwise transactions in different components
can be monitored independently. We make a simplifying as-
sumption that the state transition digraph is acyclic (DAG).
This ensures that all the transactions are processed in one
direction, and that no transaction can leave more than one
footprint at a state or be present in the system forever. DAG
is a generalization of the tree in which certain subtrees can
be shared by different parts of the tree.

We also assume that multiple transactions in the system
progress independent of one another, an extreme scenario
where the tracking system is maximally confounded, and
this may be a valid approximation when the transactions
are processed concurrently. This implies that the transition
times are independent of the system load. Typically, load-
dependent transition times occur due to buffering of the in-
coming transactions and buffered transactions are usually
processed in a fixed order, e.g., M/M/1 queue. Tracking
transactions in such queueing systems is straight-forward,
and hence, we do not consider such systems.

2.2 Optimal Tracking (ML-Rule)
A footprint is defined as a timestamped entry created in

the application log when a transaction enters a state in the
model. Since we track the transactions using these times-
tamps, we need to address the issue of synchronization be-
tween the clocks in different servers of the system. There are
many solutions to achieve synchronization in distributed sys-
tems, e.g., network time protocol (NTP). Even when such
a solution is not implemented, for most applications, the
individual requests making up a transaction have sojourn
times lasting several tens-hundreds of milli-seconds per com-
ponent, an order of magnitude larger than the synchroniza-
tion error. Moreover, whenever tokens are present, we can
minimize the effect of asynchrony through matching requests
across components/tiers, thereby preventing the accumula-
tion of synchronization errors. Hence, the effects of asyn-
chrony on tracking performance may not be significant.



In addition to the timestamp, a footprint may optionally
contain a unique identifier or a token that ties it to the
transaction instance. By convention, the footprints at the
(unique) start state S0 are each assigned a token. We as-
sume that no footprint is missing from the log records. We
consider the general case where at the time of observation,
transaction instances are still residing at different states of
the system, and hence, all the footprints that these transac-
tions will eventually generate are not yet available. Tracking
transactions in such cases is affected by the assumption that
the records appear in logs as soon as they are written by the
applications, i.e., the write is not buffered, ensuring that the
records from the different logs arrive at a monitoring engine
in the correct temporal order. We consider both the scenar-
ios when the monitoring engine may or may not receive the
footprints in correct order.

Any valid match between the footprints and the transac-
tions cannot have two transactions sharing a common foot-
print, since each footprint is generated by a unique transac-
tion. Hence, any valid match can be represented by the set of
permutation vectors πk, for each state Sk in the model. Let
Yk be the vector of the timestamps of the footprints at state
Sk. When the monitoring engine receives the footprints in
the correct temporal order, Yk is in ascending order with
the most recent footprint being the last entry. Let Y

πk
k be

the permutation of Yk, according to the permutation vector
πk. By convention, we assign tokens to footprints Y0 at
the start state S0, and hence, the permutation vector at the
start states S0 is set to identity (π0 = I). In other words, we
find the correspondence of all other footprints in the system
with respect to the footprints at S0.

When the joint pdf of the transaction transition times fT

is known, we can quantify the tracking performance as the
probability that all the transaction instances are matched
correctly to their footprints and this is maximized by the
maximum-likelihood (ML) rule. Hence, for Ns + 1 number
of states, the optimal ML-tracking of transactions reduces
to finding a set of Ns number of permutation vectors,

[π̂ML
1 , . . . , π̂ML

Ns
] := arg max

π1,...,πNs

P(Yπ1
1 , . . . ,Y

πNs
Ns
|Y0). (1)

In general, solving (1) is NP-hard. The rest of the paper
primarily deals with the special cases, starting with the two-
state system, where (1) can be solved efficiently.

3. TWO-STATE SYSTEM
We consider a two-state model, which will serve as a foun-

dation for more elaborate models. For this model we will
show that the ML-rule reduces to a perfect matching in a
bipartite graph under i.i.d. transition times.

3.1 Preliminaries
Fig.2 shows transactions in a two state model with start

state S0 and end state S1. Fig.3 shows the system represen-
tation, where the footprints Y0 and Y1 at states S0 and S1

are related through an unknown permutation vector π,

Y0(j) = Y1(π(j))− T (j), 1 ≤ j ≤ |Y1|, (2)

where T (j) is the transition time of Y0(j), the jth footprint
at S0, Y1(π(j)) is the jth element of the permuted Y1, ac-

Footprints at S0
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π
−1

Footprints at S1

Y
π

1
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Figure 3: Given Y0,Y1, find permutation π.

cording to π. The footprints Y0(j) and Y1(π(j)) are gener-
ated by the same transaction. We have |Y0| ≤ |Y1|, since
some transactions may still be resident at S0. The number
of instances in state S0 at the time of observation is

Cnt(S0) = |Y0| − |Y1|. (3)

A batch of footprints at S0 and S1 starts when Cnt(S0) = 0
and is said to be complete when Cnt(S0) = 0 again, i.e., all
the transactions have exited the system; otherwise the batch
is partial. It is easy to see that a valid match can occur only
between the footprints in the same batch and not across
batches. Henceforth, (Y0,Y1) denote the set of footprints
in a single batch, unless otherwise mentioned.

We first consider the case of non-parametric transition
times, where transition-time pdf is unknown. We know that
the lower bound of the pdf support is zero due to causal-
ity. Optionally, we may know the upper bound ∆ of the pdf
support, i.e., 0 ≤ T ≤ ∆; it is known as the deadline and is
infinite, if not specified. Due to the presence of timestamps,
some matches π may violate the causality and the deadline
constraints. In order to find the number of valid matches,
define a bipartite graph G = (V0∪V1, E), where Vi(j) repre-
sents the jth footprint at state Si and the edges in E repre-
sent the valid correspondences between the footprints at S0

and S1. Hence, an edge is added to E, whenever the differ-
ence between the timestamps of the two footprints satisfies
the pdf support bounds. Since the actual pdf of transition
times is unknown, the edges are unweighted. Given the bi-
adjacency matrix A, the number of unique valid matches in
a batch, denoted by NB(|Y0|, |Y1|,A), provides an idea of
the precision of tracking individual instances. For a com-
plete batch with |Y0| = |Y1| = n, NB(n, n,A) is given by
the permanent of the biadjacency matrix, perm(A),

NB(n, n,A) = perm(A) :=
∑

π

n
∏

i=1

A(i, π(i)), (4)

where the sum is over all the permutation vectors π over
{1 , . . . , n}. Hence, the timestamps in the footprints reduce
the number of valid matches. Since there is at least one
perfect match, corresponding to the true transition pattern,
we have 1 ≤ perm(A) ≤ n!. The upper bound is achieved
for a complete bipartite graph, i.e., when all the instance
departures from S0 occur after all the arrivals in the batch.

For a partial batch, some of the footprints at S1 are not
yet generated, and hence, a perfect bipartite matching is not
feasible. For the case when the footprints may not arrive in
the correct temporal order, any maximum cardinality bipar-
tite matching is a valid match. However, when the footprints
arrive in the correct order, we have additional information
about the transactions which are still resident at S0 and this
changes the structure of the bipartite graph. Given that
|Y1| = k < |Y0| = n, there are n − k number of instances
that have not yet made the transition and their departures



occur after time Y1(k), the timestamp of the most recent
footprint at S1. This information is incorporated by adding
n − k number of identical copies of a new (dummy) node,
denoted by V1(δ), to the bipartition V1. Edges are added
between V1(δ) and any node V0(i) if Y1(k)− Y0(i) < ∆, i.e.,
the deadline has not yet passed. Since all the dummy nodes
are identical, some of the perfect matchings in this bipar-
tite graph are now equivalent, and the number of unique
matchings in a partial batch is

NB(n, k,A) =
perm(A)

(n− k)!
, (5)

since the permutations among the copies of the added node
V1(δ) are equivalent. When n = k, it reduces to (4).

It is NP-hard to compute perm(A) in (5). Hence, we re-
sort to approximations and bounds [23,28]. In Appendix .1,
we provide these bounds and also show that the bipartite
graph of a footprint batch is elementary, where every edge in
the bipartite graph occurs in at least one perfect matching.
Hence, the creation of batches avoids adding unnecessary
edges, leading to a sparse construction and the matchings
can be done independently across different batches.

For non-parametric matching, without the knowledge of
transition-time pdf, we use the first-in first-out rule (FIFO)
to obtain a maximum cardinality match. The FIFO rule
matches each footprint in V1 with the earliest unmatched
footprint in V0, having an edge with it. It provides a max-
imum match for any convex bipartite graph [17] and the
graph here is actually biconvex, since we assume that the
transition time T take values in a continuous interval. The
FIFO-rule runs in O(n) time, for a n-batch, when the foot-
prints arrive in the correct temporal order; otherwise, we
first order the footprints and then apply the FIFO rule.

3.2 Optimal Tracking
When the joint pdf fT of the transaction transition times

T = [T (j)] is known in a two-state system, the most-likely
(ML) match in (1) reduces to

π̂
ML(Y0,Y1; f) := arg max

π

P(Yπ

1 |Y0) (6)

= arg max
π

fT[Yπ

1 −Y0], (7)

for a complete batch of n footprints, |Y0| = |Y1| = n. The
probability that all the n footprints in the batch are matched
correctly is maximized under the ML-rule, and is

PML(Y0,Y1; f) =
fT[Yπ̂

ML

1 −Y0]
∑

π

fT[Yπ

1 −Y0]
, (8)

where the likelihood of the ML-permutation π̂
ML is normal-

ized by the sum of likelihoods of all valid permutations π.
Since at least one permutation has positive likelihood (the
true pattern), the denominator in (8) is strictly positive.

For a partial batch (Y0,Y1) with |Y0| = n and |Y1| =
k < n, when the footprints arrive in the correct order at the
monitoring engine, we have additional information about the
instances that have not yet made the transition. Formally,
let Aπ

f (Y0,Y1) be the event that for 1 ≤ π(i) ≤ k, the
π(i)th footprint at S1 is generated by the ith instance at S0

and for k < π(i) ≤ n, the ith instance is still residing at S0,

Aπ

f (Y0,Y1) := [
⋂

1≤π(i)≤k

T (i) ∈ I(Y1(π(i))− Y0(i))

⋂

k<π(i)≤n

T (i) > Y1(k)− Y0(i)], (9)

where I(t) denotes the infinitesimal interval [t, t + dt] and
Y1(k) is the most recent footprint at S1. The ML-rule for a
partial batch is

π̂
ML(Y0,Y1; f) = arg max

π

P[Aπ

f (Y0,Y1)],

and the probability PML(Y0,Y1; f) is

PML(Y0,Y1; f) =
P[Aπ̂

ML

f (Y0,Y1)]
∑

π

P[Aπ

f (Y0,Y1)]
. (10)

When n = k, the batch is complete and P[Aπ

f (Y0,Y1)]

= fT[Yπ

1 −Y0]dt and hence, (10) reduces to (8).
In general, finding the ML-rule in (10) and (8) poses a

significant computational challenge and we address it in the
next four subsections. We derive the performance bounds
of the ML-based tracking probability for arbitrary joint-
pdfs of the transition times and study the rule under i.i.d.
transition times. We then compare the ML-matching to
the distribution-free FIFO matching and provide conditions
when they coincide.

3.2.1 Reduction of ML-rule to Weighted Matching

The ML-rule for a general joint-pdf fT of the transition
times T = [T (j)] requires search over all the permutation
vectors π, which could be exponential in the batch size. We
now make a simplifying assumption that all the instance
transition times T (1), T (2), . . . are i.i.d. with pdf fT . For a
(Y0,Y1) batch, the ML-rule now reduces to

π̂
ML(Y0,Y1; f) = arg max

π

∏

1≤π(i)≤k

fT [Y1(π(i))− Y0(i)]

∏

k<π(i)≤n

F̄T [Y1(k)− Y0(i)],(11)

where F̄T (t) = P[T > t] is the complementary cumulative
distribution function (ccdf). For the bipartite graph G =
(V0 ∪ V1, E), defined in the previous section with the added
node V1(δ) (henceforth, known as the ccdf node), we now
assign a weight W (i, j), for each edge (i, j),

W (i, j) :=

{

− log fT [Y1(j)− Y0(i)], j ≤ k (12a)

− log F̄T [Y1(k)− Y0(i)], j = δ. (12b)

The ccdf node is added to the bipartite graph on the assump-
tion that the footprints arrive in the correct order. When
instead, the footprints do not arrive in order, the ccdf node is
not added and the edge weights are solely given by (12a). We
will compare the performances of the two scenarios through
simulations in Section 6.

A minimum-weight perfect matching is given by

π
∗(n, k,W) := arg min

π

n
∑

i=1

W (i, π(i)), (13)



Y0(1) Y0(2) Y0(3)

Y1(1) Y1(2) Y1(3)

W (i, j) = − log fT (Y1(j) − Y0(i))

(a) Matching a complete batch.

CCDF NodeFootprint Node

Transaction 1 Transaction 2
Y0

Y1

W (2, δ) = − log[F̄T (Y1(1) − Y0(2))]

W (1, δ) = − log[F̄T (Y1(1) − Y0(1))]

W (1, 1)

W (2, 1)

(b) Matching a partial batch with ccdf events.

Figure 4: Reduction of ML-rule for i.i.d. transitions to minimum-weight perfect matching.

and let W ∗ be the value of the minimum weight match

W ∗ := min
π

n
∑

i=1

W (i, π(i)). (14)

An example of minimum weight matching is shown in Fig.4a
for a complete batch and Fig.4b for a partial batch. A mini-
mum weight perfect matching can be performed in O(n(|E|+
n log n)) for a n-batch and |E| number of edges via the Hun-
garian algorithm [17]. Hence, we see that the creation of
batches leads to efficient implementation, since n and |E|
are substantially reduced. In the lemma below, we provide
the ML-rule π

ML and the matching probability PML .

Lemma 1 (i.i.d. transitions). In a two-state system,
for i.i.d. transaction transition times according to a given
pdf fT , and the footprints arriving in the correct order, the
ML rule is given by the minimum weight perfect matching
in (13) and the probability that all footprints in an (n, k,W)
batch are matched correctly under the ML-rule is

P ML(n, k,W) =
(n− k)! exp(−W ∗)

perm[exp(−W)]
, (15)

where exp(−W) = [exp(−W (i, j))], W is given by (12),
and W ∗ by (14). For the case when the footprints do not
arrive in the correct order, the ML-rule is a minimum weight
maximum cardinality, based solely on the edge weights in
(12a).

Proof: From (10) and (11). 2

Hence, we see that the complexity of the ML-rule is sig-
nificantly reduced for i.i.d. transitions. Additionally, we can
also characterize its performance through (15), by approx-
imating perm[exp(−W)] via a randomized algorithm [15].
In the theorem below, we provide bounds on the expected
weight of a ML-match when averaged over all the realiza-
tions of the transition time.

Lemma 2 (Expected ML-Weight). For the ML rule,
the expected weight for a complete batch of footprints, under
i.i.d. transition times, satisfies

E[W ∗] ≤ E[N ]h(T ), (16)

where N is the (random) batch size, and h(T ) is the differ-
ential entropy of the transition time.

Proof: We use the Wald’s identity. See Appendix .2. 2

Hence, we see that the average batch size directly influ-
ences the bound on the expected weight of the ML-match.

The batch sizes depend on a number of factors such the sys-
tem load, the transition-time pdf and the nature of arrivals,
and we will provide numerical results for different scenarios
in Section 6.

3.2.2 Limits of Tracking Performance

We have so far analyzed the ML-performance for a given
transition time pdf. We now analyze the fundamental limits
of ML-performance,

PML
∗ (Y0,Y1) := min

fT

PML(Y0,Y1; fT), (17)

where the minimization is over all the joint pdfs fT (not
necessarily with i.i.d. marginals) having their support in
the n-dimensional cube [0, ∆]n. Hence, for a given realiza-
tion of footprints, finding PML

∗ provides a guarantee on the
ML-tracking probability PML under any transition-time pdf
satisfying the support bounds. In the theorem below, we
prove that PML

∗ is at least the reciprocal of the number of
unique perfect matchings and also show that the i.i.d. ex-
ponential pdf achieves this bound for all batch sizes.

Theorem 1 (ML Guarantee). Given a batch (Y0,Y1)
of size (n, k) and a class of transition time joint-pdfs with
support contained in [0, ∆]n, and the footprints arrive in the
correct order, the ML-guarantee, defined in (17), is

P ML
∗ (Y0,Y1) =

1

NB(n, k,A)
, n ≥ k ≥ 0, (18)

where A is the biadjacency matrix constructed in Section 3.1
and NB(n, k,A) is the number of unique matches in (5).
The bound in (18) is achieved only when all the valid matches
are equally likely,

1. The bound in (18) is achieved for all batch sizes when
the probability of events Aπ

f , defined in (9), for any
valid permutation π, are of the form

P[Aπ

f (Y0,Y1)] = g[
k

∑

i=1

Y1(i)+(n−k)Y1(k)−
n

∑

i=1

Y0(i)]

2. If we consider only complete batches (n = k), then the
bound in (18) is achieved when the joint-pdf of transi-
tion time fT has the form

fT[T (1), T (2), . . . , T (n)] = h(
∑

i

T (i))

3. When the transition times T (1), . . . , T (n) are i.i.d.,
then the bound in (18) is achieved only by the expo-
nential pdf for all batch sizes (and hence, we need to



allow the deadline ∆ → ∞). On the other hand, if
only complete batches are considered, then the bound
is also achieved by the uniform distribution U(0, ∆).

Proof: See Appendix .3. 2

Hence, the performance of the ML-rule for any transition-
time pdf is at least the reciprocal of the number of unique
perfect matchings in the corresponding bipartite graph. For
pdfs achieving this bound, any allowed match is equally
likely. Hence, knowledge of the transition-time pdf does
not improve performance in this case, and we can use any
distribution-free matching rule such as the FIFO rule.

Formally, for any transition-time pdf fT , the performance
ratio between ML and FIFO rules (or any other valid perfect
matching) satisfies

PFIFO(n, k,W)

PML(n, k,W)
≥ γ, (19)

where γ :=
minπ P[Aπ

f (Y0,Y1)]

maxπ P[Aπ
f

(Y0,Y1)]
. Since from Theorem 1, all

the valid matches are equally likely for the i.i.d. exponential
pdf, γ = 1, and the FIFO rule has the same performance
as any other rule for this case. In the next section, we will
compare the ML and FIFO rules for a wider class of pdfs.

3.2.3 FIFO Rule

We now consider a special class of transition time pdf fT ,
where all the valid matches are not equally likely, i.e., γ in
(19) may not be one, but the ML-rule reduces to the FIFO
rule. This implies that the edge weights in (12) satisfy

W (i1, j1) + W (i2, j2) ≤ W (i2, j1) + W (i1, j2),

∀ i1 < i2 ≤ k , j1 < j2 ≤ k, (20)

and holds for any complete batch of footprints when

fT (t1)fT (t2) ≥ fT (t1 − τ)fT (t2 + τ), t1, t2, τ ≥ 0, (21)

and is true for any log-concave pdf, e.g., Rayleigh, lognormal
pdfs. When the footprints arrive in the correct temporal
order, recall that the ccdf weights are added in (12b), and
in this case, we show that the FIFO rule is optimal even for
a partial batch in the lemma below.

Lemma 3 (FIFO is ML). If transition-time pdf fT sat-
isfies (21) and the footprints arrive in the correct order, then
FIFO-rule is the optimal ML-rule for all batch sizes.

Proof: See Appendix .4. 2

Hence, for distributions satisfying (21), optimal tracking
with ordered footprints reduces to the FIFO rule that can
be performed in linear time. On the other hand, for distri-
butions not satisfying (21), it is not clear if the FIFO-rule
performs significantly worse than the optimal rule. We will
compare the two through simulations in Section 6.

When the footprints do not arrive in the correct order, the
ccdf events are not included in the ML-rule, and only the
weights in (12a) are used. Here, the FIFO-rule may not be
optimal for a partial batch since it always starts matching
with the earliest footprint at S0. In this case, the optimal
rule decides where to start the match based on the edge
weights, and runs in O(n log k) time [2].

4. SEMI-MARKOV PROCESS MODEL
The two-state model studied in the previous section rep-

resents a high-level model where the only observable points
are the system entry and exit points. When more sys-
tem points are observable, e.g., the entry and exit points
of sub-processes such as authentication, merchandize selec-
tion, purchase etc., the two-state model can be expanded
to a multi-state model. Assuming that the transition times
of each transaction form a multi-state semi-Markov process
(SMP) and the transitions of different transactions are inde-
pendent of one another (see Section 2.1), we consider ML-
matching of all the available footprints to the transactions,
which generated them.

Since the footprints only carry the timestamps of entry
to a state, in general, even the set of states visited by a
transaction cannot be tracked with certainty, unlike in a two-
state system. Hence, we find the most-likely match between
all the available footprints and recall that it is given by the
ML-sequence of permutation vectors in (1),

[π̂ML
1 , . . . , π̂ML

Ns
] := arg max

π1,...,πNs

P(Yπ1
1 , . . . ,Y

πNs
Ns
|Y0).

By convention, π0 = I. A brute-force search for the ML-
sequence of permutation vectors is over all possible foot-
prints paths from the start state S0 to all the terminating
states. It is unclear if this problem has a reduction to bi-
partite matching, as in the two-state system. However, the
search can be simplified through the semi-Markov property
which states that the transition time only depends on the
current state and the next state, and hence,

P(Yπ1
1 , . . . ,Y

πNs
Ns
|Y0) =

Ns
∏

m=1

P(Yπm
m |

⋃

j∈P(m)

Y
πj

j ). (22)

Each term in the product has a structure similar to the two-
state system. However, the set of states occurring in any
two terms of (22) may not be disjoint, since the sets of im-
mediate predecessors P(k) and P(l) of any two states Sk

and Sl may not be disjoint. This implies that in general,
we cannot independently match the footprints in each term
in (22). Hence, we need to and construct high-level states,
comprising of many model states that “localize” the move-
ment of footprints, thereby enabling us to perform matching
independently within these high-level states. To this end,
define a partition of states (Bm)m≥0 such that states in any
two sets in the partition do not share a common immediate
predecessor,

P(Sk) ∩ P(Sl) = ∅, ∀Sk ∈ Bm, Sl ∈ Bj , m, j 6= 0, (23)

and let B0 = S0, the start state. Since we have assumed that
the state-transition digraph is acyclic (DAG), the partition
in (23) is well defined. Therefore, we can rewrite (22) as

P(Yπ1
1 , . . . ,Y

πNs
Ns
|Y0) =

∏

m>0

P(
⋃

Sk∈Bm

Yπk
k |

⋃

Sl∈P(Bm)

Yπl
l ),

where each term in the product corresponds to a bipartite
system (P(Bm), Bm), with the start state P(Bm) and the
terminating state Bm. These bipartite systems are disjoint;
a state cannot occur in two systems in the same role, since
by definition, Bm are all disjoint sets (partition), and in
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({S0, S2, S3}, {S1, S3, S4}) ({S1}, {S2})

Figure 5: ML-matching of the transactions to their
footprints for semi-Markov process model.

Input: SMP with transition DAG G and set of states S
1: P,N = Imm. predecessor/successor in G
2: Set B0 ← S0 (start state), m← 1
3: while

⋃m−1
i=0 Bi 6= S do

4: Init Bm ← Si, for some Si ∈ S\
⋃m−1

i=0 Bi

5: repeat
6: Prev Bm ← Bm

7: Bm ← N (P(Bm))
8: until Bm == Prev Bm

9: m← m + 1
10: end while, return (Bm)m≥0

Figure 6: Partitions of states satisfying (23).

(23), we also require the sets P(Bm) to be disjoint. Hence,
we can conduct decentralizing matching in these bipartite
systems. This also implies that knowledge of the footprints
and the model parameters (such as the transition-time pdf)
is only required“locally”within each bipartite system. After
undertaking matching in all the bipartite systems, the most-
likely sequence of footprints produced by each transaction
are constructed by splicing together the results of matching
in bipartite systems to obtain the set of permutation vectors
π

ML
i in (1). In the lemma below, we provide some properties

of the partition (Bm).

Lemma 4 (Properties of partition (Bm)m≥0). For a
semi-Markov process with acyclic transition digraph and a
partition of states (Bm)m≥0, the following properties hold
for any finite number of recursions iff (23) is true:

N (P . . . (N (P(Bm)))) ⊂ Bm, m > 0, (24)

P(N . . . (P(Bm))) ⊂ P(Bm), m > 0, (25)

Proof: See Appendix .5. 2

From the above lemma, all the immediate successors of
any state in P(Bm) are in Bm and similarly all the immedi-
ate predecessors of any state in Bm are in P(Bm). Hence,
the set of states in (P(Bm), Bm) represents complete one-
step forward and backward reachability. We use the proper-
ties (24) and (25) in Lemma 4 to generate the unique parti-
tion (Bm) in Fig.6, where the algorithm terminates in finite
time due to the acyclicity of the state transition digraph and
has to be run only once prior to monitoring.

We now specify the nodes and the edge weights for each
bipartite system (P(Bm), Bm). Along the lines of (3), we

define Cnt(P(Bm)) as the number of instances residing at
P(Bm) at the time of observation, given by

Cnt(P(Bm)) = |YP(Bm)| − |YBm |. (26)

A batch of footprints is defined between the successive zero-
crossings of Cnt(P(Bm)). Along the lines of (12), given the
transition probability matrix P of the SMP, for any states
Sk ∈ Bm, Sl ∈ P(Bm) and i.i.d. transition times drawn
from pdf fTk,l

, the edge weight between the ith footprint at

Sk and the jth footprint at Sl of a batch is given by

W (i, j; Sk, Sl) := − log[P (k, l)fTk,l
(Yl(j)− Yk(i))],

∀Sk ∈ P(Sl), 1 ≤ i, j ≤ |Yk|, 1 ≤ j ≤ |Yl|. (27)

For a partial batch, we have Cnt(P(Bm)) > 0 and some in-
stances are still residing at P(Bm). When the footprints ar-
rive in the correct temporal order, we define the ccdf events
along the lines of (9) for each state Sk ∈ P(Bm), whenever
there are more footprints at Sk than the total at all its imme-
diate successors, i.e., Cnt(Sk) = |Yk| −

∑

l∈N (k) |Yl| > 0.

The probability that transaction corresponding to the ith

footprint at Sk is still resident at Sk is given by

Pccdf(i, Sk) :=
∑

l∈N (k)

P (k, l)F̄Tkl
[Yl(|Yl|)− Yk(i)],

where Yl(|Yl|) is the most recent footprint at state Sl. In
this case, the ccdf edge-weights corresponding to state Sk

are

W (i, δk; Sk) := − log Pccdf(i, Sk), ∀ 1 ≤ i ≤ |Yk|, (28)

and as in Section 3.1, Cnt(Sk) number of identical copies
of the ccdf node δk are added to the bipartite graph. We
now state the result that the optimal ML-rule maximizing
the probability of all the footprints being matched correctly
to the instances generating them is given by decentralized
minimum-weight matching in each bipartite system.

Theorem 2 (ML-rule in SMP). Given a semi-Markov
process with an acyclic state transition digraph and i.i.d.
transaction transitions, the ML-rule is given by the decen-
tralized minimum-weight matching in the bipartite systems
(P(Bm), Bm), where partition (Bm) is given by the algo-
rithm in Fig.6 and the edge weights for each bipartite system
are given by (27) and (28). The probability that all the trans-
actions are correctly tracked correctly is the product of the
ML-probabilities of all the bipartite systems, given by (15).

Proof: From the semi-Markov property and Lemma 4. 2

An example of a SMP is shown in Fig.5 with partition
B0 = {S0}, B1 = {S1, S3, S4}, B2 = {S2} and two bi-
partite systems ({S0, S2, S3}, {S1, S3, S4}) and ({S1},{S2}).
Although the state S3 occurs in both the high-level states
P(B1) and B1, the edges in the bipartite graph are con-
structed only for valid paths in the transition digraph. Match-
ing is done jointly among the states in a bipartite system,
but independently across systems and batches, and the re-
sults are spliced together.

Hence, from Theorem 2, the ML-rule can be decomposed
into decentralized matching in the bipartite systems and,



hence, its complexity is greatly influenced by the number
of such bipartite systems; if the number is large, then the
transactions at different states do not interleave to a large
extent. However, in the worst case, there may be only a
single partition B1 = S\S0, containing all the states except
S0, e.g., when all the states are immediate successors of S0.
On the other hand, for a fixed number of states Ns + 1,
the best-case scenario is the linear transition digraph, where
there are Ns number of bipartite systems. The linear graph
is a special case of the tree and the number of bipartite
systems in a tree is equal to the number of non-terminating
states in the tree and each bipartite system consists of a non-
terminating state and its immediate successors (children).
We utilize the property that any connected acyclic digraph
can be expanded to a tree to derive bounds on the number of
sets in the partition for any acyclic digraph in Appendix .6.
We also use the properties of the partition to find other
performance measures, such as bounds on the total number
of transactions resident at a state, in [27].

5. PRESENCE OF TOKENS
We have so far considered the worst-case scenario where

there are no transaction identifiers or tokens in any of the
footprints. However, in a real system, while certain foot-
prints may lack tokens, others may include them, e.g., newly
developed systems built using ARM instrumentation [1] to
generate tokens may be combined with legacy systems lack-
ing such instrumentation. In this section, we consider the
case when footprints at a certain subset of the model states
carry tokens. We provide the optimal ML-rule for the special
cases of linear and tree state-transition digraphs.

We first consider the SMP with a linear state-transition
digraph and assume that the footprints have tokens both
at the start state S0 and the terminating state SNs . An
example is shown in the top portion of Fig.7. This scenario
can be easily extended to the case where tokens are available
at one or more intermediate states of the linear SMP, since
matching can be broken down to multiple parts. It is not
clear if the ML rule has a decentralized implementation here,
as in the tokenless case in Theorem 2. In the theorem below,
we provide the decentralized ML-rule.

We first define some new notations. For a linear SMP with
Ns+1 number of states, the composition of ML-permutation
vectors between states Sa and Sb, for 0 ≤ a < b ≤ Ns,

Π̂ML
a,b(j) := πc+1(πc . . . πa+1(j)), 1 ≤ j ≤ |πa|, (29)

where πk is the ML-permutation (minimum weight match)
for the bipartite system (Sk, Sk+1), with c = end(j; a, b),
defined as

end(j; a, b) := arg min
a≤c≤b

I(π̂ML
c+1(π̂

ML
c . . . π̂ML

a (j)) = δc),

where δc is the ccdf node representing the event that the
transaction that generated the jth footprint at Sa is cur-
rently residing at state Sc. Define the events

A(i) = [token of ith transaction is seen at SNs ],(30)

B(j) := [end(j; 1, Ns − 1) == Ns − 1]. (31)
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Figure 7: ML-rule for linear transition digraph with
tokens at S0 and S4. See Theorem 3.

Hence, B(j) in (31) is the event that the intermediate ML-
path starting with the jth footprint at S1 ends with an actual
footprint at SNs−1 and not a ccdf node. Since tokens are
produced at SNs , when IA(i) = 1 (I is indicator function),
the permutation πNs(i) = g(i), where g is a fixed function
providing the footprint index at SNs with the same token as
ith transaction (footprint at S0).

Theorem 3 (ML-rule with tokens). For a linear semi
Markov process with tokenized start state S0 and terminating
state SNs , the ML-rule is to

1. find minimum weight matching in bipartite systems
(Sk−1, Sk), 2 ≤ k ≤ Ns − 1, with weights Wk in (12),

2. obtain the intermediate ML-paths through Π̂ML
2,Ns−2, the

composition of the ML-permutations defined in (29),

3. finally, match jointly the tokenized footprints at states
S0 and SNs to the intermediate-ML paths, obtained in
step 2, using a new weight matrix W′ = [W ′(i, j)],
where W ′(i, j) is the edge weight between the ith trans-
action and the intermediate ML-path that originates
with the jth footprint at state S1,

W ′(i, j) = W1(i, j) +



















0, (32a)

WNs(Π̂ML
2,Ns−1(j), δNs−1), (32b)

WNs(Π̂ML
2,Ns−1(j), g(i)), (32c)

∞, (32d)

where, for events A(i), B(j) defined in (30), (31),

Case a : IA(i) = 0, IB(j) = 0,

Case b : IA(i) = 0, IB(j) = 1,

Case c : IA(i) = 1, IB(j) = 1,

Case d : IA(i) = 1, IB(j) = 0.

Proof: See Appendix .7. 2

Hence, for a linear SMP, even in the presence of tokens,
the ML-rule can be implemented in a decentralized man-
ner at all the tokenless states to obtain the intermediate



ML-paths. The only additional complexity is in combining
the footprint information at the tokenized states and then
matching them jointly to the intermediate ML-paths using
the modified weight matrix W′ in (32). In Fig.7, we depict
the ML-matching in a five state linear SMP for a complete
batch of three footprints. The ML-match between the foot-
prints at states S1 and S2 are conducted independent of the
other footprints, similarly for the match between the foot-
prints at states S2 and S3. The matching results are then
spliced together to form intermediate ML-paths from S1 to
S3, which are then matched to the tokenized footprints at
S0 and SNs using the weights in (32).

For a complete batch of transactions, all the transactions
have completed their operations producing all the tokenized
footprints at SNs and there are no ccdf nodes, implying that
(32) reduces to (32c). However, for a partial batch with foot-
prints arriving in order, any of the four cases in (32) can oc-
cur. For case a, since the tokenized footprint for ith instance
is not yet seen at SNs (IA(i) = 0) and the jth intermediate
ML-path already has a ccdf node as its endpoint (IB(j) = 0),
the original (tokenless) edge weight W1(i, j) is unchanged.
For case b, IB(j) = 1 and hence, the intermediate ML-path
needs to be matched to both a starting point (footprint at
S0) and an end point; the endpoint has to be the ccdf node
δNs−1 since the ith instance is most-likely still residing at
SNs−1 (IA(i) = 0). For case c, the tokenized footprint at
SNs is available (IA(i) = 1) and its information is combined
with the corresponding footprint at S0. For this case, only
the intermediate ML-paths that need both a start and an
end point (IB(j) = 1) are eligible candidates to be matched
to the ith transaction and hence, we do not allow the match
when IB(j) = 0, by having an infinite edge weight (case d).

We now consider extending the ML-rule to the case where
the state-transition digraph is a tree and only some of the
terminating states are tokenized. Even in this case, we can
conduct decentralized minimum weight matching in the bi-
partite systems, consisting of only tokenless states, to obtain
intermediate ML-paths. However, in contrast to Theorem 3,
the matching the intermediate ML-paths to the remaining
footprints has additional complexity since not all the re-
maining footprints are tokenized. In fact, this problem of
ML-matching in a tokenized tree reduces to a transportation
problem with exclusionary side constraints [13], an NP-hard
problem, and not to a bipartite matching. The transporta-
tion problem consists of sources and destinations, with each
destination requiring a certain set of sources and vice-versa,
and a cost is associated with each source-destination pair.
The exclusionary side constraint additionally requires that
certain groups of sources not be assigned to the same desti-
nation. In our problem, the sources are the candidate start
points (tokenized footprints at S0) and the end points of a
footprint path (tokenized and tokenless footprints at the ter-
minating states in the tree) and the destination nodes are the
intermediate ML-paths. Each destination node requires two
source nodes and we have the exclusionary side constraints,
that any two source nodes of the same type (start or end)
cannot be assigned to the same intermediate ML-path, and
that each tokenized footprint at a terminating state has to
assigned to the same destination as the corresponding foot-
print at S0. In general, the above reduction does not hold
for a general SMP, which is not a tree, since such a construc-
tion of intermediate ML-paths may not be feasible, e.g., for
the SMP in Fig.5, when S4 is tokenized, intermediate path,

consisting of footprints at states S1, S2, and S3 cannot be
constructed.

6. PERFORMANCE RESULTS
In this section, we evaluate the performance of tracking

rules and the tightness of the bounds on the matching prob-
abilities, derived in Sections 3, 4 and 5. The results here are
primarily for the two-state model due to its central role in
our theoretical analysis. We also consider two cases of the
multi-state SMP model, viz., the linear SMP and the SMP
shown in Fig.5. We study the effect of increasing the system
load on the tracking performance.

6.1 Setup
We consider a two-state system with start state S0 and

end state S1. We assume that new transactions enter the
system according to a Poisson process with rate λ0, i.e., the
transaction inter-arrival times are exponentially distributed
with mean λ−1

0 . We assume that the transition times are
independent of the system load, as we did in our analysis in
Sections 3, 4 and 5. We consider the exponential, uniform
and heavy-tailed pdfs, the Pareto and the log-normal pdfs,
for the transition times. We compare the performance of
different pdfs by fixing the mean transition time, denoted
by λ−1

1 . We vary the degree of interleaving and thereby,
the batch size and the matching performance, through the
mean transition time λ−1

1 . We study even the extreme (atyp-
ical) operational conditions with large degree of interleaving,
where the load factor ρ = λ0

λ1
, may be greater than one.

We conduct real-time matching for 100 transaction in-
stances entering the system and average the values over 100
independent simulation runs. Recall that we divide the foot-
prints into batches in real time, as described in Section 3.1.
We use the simulation runs to compute the empirical frac-
tion of batches, either complete or partial, with all the foot-
prints matched correctly and this approximates the expected
matching probability E[PML] in (15).

6.2 Results
In Fig.8a, we plot the matching probability E[PML] and

its bounds for the exponential pdf, where PML for a given
pdf is given in (15) and reduces to (18) for the exponen-
tial pdf. We find that the bounds for a general bipartite
graph, given by LB1 and n! in (33), closely approximate
E[PML]. On the other hand, the elementary-graph bounds
LB2 and UB2 in (34) are relatively loose. The lower and the
upper bounds in (33) are tight for dense graphs, while the
elementary-graph bounds in (34) are tight for sparse graphs.
This implies that the batches formed here are densely con-
nected. In Fig.8b, we plot E[PML] against the average batch
size E[N ] and find that the exponential distribution has the
minimum performance. This is also seen in Fig.9c, for the
case of the multi-state SMP in Fig.5.

In Fig.8c, we compare the performance of the optimal
ML-rule with the distribution-free first-in-first-out (FIFO)
rule for the Pareto pdf. From Lemma 3, the FIFO rule is
optimal for other distributions considered here, since they
satisfy (21). We also consider the case when the ML-rule is
employed on the pdf, estimated using a separate set of 100
learning samples through kernel-smoothing methods. We
find that there is some performance gap between the ML
and the FIFO rules. On the other hand, there is hardly
any performance loss due to pdf estimation. In Fig.9a, for
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Figure 9: Simulation results to show the effect of arrival of footprints in correct order and token availability.

the log-normal pdf, we study the cases when the footprints
arrive/do not arrive in the correct order. We find that the
presence of a correct time order improves matching perfor-
mance for partial batches.

In Fig.9b, we consider complete batches in a linear SMP
with Ns + 1 number of states. We plot the matching proba-
bility E[PML] against Ns and compare the cases when tokens
are absent/present at the terminating state SNs , and use the
rules in Theorems 2 and 3. We find that although tokens
improve performance, their efficacy reduces as we increase
the number of states or the load factor.

6.3 Implications
Our experiments confirm that the exponential pdf serves

as a benchmark and has the worst-case tracking performance
for a wide variety of systems and conditions. We find that
the probability that all the transactions are matched cor-
rectly decreases rapidly on increasing the number of trans-
actions and model states. Even the presence of tokens is not
helpful in improving the matching probability if there is a
large separation between the tokenized states or high load
factor. We also find that the performance gap between the
optimal ML-matching rule and the distribution-free FIFO
rule can be quite large for pdfs not obeying (21). On the
other hand, for such pdfs, there is hardly any performance
loss if we estimate the pdf using learning samples. Hence,
rather than use the FIFO rule, it is better to estimate the
pdf, whenever possible. We also find that when footprints
arrive in the correct temporal order at the monitoring en-

gine, there is significant improvement in real-time matching
performance.

7. RELATED WORK
The classical work on monitoring by Chandy and Lamport

considers the detection of certain global system states [9],
and this work started a flurry of research activity, outlined
in the survey [21]. However, these studies do not deal with
the issue of tracking individual transaction instances, which
is the focus of this paper. Industry standards like the open-
group ARM instrumentation [1] provide libraries for instru-
menting applications and generating transaction correlators
or tokens that may be used to track the flow of control across
different transaction segments. “Whitebox” methods, pre-
sented in [10,26], use such instrumentation-based tokens for
fine-grained tracking. However, such intrusive techniques
are often not applicable in enterprise environments. Exist-
ing “blackbox” methods, presented in [4, 18], avoid such in-
strumentation. However, they either do not track individual
call flow or use app-specific event-schema [5]. Various statis-
tical techniques have been employed for monitoring. In [22],
Mendes and Reed consider monitoring of large distributed
systems with large amounts of data through statistical sam-
pling. Distributed monitoring of petri-net based concurrent
systems is considered in [6, 16].

In contrast to the previous works, this paper assumes
no instrumentation, correlators or infrastructure specifics
and provides the optimal rule for tracking individual trans-



actions in a non-intrusive manner. In a related publica-
tion [27], we additionally describe our monitoring-system
architecture, provide experimental results on the response
time and also characterize bounds on the aggregate number
of transaction instances present at different states at any
time instant. Such aggregate information can be used for
dynamic resource allocation and load balancing strategies.

We have assumed that the transaction model is perfectly
known and may be obtained from knowledgeable users, e.g.,
system administrators. Our work does not deal with the is-
sues of discovering the model, a challenging problem in itself.
Agrawal, Gunopulos, and Leymann introduced the idea of
process mining in the context of workflow management in [3],
and since then, several process-mining techniques have been
proposed and analyzed [11,20,25,29].

8. CONCLUSION
The end-to-end tracking of transaction instances is of great

importance in the enterprise environments. However, many
factors significantly reduce the capability to track transac-
tions, e.g., presence of legacy systems, impossibility of ac-
cessing the underlying code, and so on. Hence, it is critical
to explore the feasibility of tracking transactions using only
time-stamped footprints, something that can be safely as-
sumed to exist in most application logs. The distinguishing
feature of the current effort from the previous “blackbox”
type of studies is the absence of any assumptions on the
presence of tokens in the observed footprints. This paper
is the first study to formally analyze the optimal tracking
rules and the resulting performance for a wide range of sys-
tem models.

We acknowledge the various limitations of this paper. We
have only analyzed, both theoretically and experimentally,
the probability that all the instances are matched correctly,
a stringent condition. Alternatively, we can use the (ap-
proximate) marginal probability as the performance metric
for each transaction under the bottleneck formulation [8].
We have assumed that the transactions progress according
to a semi-Markov process model; this model cannot repre-
sent concurrency within a transaction instance and petri-net
models are needed to handle such systems. Our assumptions
of a perfectly known transaction model and transition-time
pdfs need to be relaxed. We have also not considered the de-
sign of dynamic matching algorithms that enhance real-time
transaction tracking. These are some challenging directions
to explore.
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APPENDIX

.1 Bounds on the Permanent
The best known bounds on the number of perfect matches

for a general bipartite graph are

n! ≥ perm(A) ≥ LB1(A) :=

n
∏

i=1

max[1, deg(i)− i+1], (33)

where deg(1) ≤ deg(2) . . . are the ordered row sums of A,
the biadjacency matrix. In (33), the lower and upper bounds
are equal for a complete graph and are close to one another
for dense graphs. We now show that the bipartite graph of a
batch of footprints is elementary, where no edge is forbidden
for a matching, i.e., every edge in the bipartite graph occurs
in at least one perfect matching.

Lemma 5 (Elementary Graph). The bipartite graph
representing a batch of footprints is elementary. The number
of perfect matchings in an elementary graph satisfies

LB2(A) := |E| − |V1| − |V2|+ 2,

UB2(A) := (deg3−1)(2|E|−|V1|−|V2|−deg3 +2 + 1),

LB2(A) ≤ perm(A) ≤ UB2(A), (34)

where deg3 := min
i∈Γ

deg(i) with Γ := {i ∈ V : deg(i) > 2}.

Proof: Assume |V0| = |V1| > 1, otherwise the result holds
trivially. From [19], a bipartite graph is elementary iff it
has V0 and V1 as the minimum vertex covers. Say this is
not true and that V ′ ⊂ V0 is the minimum vertex cover.
Then, this implies that there are no edges in V0\V

′ which is
not possible. This is because we assume the presence of at
least one valid pattern and hence, a node has at least one
edge. In [14], the bounds for an elementary graph are given
when it is not a cycle graph, and this holds here, since the
bipartite graphs are convex. 2

The above result says that every edge we add to the bi-
partite graph occurs in at least one match. Hence, the batch
construction results in an elementary graph allowing us to
employ the bounds in (34). More practically, the sparse
construction results in faster implementation of the track-
ing algorithms, since they can be run independently across
batches, each with small number of nodes and edges. In gen-
eral, the bounds for the elementary graph given in (34) are
not guaranteed to better than (33) and are relatively loose
for dense graphs. In Section 6, we numerically analyze the
bounds.

.2 Proof of Lemma 2
The expected weight of ML-rule for a complete batch is

E[W ∗] = E[min
π

N
∑

i=1

W (i, π(i))]

≤ E[
N

∑

i=1

W (i, πt(i))]

= E[N ]h(T ), (35)

where π
t is the actual permutation that generated the foot-

prints. Since W (i, πt(i)) are i.i.d. distributed according to

fT , we use the Wald’s equation [24, p. 295] in (35). 2

.3 Proof of Theorem 1
Since the support of the joint transition-time pdf fT is

contained in [0, ∆]n, the biadjacency matrix A is a superset
over all the edges whose weights have positive measure un-
der f under any valid match. Hence, the number of unique
matches NB(n, k,A) with positive measure is no greater

than perm(A)
(n−k)!

. Hence, for 1 ≤ i ≤ NB(n, k,A),

PML(Y0,Y1; f) =
maxi P[Aπi

f (Y0,Y1)]
∑

i P[Aπi
f (Y0,Y1)]

,

≥
1

NB(n, k,A)
≥

(n− k)!

perm(A)
.

The first inequality is achieved with equality when all the
fπi are equal, i.e., all the NB possible matches are equally
likely. The second inequality is achieved with equality if the
joint pdf support is exactly [0, ∆]n.

If ∆ is finite and a batch is complete, i.i.d. uniform
distribution achieves the bound since all the edges of A
are equally likely. For ∆ → ∞, the bound is achieved by
i.i.d. exponential distribution, since for any permutation
πi, P[Af (n, k, πi)] is given by

λk exp[−λ{
k

∑

j=1

(Y1(j)− Y0(j)) + (n− k)Y1(k)}]dt.

To show that only exponential and uniform distributions
achieve the bound for i.i.d. transitions, note that it is achieved
only when all the valid matches are equally likely. For
n = k = 2 batch, this implies that

fT[Y1(1)−Y0(1), Y1(2)−Y0(2)] = fT[Y1(2)−Y0(1), Y1(1)−Y0(2)]

implies that fT[a, b] is of the form h(a+ b), since the transi-
tions times are independent of arrival times. For i.i.d. tran-
sitions, only exponential and uniform pdfs are of this form.
2

.4 Proof of Lemma 3
Applying (21), we have

K
∑

k=0

f(t)f(t + τ + kh)h ≤
K

∑

k=0

f(t + τ)f(t + kh)h,

∀ k, K, h > 0. (36)

Now letting h→ 0 and K →∞, we have

f(t)

∫ ∞

t+τ

f(x)dx ≤ f(t + τ)

∫ ∞

t

f(x)dx, t, τ ≥ 0. (37)

Hence, (20) is satisfied ∀i2, j2 ≤ n and FIFO is ML. 2

.5 Proof of Lemma 4
If part: By induction. For (24), the base case obviously

holds. Assume true for mth recursion and denote the set in
the left-hand side of (24) by Cm. Now, if N (P(Cm)) * Bi,
then ∃Sk ∈ P(Cm) such that N (Sk) ∈ Bj , j 6= i. But
P(Cm) ⊂ P(Bi) and this violates (23). Hence, (24) is true
and similarly, (25) is true.



Only if: When (23) is not true, then ∃Bi, Bj s.t. P(Bi)∩
P(Bj) 6= ∅ and hence, N (P(Bi)) * Bi. Therefore, any level
of recursions in (24) and (25) do not hold. 2

.6 Bounds on the Number of Partitions
Any connected acyclic digraph (DAG) can be expanded to

a rooted tree T using the following simple rule: while there
is a vertex i with in-degree (number of incoming arcs) equal
to m > 1, make m copies of i, each with the same outgoing
edges as i but no incoming edges; attach one of the incoming
edges of i to each vertex and finally delete i. Let Nc

e and Nc
ne

be the number of additional nodes added to the terminating
and non-terminating states in the expanded tree T and let
Nc = Nc

e + Nc
ne be the total number of added nodes to

T . Let Nne be the number of non-terminating states in the
DAG.

In the expanded tree T , all the immediate successors (chil-
dren) of any non-terminating state Si belong to the same
set in the partition satisfying (23). Hence, the bipartite sys-
tems in T are of the form (i,N (i)) for N (i) 6= ∅. Hence,
the number of bipartite systems in T is the number of non-
terminating states in T , equal to Nne + Nc

ne. We now con-
struct the partition in the original DAG using the bipartite
systems in the expanded tree T as follows: merge the bipar-
tite systems in T , (i,N (i)) and (j,N (j)) into ({i, j}, {N (i)∪
N (j)}) if i, j or if ∃ k ∈ N (i), l ∈ N (j) are copies of the same
node in DAG; continue merging the bipartite systems until
no node copies of the DAG occur in the resulting systems.
The set of children states in each bipartite system, along
with the start state S0, form the (unique) partition satis-
fying (23). Hence, in addition to the algorithm in Fig.6,
we have an alternate procedure to construct the partition of
model states.

In the worst-case, while mapping the bipartite systems
from the expanded tree T back to the original DAG, corre-
sponding to each additional copy of a non-terminating node
in T , the number of systems is reduced at most by two: one
where the node is a parent and the other where it is a child.
Similarly, for each additional copy of a terminating node in
T , the number of bipartite systems is reduced at most by
one. Hence, we have the number of sets in the partition Np

in any DAG satisfies

Nne + Nc
ne − 2Nc

ne −Nc
e ≤ Np ≤ Nne + Nc

ne

Using the trivial bounds, we have

max[1, Nne −Nc] ≤ Np ≤ min[Ns + 1, Nne + Nc
ne]

Hence, the lower bound, derived using the expanded tree T ,
is useful when Nne ≫ Nc, e.g., DAG that is “nearly” tree,
where branches interleave to a small extent.

.7 Proof of Theorem 3
For simplicity, let Ns = 2. First assume a complete batch

of footprints, so that case c always holds. The ML-rule is
now equivalent to a minimum-weight problem

min
π1

n
∑

i=1

[W1(i, π1(i)) + W2(π1(i), g(i))], (38)

where g is the fixed function providing the index of the foot-
print at SNs carrying the same token as the ith footprint as
S0. The optimal solution is given by the minimum-weight

perfect matching with transactions in one bipartition, foot-
prints at S1 in the other bipartition and the weight matrix
given by (38). Now for Ns > 2, since the tokens are absent,
the ML intermediate paths between S1 and SNs−1, corre-
sponds to independent minimum weight matching at each
state, as stated in Theorem 2. Finally, these paths must be
matched to the instances. Due to the presence of tokens at
SNs , the footprints at S0 and SNs which are endpoints of
a valid path have to carry the same token. Hence, this is
equivalent to Ns = 2 case except that the bipartition con-
sists of intermediate ML-paths, instead of just the footprints
at S1.

Now for a partial batch, for Ns = 2, suppose IB(j) = 1
always holds, i.e., all the transactions have already moved
from S0 to S1, but not all of them have moved to S2. Here, if
the token of the ith transaction is not yet seen at S2 (IA(i)=0),
then the transaction is still resident at S1. In other words,
we have to match the transaction with the ccdf node δ1.
Hence, the ML-rule is

min
π1

n
∑

i=1

[W1(i, π1(i)) + IA(i)W2(π1(i), g(i))

+(1− IA(i))W2(π1(i), δ1)], (39)

On the other hand, when some transactions are still resident
at S0, it is denoted by another ccdf node δ0, and in this case,
B(π(i)) = [π1(i) 6= δ0]. In this case, the ML rule is

min
π1

n
∑

i=1

[
IA(i)

IB(π(i))

{W1(i, π1(i)) + W2(π1(i), g(i))}

+IB(π(i))(1− IA(i))W2(π1(i), δ1)

+(1− IA(i))W1(i, π1(i))]. (40)

In the first term of (40), we divide by IB(π(i)) (let 0
0

=
0) implying that when the transaction operation is already
completed (I(A(i)) = 1), we cannot match it with the ccdf
node δ0 (I(B(π(i))) = 0). Therefore, we do not allow such
matches by having the weight in (40) go to infinity. When
IA(i) = 0, the only restriction is that the two ccdf nodes δ0

and δ1 cannot be matched with one another, incorporated in
the second term of (40). It is easily seen that (40) reduces to
(32) and is easily extended to Ns > 2 by having intermediate
ML-paths instead of just the footprints at S1. 2




