
RC24469 (W0801-081) January 22, 2008
Computer Science

IBM Research Report

Managing SLAs of Heterogeneous Workloads
Using Dynamic Application Placement

David Carrera1, Malgorzata Steinder2, Ian Whalley2,
Jordi Torres1, Eduard Ayguadé1

1Technical University of Catalonia (UPC)
Barcelona Supercomputing Center (BSC)

Barcelona, Spain

2IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

Managing SLAs of heterogeneous workloads using dynamic application
placement

David Carrera1, Malgorzata Steinder2, Ian Whalley2, Jordi Torres1, Eduard Ayguadé1

1Technical University of Catalonia (UPC) -
Barcelona Supercomputing Center (BSC)

Barcelona, Spain
{david.carrera, jordi.torres, eduard.ayguade}@bsc.es

2IBM T.J. Watson Research Center
Hawthorne
NY 10532

{steinder, inw}@us.ibm.com

Abstract

In this paper we address the problem of managing het-
erogeneous workloads in a virtualized data center. We con-
sider two different workloads: transactional applications
and long-running jobs. We present a technique that per-
mits collocation of these workload types on the same phys-
ical hardware. Our technique dynamically modifies work-
load placement by leveraging control mechanisms such as
suspension and migration, and strives to optimally trade
off resource allocation among these workloads in spite of
their differing characteristics and performance objectives.
Our approach builds upon our previous work on dynami-
cally placing transactional workloads. This paper extends
our framework with the capability to manage long-running
workloads. We achieve this goal by using utility functions,
which permit us to compare the performance of various
workloads, and which are used to drive allocation deci-
sions. We demonstrate that our technique maximizes het-
erogeneous workload performance while providing service
differentiation based on high-level performance goals.

1 Introduction

Many organizations rely on a heterogeneous set of ap-
plications to deliver critical services to their customers and
partners. For example, in financial institutions, transac-
tional web workloads are used to trade stocks and query
indices, while computationally intensive non-interactive
workloads are used to analyse portfolios or model stock per-
formance. Due to intrinsic differences among these work-
loads, today they are typically run on separate dedicated
hardware and managed using workload specific manage-
ment software. Such separation adds to the complexity of
data center management and reduces the flexibility of re-
source allocation. Therefore, organizations demand man-

agement solutions that permit these kinds of workloads to
run on the same physical hardware and be managed using
the same management software.

The management of heterogeneous workloads intro-
duces a number of challenges in the area of their deploy-
ment, update, configuration, and performance and availabil-
ity management. Many of these challenges are addressed by
virtualization technologies, which provide a layer of sepa-
ration between a hardware infrastructure and workload, and
provide a uniform set of control mechanisms for managing
these workloads embedded inside virtual containers. Virtu-
alization technologies also enable separation between man-
agement concerns, permitting software and configuration
tasks inside virtual machines to be done a priori. The run-
time management system is only responsible for the runtime
performance and availability of virtualized workloads.

Integrated performance management of heterogeneous
workloads is a challenging problem. First, performance
goals for different workloads tend to be of different types.
For interactive workloads, goals are typically defined in
terms of average or percentile response time or throughput
over a certain time interval, while performance goals for
non-interactive workloads concern the performance (e.g.,
completion time) of individual jobs. Second, due to the
nature of their performance goals and short duration of in-
dividual requests, interactive workloads lend themselves to
automation at short control cycles. Non-interactive work-
loads typically require calculation of a schedule for an ex-
tended period of time.

This paper proposes a solution to allocate resources
among transactional web workloads and long-running com-
pute intensive jobs. The objective of the approach is to
provide fair differentiation of performance among all work-
loads in response to varying workload intensities.

To our knowledge, our work is the first proposal that
combines an explicit support for heterogeneous workloads
in virtualized environments, using a utility-driven schedul-

ing mechanism with fairness goals. A preliminary working
prototype of our proposal that made use of a commercial
middleware to enforce its decisions was described in [20].
The performance management aspects pertaining to trans-
actional workloads were introduced in [2]. The original
contribution of this paper is a scheme for modeling the per-
formance of, and managing, long-running workloads.

This paper is organized as follows. In Section 2, we ex-
plain the contributions of this paper in the context of related
work. In Section 3, we present our approach to manage het-
erogeneous workloads using utility-driven resource alloca-
tion. In Section 4, we introduce the process of calculating
the utility function for long-running applications. In Sec-
tion 5 we evaluate our approach via simulation.

2 Related work

In this paper we present a technique that allows the man-
agement to high-level goals of collocated long-running and
transactional workloads in virtualized environments. We
use utility functions to model the satisfaction of both long-
running jobs and transactional workloads for a particular re-
source allocation – the different types of workload have dif-
ferent characteristics, and different performance goals, and
utility functions offer a mechanism to make their perfor-
mance comparable. We run both workloads inside virtual
machines, in order to properly manage their performance,
and our management also exploits the clustering nature of
transactional workloads.

Both the use of utility functions for workload manage-
ment, and managing clusters of virtual machines, are ar-
eas already studied in the literature, but our approach is the
first one that combines them to successfully manage het-
erogeneous workloads with fairness goals. This paper will
not discuss the management of transactional workloads fur-
ther – the reader is referred to our earlier work, in particu-
lar [20, 2].

The explicit management of heterogeneous workloads
was previously studied in [21], in which a number of CPU
shares were manually allocated to run mixed workloads on
a large multiprocessor system. This was a static approach,
and did not run workloads within virtual machines. Vir-
tuoso [14] describes an OS scheduling technique, VSched,
for heterogeneous workload VMs. VSched enforces com-
pute rate and interactivity goals for both non-interactive and
interactive workloads (including web workloads), and pro-
vides soft real-time guarantees for VMs hosted on a single
physical machine. VSched could be used as a component
of our system for providing resource-control automation
mechanisms within a machine, but our approach is broader
as it addresses resource allocation for heterogeneous work-
loads across a cluster of physical machines.

The use of utility-driven strategies to manage workloads

was first introduced in the scope of real-time work sched-
ulers to represent the fact that the value produced by such
a system when a unit of work is completed can be repre-
sented in more detail than a simple binary value indicating
whether the work met its or missed its goal. In [8], the
completion time of a work unit is assigned a value to the
system that can be represented as a function of time. Other
work in the field of utility-driven management, including
memory- [6] and energy-aware [25] utility-driven schedul-
ing, are summarized in [19] with special focus on real-time
embedded systems. In [1], the authors present a utility-
driven scheduling mechanism that aims to maximize the ag-
gregated system utility. In contrast, our technique does not
focus on real-time systems, but on any general system for
which performance goals can be expressed as utility func-
tions. In addition, we introduce the notion of fairness into
our application-centric management technique – our objec-
tive is not to maximize the system utility, but instead to at
least maximize the lowest utility across long-running jobs
and transactional applications present in the system.

Outside of the realm of the real-time systems, the au-
thors of [5] focus on a utility-guided scheduling mecha-
nism driven by data management criteria, since this is the
main concern for many data-intensive HPC scientific ap-
plications. In our work we focus on CPU-bound heteroge-
neous environments, but our technique could be extended to
observe data management criteria by expanding the seman-
tics of our utility functions.

In our work we use monotonic and continuous utility
functions to represent the satisfaction of both transactional
and long-running workloads, but other approaches have
been studied in the literature. In [13], the authors discuss
the best shape for the utility functions (extending the work
presented in [12]). The authors of [3] use user-defined util-
ity functions to represent the value of resources, and their
market-based batch scheduler is driven by these utility func-
tions to allocate resources.

There is also some previous work in the area of manag-
ing workloads in virtual machines. Management of clusters
of virtual machines is addressed in [7] and [4]. The au-
thors of [7] address the problem of deploying a cluster of
virtual machines with given resource configurations across
a set of physical machines. Czajkowski et al. [4] define an
API for a Java VM that permits a developer to define re-
source allocation policies. In [27] and [18], a two-level con-
trol loop is proposed to make resource allocation decisions
within a single physical machine, but does not address in-
tegrated management of a collection of physical machines.
The authors of [24] study the overhead of a dynamic alloca-
tion scheme that relies on virtualization as opposed to static
resource allocation. Their evaluation covers CPU-intensive
jobs as well as transactional workloads, but does not con-
sider mixed environments. Neither of these techniques pro-

vides a technology to dynamically adjust allocation based
on SLA objectives in the presence of resource contention.

Placement problems in general (either in the presence
of virtualization technologies or not) have also been stud-
ied in the optimization literature, frequently using tech-
niques including bin packing, multiple knapsack problems,
and multi-dimensional knapsack problems [10]. The op-
timization problem that we consider presents a non-linear
optimization objective while previous approaches [9, 11]
to similar problems address only linear optimization ob-
jectives. In [23], the authors evaluate a similar problem
to that addressed in our work (but restricted to transac-
tional applications), and use a simulated annealing opti-
mization algorithm. Their optimization strategy aims to
maximize the overall system utility while we focus on first
maximizing the lowest utility across applications, which
increases fairness and prevents starvation, as was shown
in [2]. In [26], a fuzzy logic controller is implemented
to make dynamic resource management decisions. This
approach is not application-centric – it focuses instead on
global throughput – and considers only transactional appli-
cations. The algorithm proposed in [22] allows applications
to share physical machines, but does not change the number
of instances of an application, does not minimize placement
changes, and considers a single bottleneck resource.

3 Integrated management of heterogeneous
workloads

3.1 System architecture

We consider a system that includes a set of heteroge-
neous physical machines, referred to henceforth as nodes.
Transactional web applications, which are served by appli-
cation servers, are replicated across nodes to form applica-
tion server clusters. Requests to these applications arrive
at an entry router which may be an L4 or L7 gateway that
distributes requests to clustered applications according to a
load balancing mechanism. Long-running jobs are submit-
ted to the job scheduler, placed in its queue, and dispatched
from the queue based on the resource allocation decisions
of the management system.

The request router monitors incoming and outgoing re-
quests and measures their service times and arrival rates
per application. It may also employ an overload protec-
tion mechanism [17, 15] by queuing requests that cannot
be immediately accommodated by server nodes. A separate
component, called the work profiler [16], monitors resource
utilization of nodes and (based on a regression model that
combines the utilization values with throughput data) esti-
mates an average CPU requirement of a single request to
any application. Based on these findings, our system builds
performance models that allow it to predict the performance

of any transactional application for any given allocation of
CPU power. The size and placement of application clusters
is determined by application placement controller (APC).

Long-running jobs are submitted to the system via the
job scheduler. Each job has an associated performance goal.
Currently we support completion time goals, and we plan to
extend the system to handle other performance objectives.
The job scheduler uses the APC as an advisor as to where
and when a job should be executed. When the APC makes a
decision, actions pertaining to long-running jobs are given
to the scheduler to be put into effect. The job scheduler
also monitors job status and notifies APC, which uses the
information in subsequent control cycles.

A job workload profiler estimates job resource usage
profiles, which are fed into APC. Job usage profiles are used
to derive a utility function of a given resource allocation to
jobs, which is used by APC to make allocation decisions.

APC operates in a control loop with period T , which is
of the order of minutes. A short control cycle is necessary to
allow the system to react quickly to transactional workload
intensity changes which may happen frequently and unex-
pectedly. In each cycle, the APC examines the placement of
applications on nodes and their resource allocations, evalu-
ates the utility of this allocation and makes changes to the
allocation by starting, stopping, suspending, resuming, re-
locating or changing CPU share configuration of some ap-
plications. In the following sections we will concentrate on
the problem solved by APC in a single control cycle.

3.2 Problem statement

We are given a set of nodes, N = {1, . . . , N} and a
set of applications M = {1, . . . ,M}. We use n and m to
index into the sets of nodes and applications respectively.
With each node n we associate its memory and CPU capac-
ities, Γn and Ωn. With each application, we associate its
load independent demand, γm that represents the amount of
memory consumed by this application whenever it is started
on a node. The CPU requirements of applications are given
in the form of utility functions.

A utility function for a given application expresses the
satisfaction of that application from a given resource alloca-
tion. For comparability among workloads, utility functions
of all applications must obey a common contract. In our
system, we assume that utility functions are monotonically
increasing and range from −∞ to 1, and have a value of
0 when the application exactly meets its performance goal.
Values greater than 0 and less than 0 represent the degree
with which the goal is exceeded or violated, respectively.

We use symbol P to denote a placement matrix of ap-
plications on nodes. Cell Pm,n represents the number of
instances of application m on node n. We use symbol L to
represent a load placement matrix. Cell Lm,n denotes the

amount of CPU speed consumed by all instances of appli-
cation m on node n. A utility function for each application
may be expressed as a function of L.

The objective of APC, in each control cycle, is to find the
best possible new placement of applications. The optimiza-
tion objective is an extension of a max min criterion, and
differs from it by explicitly stating that after the max min
objective can no longer be improved (because the lowest
utility application cannot be allocated any more resources),
the system should continue improving the utility of other
applications.

The APC finds a placement that meets the above ob-
jective while ensuring that neither memory nor CPU ca-
pacity of any node is overloaded. In addition, APC em-
ploys heuristics that aim to minimize the number of place-
ment changes compared to the placement currently in effect.
While finding the optimal placement, APC also observes a
number of constraints, such as resource constraints, collo-
cation constraints and application pinning, amongst others.

3.2.1 Algorithm outline

The application placement problem is known to be NP-hard
and heuristics must be used to solve it. In this paper, we
leverage an algorithm proposed in [2].

The core of the algorithm is a set of three nested loops.
An outer loop iterates over nodes. For each visited node, an
intermediate loop iterates over application instances placed
on this node and attempts to remove them one by one, thus
generating a set of configurations whose cardinality is lin-
ear in the number of instances placed on the node. For each
such configuration, an inner loop iterates over all applica-
tions while attempting to place new instances on the node
as permitted by the constraints.

The order in which nodes, instances, and applications
are visited is driven by utility. In the process, the algorithm
examines application utility asking the following questions:

• What is the utility of an application in the specified
placement?

• Given application placement, how much additional
CPU power must be allocated to an application such
that it achieves the specified utility value?

In Section 3.3, we briefly explain how these questions are
answered for web workloads. Section 4 introduces the util-
ity function for long-running workloads, which is an origi-
nal contribution of this paper.

3.3 Transactional workloads

In our system, a user can associate a response time goal,
τm with each transactional application. (In fact, we can as-
sociate such goals with a smaller granularity management

units, flows, but omit this detail from this paper.) Based on
the observed response time for an application tm, we eval-
uate the system performance with respect to the goal using
an objective function um, which is defined as follows [17]:

um(tm) =
τm − tm

τm
(1)

We leverage the performance model of the request router
as well as the application resource usage profile to estimate
tm as a function of the CPU speed allocated to the applica-
tion, tm(ωm). This allows us to express um as a function of
ωm, um(ωm) = um(tm(ωm)).

Given a placement P and the corresponding load dis-
tribution L, we obtain um(L) by taking um(ωm), where
ωm =

∑
n Lm,n. Likewise, we can calculate the amount

of CPU power needed to achieve a utility u by taking the
inverse function of um, ωm(u).

4 Long-running workloads

In this section, we focus on applying our placement tech-
nique to manage long-running jobs. We start by observing
that a performance management system cannot treat long-
running jobs as individual management entities, as their
completion times are not independent. For example, if jobs
that are currently running complete faster, this permits jobs
currently in the queue (not running) to complete faster as
well. Thus, performance predictions for long-running jobs
must be done in relation other other long-running jobs.

Another challenge is to provide performance predictions
with respect to job completion time on a control cycle which
may be much lower than job execution time. Typically, such
a prediction would require us to calculate an optimal sched-
ule for the jobs. To trade off resources among transactional
and long-running workloads we would have to evaluate a
number of such schedules calculated over a number of pos-
sible divisions of resources among the two kinds of work-
loads. The number of combinations would be exponential
in the number of nodes in the cluster.

We avoid this complexity by proposing an approximate
technique, which is presented in this section.

4.1 Job characteristics

We are given a set of jobs. With each job m we associate
the following information.

Resource usage profile. A resource usage profile de-
scribes the resource requirements of a job and is given at
job submission time – in the real system, this profile comes
from the job workload profiler. The profile is estimated
based on historical data analysis. Each job m is a sequence

of Nm stages, s1, . . . , sNm , where each stage sk is de-
scribed by the following parameters.

• The amount of CPU cycles consumed in this stage,
αk,m

• The maximum speed with which the stage may run,
ωmax

k,m . A CPU allocation higher by ωmax
k,m would not be

consumed in this stage.

• The minimum speed with which the stage must run,
whenever it runs, ωmin

k,m. An allocation lower than ωmin
k,m

would not permit a correct execution of the stage.

• The memory requirement γk,m

Performance objectives. An SLA objective for a job is
expressed in terms of its desired completion time, τm,
which is the time by which the job must complete. Clearly,
τm should be greater than the job’s desired start time τ start

m ,
which itself is greater than or equal to the time when the
job was submitted. The difference between the completion
time goal and the desired start time, τm − τ start

m , is called
the relative goal.

We are also given a utility function that maps actual
job completion time tm to a measure of satisfaction from
achieving it, um(tm). Many utility function forms may be
used. In our implementation, we use the following form.

um(tm) =
τm − tm

τm − τ start
m

(2)

Runtime state. At runtime, we monitor and estimate the
following properties for each job:

• Current status, which may be either running, not-
started, suspended, or paused.

• CPU time consumed thus far, α∗m

4.2 Stage aggregation in a control cycle

We now focus on the reasoning that the APC must ap-
ply in order to decide which jobs should be scheduled for
execution, on which nodes they should execute, and how
much CPU power they should be allocated. We presume
that the APC operates with a control cycle of duration T .
Thus, when making decisions at time tnow, the APC must
consider job progress between time tnow and time tnow +T .

Depending on the stage duration and the value of T , one
or more stages can be executed in a control cycle. Since
resource allocation will not change for the duration of the
control cycle, the resource allocation must be such so as to
accommodate all stages that will execute in this cycle.

Considering this, in addition to the job characteristics in-
troduced in Section 4.1, we must now define some addi-
tional parameters.

First, we define the cumulative work that a job must com-
plete, αc

D,m =
∑D,m

i=1 αi,m. Since α∗m cycles have already
been completed, the remaining work to complete D stages
is αcr

D,m = max(0, αc
D,m − α∗m). The remaining work to

complete the entire job is simply αcr
Nm,m. At tnow, the job

must have already completed Ddone
m stages which may be

obtained by taking Ddone
m = maxD αc

D,m ≤ α∗m. For each
job stage, we can now obtain the work remaining in this
stage, which is given as follows:

αr
D,m =

0 if D ≤ Ddone

m

αc
D,m − α∗m if D = Ddone

m + 1
αD,m otherwise

(3)

Let us assume that in each state a job is allocated the
maximum usable speed. Then, the time remaining to com-
plete stage D is trD,m = αr

D,m

ωmax
D,m

. In time T , the job cannot

progress to complete more than Dlast
m stages where Dlast

m is
the maximum D such that

∑D
i=Ddone

m +1 tri,m ≤ T .
We can now make a conservative assumption, that

throughout the cycle that starts at tnow and lasts for time
T , the job will require the minimum CPU speed, maximum
CPU speed, and memory of ωmin

m , ωreq
m , and γm, respec-

tively, which are defined as follows.

ωmin
m = max

Ddone
m +1≤i≤Dlast

m

ωmin
i (4)

ωreq
m = max

Ddone
m +1≤i≤Dlast

m

ωmax
i (5)

γm = max
Ddone

m +1≤i≤Dlast
m

γi (6)

4.3 Maximum achievable utility

There is an inherent upper bound to the utility that a
job may achieve considering its progress thus far. When
progressing with the maximum possible speed, a job will
complete in time tbest

m =
∑D

i=Ddone
m

tri,m thus its comple-
tion time will be tnow + tbest

m . The maximum utility that
the job can achieve given its progress thus far is umax

m =
um(tnow + tbest

m).
At any time, a job may be either running with the maxi-

mum speed, running with less than the maximum speed, or
stopped or suspended (not running).

In general, in each control cycle in which the CPU al-
location of a job is less than the maximum it can use, the
value of maximum achievable utility decreases linearly. We
illustrate this property with the following example.

Consider a single stage job and suppose that its amount
of work and an SLA goal is such that the job can achieve
the utility of 0.8 when executing with speed 16,000 MHz. In
Figure 1, we show the evolution of the maximum achievable
utility over 10 control cycles. We presume that the system
cannot allocate more than 16,000 MHz to the job and vary
the job maximum speed, ωreq

m (plotted on the X axis). When
ωreq

m < 16000, umax
m is lower than 0.8, and it decreases as

ωreq
m decreases, but it stays constant over time (plotted on

the Y axis), as the system is always able to allocate ωreq
m .

When ωreq
m > 16000, then umax

m may be higher than 0.8,
as the job may complete its work faster. However, since the
system is not able to provide this much CPU power, and
the job only executes with the speed of 16,000 MHz, umax

m

decreases over time.
The maximum achievable utility is used to order long-

running jobs in the queue. When allocating resources to
long-running workload, the APC will first consider jobs
with a lower maximum achievable utility.

4.4 Hypothetical utility

To calculate job placement, we need to define a utility
function which the APC can use to evaluate its placement
decisions. To help answer questions that APC is asking of
the utility function for each application we introduce the
concept of hypothetical utility.

4.4.1 Estimating application utility given aggregate
CPU allocation

Suppose that we deal with a system in which all jobs can
be placed simultaneously, and in which the available CPU
power may be arbitrarily finely allocated among the jobs.
We require a function that maps the system’s CPU power to
the utility function achievable by jobs when placed on it.

Let us consider job m. Based on its properties, we can
estimate the completion time needed to achieve utility u,
tm(u) = τm − u(τm − τ start

m). From this number, we can
calculate the average speed with which the job must proceed
over its remaining lifetime to achieve u, as follows:

ωm(u) =
αcr

Nm,m

tm(u)− tnow
(7)

To achieve the utility of u for all jobs, the aggregate al-
location to all jobs must be ωg =

∑
m ωm(u). To create the

utility function, we sample ωm(u) for various values of u
and interpolate values between the sampling points.

Let u1 = −∞, u2, . . . , uR = 1, where R is a small con-
stant, be a set of sampling points (target utilities from now
on). We define matrices W and V as follows:

Wi,m =
{

ωm(ui) if ui < umax
m

ωm(umax
m) otherwise (8)

Vi,m =
{

ui if ui < umax
m

umax
m otherwise (9)

Cells Wi,m and Vi,m contain the average speed with
which application m should execute starting from tnow to
achieve utility ui and value ui, respectively, if it is possi-
ble for application m to achieve utility ui. If utility ui is
not achievable by application m, these cells instead contain
the average speed with which the application should exe-
cute starting from tnow to achieve its maximum achievable
utility, and the value of the maximum utility, respectively.

For a given ωg , there exist two values k and k + 1 such
that: ∑

m

Wk,m ≤ ωg ≤
∑
m

Wk+1,m (10)

Allocating a CPU power of ωg to all jobs will result in a
utility um for each job m in the range:

Vk,m ≤ um ≤ Vk+1,m (11)

That corresponds to a hypothetical CPU allocation in the
range:

Wk,m ≤ ωm ≤ Wk+1,m (12)

Figure 2 shows, for two different applications, the allo-
cation required to achieve a range of target utilities, as well
as the aggregated demand. Vectors V and W can be con-
structed by sampling some of the points shown in this fig-
ure. Note that, for utilities above the maximum achievable
utility for a particular application (points A and B), we take
the allocation that corresponds to that maximum achievable
utility.

Interpolating um and ωm given ωg . At some point the
algorithm needs to know the utility that each application
will achieve (um) if it decides to allocate a CPU power of
ωg to all applications combined. We must find values ωm

and um for each application m such that equations 10, 11,
and 12 are satisfied, while also satisfying

∑
m ωm = ωg . As

finding a solution for this final requirement implies solving
a system of linear equations, which is too costly to perform
in an on-line placement algorithm, we use an approxima-
tion based on the interpolation of ωm from cells Wk,m and
Wk+1,m, where k and k + 1 follow equation 10, and deriv-
ing um from ωm. Notice from equations 8 and 9 that the
value of a cell Vi,m does not necessarily correspond to the
target utility ui, and thus a cell Wi,m does not necessarily
correspond to ωm(ui).

To interpolate ωm, we first consider the case for which
cells Wk,m and Wk+1,m correspond to the allocations re-
quired to make application m achieve utilities uk and uk+1

respectively, i.e., the case for which the calculation of those

cells was not constrained by the maximum achievable speed
for application m. In this situation, ωm can be interpolated
by calculating first a value ratiog that corresponds to the
position of ωg relative to the distance between

∑
m Wk,m

and
∑

m Wk+1,m. We define ratiog as:

ratiog =
ωg −

∑
m Wk,m∑

m Wk+1,m −
∑

m Wk,m
(13)

Once ratiog is calculated, we can interpolate ωm as
(Wk+1,m −Wk,m) ∗ ratiog + Wk,m.

Figure 3 shows an example of this interpolation. We con-
sider an scenario similar to that shown in Figure 2 in the re-
gion indicated by point C. For simplicity, we consider vec-
tors V and W to be filled with values obtained from func-
tions x3 for job 1, x2 for job 2 and x3+x2 for the aggregated
values. We are given a total allocation ωg = 150 and utility
sampling points 2 and 8; and we need to interpolate val-
ues ω̃job1 and ω̃job2 that satisfy equation 12 and that are as
similar as possible. We have the following available data:
W2,job1 = 8, W2,job2 = 4, and so

∑
m W2,m = 12; and

W8,job1 = 512, W8,job2 = 64, and so
∑

m W8,m = 576.
We calculate ratiog to be (150 − 12)/(576 − 12) = 0.24.
With this value we esttimate ω̃job1 = 131 and ω̃job2 = 18.
The corresponding utilities for these job allocations are 4.2
for job 1 and 5.08 for job 2. Obviously, solving the linear
system of equations would have produced a more precise
solution at a much higher computational cost.

This technique works well when all applications are un-
constrained (they have not reached their maximum speed).
Notice that the region around point D in Figure 2 shows a
different scenario, in which application 1 is running at max-
imum speed. In this situation, interpolating ω̃job1 and ω̃job2

requires some additional effort. Figure 4 shows an scenario
similar to that indicated by point D in Figure 2. We pro-
ceed in the same fashion as before, with the only differ-
ence that 1) we consider the function for application 1 to be
min(1000, x3) and obviously the aggregated function be-
comes min(1000, x3)+x2; and 2) we are given a total allo-
cation ωg = 1180 and utility sampling points 5 and 30;. We
have the following available data: W5,job1 = 25, W5,job2 =
125, and so

∑
m W5,m = 150; and W30,job1 = 1000 (con-

strained), W30,job2 = 900, and so
∑

m W30,m = 1900. We
calculate ratiog to be (1180− 150)/(1900− 150) = 0.58.
With this value we estimate ω̃job1 = 640 and ω̃job2 = 540.
This time the corresponding utilities for these job alloca-
tions are 8.6 for job 1 and 23.0 for job 2. As it can be
observed, ω̃job1 and ω̃job2 satisfy equation 12, but they are
far from each other. This is caused by the fact that applica-
tion 1 is contributing differently to the aggregate function in
the range of utilities 5 - 30, and under these circumstances
ratiog is not accurate enough for our purpose of equalizing
utilities if possible.

To overcome this problem we define app ratiom as:

app ratiom =

∑
m

Wk+1,m∑
m

Wk,m

Wk+1,m

Wk,m

(14)

Notice that app ratiom observes how the difference
between cells Wk,m and Wk+1,m is related to the over-
all system allocation that corresponds to

∑
m Wk,m and∑

m Wk,m. In the case that both Wk,m and Wk+1,m are
constrained by the maximum achievable speed for applica-
tion m, then we have that app ratiom = 0.

We now define:

ratiom =
{

ratiog Wi,m = ui,m, i = k, k + 1
ratiog ∗ app ratiom otherwise

(15)
and interpolate the allocation ω̃m that corresponds to ap-

plication m given ωg as (Wk+1,m−Wk,m)∗app ratiom +
Wk,m.

Looking again to the example proposed in Figure 4, we
get app ratiojob1 = (1900/150)/(1000−125) = 1.65 and
app ratiojob2 = (1900/150)/(900 − 25) = 0.33. With
these values, as well as the previously calculated ratiog ,
we can calculate values ω̃job1 = 974 and ω̃job2 = 195, that
still satisfy equation 12 but are closer in terms of utility.
This technique has proven to work as expected for our input
functions.

Once ω̃m is correctly estimated, we can easily estimate
the expected utility of application m as:

ũm(ωg) =

{
−∞ if ωg = 0
um(tnow +

αcr
Nm,m

ω̃m(ωg)) otherwise
(16)

Evolution of hypothetical utility over time. The hypo-
thetical utility function assumes all jobs can be placed at
once, which is usually not the case. This means that real
placements differ from what is assumed by the hypotheti-
cal utility. In this case, when after time T the hypothetical
utility is calculated again it may have a different form than
the utility calculated at time tnow. Figure 5 illustrates two
scenarios in which two applications compete for resources
(only one of the applications can be placed at a time). In the
upper chart, both applications have the same characteristics
(maximum speed, importance level, submission time and
completion time goal). In the upper chart, each application
has different characteristics. The charts show how much
CPU must be allocated to each application according to the
calculated hypothetical utility as well as the aggregated allo-
cation (ωm1 +ωm2) necessary to achieve the utility of−0.1.
Notice that when both applications have identical charac-
teristics, the evolution of the required allocation for both

applications to get the same hypothetical utility is comple-
mentary: the application that is placed and running presents
a decreasing demand to get the same utility while the appli-
cation that is stopped presents an increasing demand. The
aggregated allocation keeps constant. In the second chart,
where applications present different characteristics, the evo-
lution of the allocation required by each applications differ.
When the application placed has a tighter completion time
goal, its requested allocation decreases more quickly than
the demand for the other application increases. In this case,
the aggregated required allocation for both applications to
obtain identical hypothetical utility decreases slightly over
time as the more constrained job progresses in execution.

4.4.2 Evaluating placement decisions

Let P be a given placement. Let ωm be the amount of CPU
power allocated to application m in placement P . For jobs
that are not placed, ωm = 0.

To calculate utility of application m given placement P
that is calculated at time tnow for a control cycle that lasts
time T , we calculate a hypothetical utility function at time
tnow + T . For each job, we increase its α∗ by the amount
of work that will be done over T with allocation ωm. We
use this obtained hypothetical utility to extrapolate um from
matrices W and V for ωg =

∑
m ωm.

Thus, we use the knowledge of placement in the next
cycle to predict job progress over its duration, and use hy-
pothetical function to predict job performance in the fol-
lowing cycles. We also assume that the total allocation to
long-running workload in the following cycles will be the
same as in the next cycle. This assumption helps us balance
long-running work execution over time.

5 Experiments

In this section we present 5 experiments performed using
a simulator already used and validated in [20] and [2].

Operation Cost
Start VM 3.6s
Suspend VM Memory demand * 0.0353s
Resume VM Memory demand * 0.0333s
Live Migrate VM Memory demand * 0.0132s

Table 1. Cost of virtualization operations

In Experiment One, we illustrate using a simple example
how the hypothetical utility discussed in Section 4.4 guides
the algorithm. In Experiment Two, we simulate a 25 node
cluster to which a large number of identical jobs with iden-
tical deadline factors are submitted. In Experiment Three,
we modify Experiment Two by randomly selecting (from

three options) the deadline factor of each submitted job. In
Experiment Four, we modify Experiment Two by randomly
selecting (from three options) the execution time, maximum
speed, and deadline factor for each submitted job. We then
compare our algorithm against both FCFS and EDF. Finally,
in Experiment Five, we modify Experiment Two by adding
transactional workload to the system.

For the purpose of easily controlling the tightness of
SLA goals, we introduce a relative goal factor which is de-
fine as a ratio of the relative goal of the job to its execution
time at the maximum speed, τm−τstart

m

tbest
m

.
In all experiments, except for one (Experiment Four), the

cost of virtualization operations (start, suspend, resume, mi-
grate and move and resume) are considered. These costs
were modeled using performance data obtained on our test
systems running one of the most widely encountered vir-
tualization products for Intel-compatible systems. These
models show simple linear relationships between the VM
memory footprint and the cost of the operation, as it can be
seen in Table 1. Notice that the boot time observed for all
our virtual machines was constant.

5.1 Experiment One: Hypothetical utility

In this experiment we illustrate how hypothetical utility
(see Section 4.4) guides our algorithm to make placement
decisions. We use three jobs, J1, J2, and J3 with properties
shown in Table 2. We also use a single node with resource
capacities shown in Table 2. The memory characteristics of
the jobs and the node mean that the node can host only two
jobs at a time. J1 can completely consume the node’s CPU
capacity, whereas J2 and J3, at maximum speed, can each
consume only half of the node’s CPU capacity.

We execute two scenarios, S1 and S2,which differ in the
setting of the completion time factor for J2, which in turn
affects the completion time goal for J2, as illustrated in Ta-
ble 2. Note that J3 has a completion time factor of 1, which
means that in order to meet its goal it must be started im-
mediately after submission and that it must execute with the
maximum speed throughout its life.

To improve the clarity of mathematical calculations, we
also use an unrealistic control cycle T = 1s.

Figure 6 summarizes the scheduling decisions made by
our algorithm in S1 (top) and S2 (bottom). Observe that
the main difference between S1 and S2 occurs in control
cycle 2: in S1, J1 is placed (and runs at full speed), whereas
in S2, both J1 and J2 are placed with J1 running at half
speed and J2 at full speed. The remainder of this section
will describe the mechanisms that guide the algorithm to
make these decisions.

Figures 7 and 8 show cycle-by-cycle executions of the
algorithm for S1 and S2, respectively. Rectangular boxes
show the outstanding work, αm − α∗m, work done, α∗m,

Node Memory CPU speed
Capacity 2,000MB 1,000MHz

Job characteristics J1 J2 J3
Start time [s] 0 1 2
Maximum speed [MHz] 1,000 500 500
Memory requirement [MB] 750 750 750
Work [Mcycles] 4,000 2,000 4,000
Minimum execution time [s] 4 4 8
Scenario 1
Relative goal factor 5 4 1
Relative goal [s] 20 16 8
Completion time goal [s] 20 17 10
Scenario 2
Relative goal factor 5 3 1
Relative goal [s] 20 12 8
Completion time goal [s] 20 13 10

Table 2. Properties of Experiment One

value of hypothetical utility and corresponding CPU allo-
cation for each job and various considered placement al-
ternatives in subsequent control cycles. In most cycles in
S1, only one placement is considered as the algorithm effi-
ciently prunes the search space. Two alternative placements
are considered in cycles 2 and 3. In cycle 2, we consider a
placement, P1, that halves CPU allocation to J1 and starts
J2 and a placement, P2, that leaves J1 running at full speed
without starting J2. The same placement alternatives, P1
and P2, are considered in cycle 2 of S2. In S1, these two
placements have the same hypothetical utility of 0.7 for both
jobs. Since P1 and P2 have equal utilities, the algorithm
opts to not make any changes and selects P2. In S2, due to
the tighter completion time goal for J2, P2 has hypothetical
utilities of 0.7 and 0.6 for J1 and J2 respectively, while P1
results in hypothetical utilities of 0.65 for both J1 and J2.
Clearly, P1 is a better choice for S2.

The difference in hypothetical utilities of J2 in control
cycle 2 between the two scenarios can be explained by look-
ing at the maximum achievable utility of J2. If J2 is not
started in cycle 2, and hence is started in cycle 3 or later, its
earliest possible completion time is 19. In S1, this results
in maximum achievable utility of 0.69 (= (16 − 5)/16),
whereas in S2, it is only 0.58 (= (12− 5)/12).

5.2 Experiment Two: Baseline

In this experiment, we examine the basic correctness of
our algorithm by stressing it with a sequence of identical
jobs, i.e., jobs with the same profiles and SLA goals. When
jobs are identical, in the best scheduling strategy no place-
ment changes (suspend, resume, migrate) should happen.

This is the best possible behavior in this case, as no benefit
to job completion times (when looked on as a vector) would
be gained by interrupting the execution of a currently placed
job in order to place another job.

We consider a system of 25 nodes, each of which has
four processors with properties shown in Table 3. To the
system we submit 800 identical jobs with properties shown
in Table 3. Jobs are submitted to the system using an expo-
nential inter-arrival time distribution with an average inter-
arrival time of 260s. This arrival rate is sufficient to cause
queuing at some points during the experiment. The control
cycle length is 600 s.

Observe that each job’s maximum speed permits it to use
a single processor, and so four jobs could run at full speed
on a single node. However, the memory characteristics of
the system mean that only three jobs will fit on a node at
once. Consequently, no more than 75 jobs can run concur-
rently in the system. Each job, running at maximum speed,
takes 17,600s to complete. The relative goal factor for each
job is 2.7, resulting in a completion time goal of 47,520s
(2.7∗17, 600), which is measured from the submission time.

Nodes Memory CPU Speed
Capacity 16,000MB 4x 3,900MHz

Job characteristics Job
Maximum speed [MHz] 3,900 (1 CPU)
Memory requirement [MB] 4,320
Work [Mcycles] 68,640,000
Minimum execution time [s] 17,600
Relative goal factor 2.7
Relative goal [s] 47,520

Table 3. Properties of Experiment Two

The maximum achievable utility for a job described in
Table 3 is 0.63. This utility will be achieved for a job that is
started immediately upon submission and runs at full speed
for 17,600s. In that case, the job will complete 29,920s
before its completion time goal and thus will need a 37% of
the time between the submission time and the completion
time goal to complete. This utility is an upper bound for the
job, and will be decreased if queuing occurs.

Figure 9 shows the number of jobs in the system (already
submitted), and the number of jobs that are placed at each
moment in time. Note that the number of placed jobs never
exceeds 75. In Figure 10, we show the average hypothet-
ical utility over time as well as the actual utility achieved
by jobs at completion time. When no jobs are queued, the
hypothetical utility is 0.63 and it decreases as more jobs are
delayed in the queue. Notice that the the utility achieved by
jobs at completion time has the shape similar to that of the
hypothetical utility, but is shifted in time by about 18000

sec. This is expected as that the hypothetical utility is pre-
dicting the actual utility that jobs will obtain at the time they
complete, as thus is affected by job submissions, while the
actual utility is only observed at job completion. The algo-
rithm does not elect to suspend or migrate any jobs during
this experiment, hence we do not include a figure showing
the number of placement changes done by the algorithm.
Finally, Figure 11 shows the execution time for the algo-
rithm at each control cycle when running on a 3.2GHz Intel
Xeon node. It can be observed that when all submitted jobs
can be placed concurrently, the algorithm is able to take in-
ternal shortcuts, resulting in a significant reduction in exe-
cution time. In normal conditions, the algorithm produces a
placement for this system in about 1.5s.

5.3 Experiment Three: Variable deadlines

In this experiment, we modify the conditions of Experi-
ment Two (Section 5.2) by introducing three different rela-
tive goal factors. For each job, a relative goal factor is ran-
domly chosen from three different possibilities – 1.9 (with
a probability of 30%), 2.5 (with a probability of 40%), and
10 (with a probability of 40%). All jobs have the same exe-
cution characteristics as in Experiment Two.

Mixing jobs with different relative goal factors intro-
duces a new range of options for improvement for manag-
ing the workload. Jobs with more relaxed goals can be sus-
pended to permit newly submitted jobs with tighter goals to
be started in their place. However, the longer a job with a re-
laxed goal is suspended, the more difficult its goal becomes
to satisfy, making it comparable to a newly submitted job
with a tight goal. Section 4.4 discusses in detail how the
hypothetical utility guides the algorithm in the prediction of
the achievable satisfaction for a job even when that job is
currently not running.

Figure 12 shows the number of jobs in the system (al-
ready submitted), and the number of jobs that are placed
at each moment in time. As in Experiment Two, we can
never start more than 75 jobs simultaneously, owing to the
memory constraints. Figure 13 shows the average hypo-
thetical utility at each control cycle as well as the actual
utility achieved by jobs at completion time, and the max-
imum achievable utility for jobs with relative goal factors
1.9, 2.5 and 10. Remember that all jobs have identical char-
acteristics so their maximum achievable utility at the time
they are submitted is the same for all jobs with the same
relative goal factor. Note that the average hypothetical util-
ity is no longer less than or equal to 0.63, as was the case
in Experiment Two, as different deadline factors change the
maximum achievable utility. However, the average hypo-
thetical utility is still governed by the number of jobs in the
system, and (in particular) the number of submitted jobs that
are not currently placed (the job queue). The actual utility

obtained by jobs at completion time is close to the max-
imum achievable utilities calculated for each relative goal
factor. Our technique aims to equalize the utility at comple-
tion time for all jobs in the system, but in this scenario the
presence of three different relative goal factors prevents it
from achieving it – jobs with relative goal factor of 10 can
achieve higher utility than the jobs with relative goal factor
1.9 without interfering. But notice that when the hypothet-
ical utility decreases because some queueing is happening,
less resources are allocated to the jobs with relative goal
factor 10 in order to maintain as high as possible the utility
achieved by jobs with tighter relative goal factors at com-
pletion time. This fact can be observed short after times
40,000s and 100,000s – the algorithm decides to sacrifice
the utility of jobs with relative goal factor 10 to keep jobs
with relative goal factors 2.5 and 10 close to their maximum
achievable utility values. Even the number of jobs with re-
laxed relative goal factor completing is reduced at some of
these periods, allowing other jobs to be run instead.

Figure 14 shows that the algorithm elects to both sus-
pend and migrate jobs during the course of this experiment.
While the load on the system is the same in this experiment
and the previous one, in this case the multiple deadline fac-
tors mean that making placement changes after a job has
been started is a useful way to improve the utility of the
system (as can be seen by comparing Figures 10 and 13).

5.4 Experiment Four: Randomized jobs

In this section, we simulate the system exercised with
jobs of various profiles and SLA goals. The relative goal
factors for jobs are randomly varied among values 1.3, 2.5,
and 4 with probabilities 10%, 30%, and 60%, respectively.
The job minimum execution times and maximum speeds
are also randomly chosen from three possibilities – 9,000s
at 3,900MHz, 17,600s at 1,560MHz, and 600s at 2,340MHz
which are selected with probabilities 10%, 40%, and 50%,
respectively.

We compare our algorithm (referred to as APC) with
simple, effective, and well-known scheduling algorithms:
Earliest Deadline First (EDF) and First-Come, First-Served
(FCFS). Note that while EDF is a preemptive scheduling
algorithm, FCFS does not preempt jobs. In both cases, a
first-fit strategy was followed to place the jobs.

In this experiment, we use eight different inter-arrival
times, ranging in increments of 50s from 50s to 400s, and
continue to submit jobs until 800 have completed. The ex-
periment is repeated for the three mentioned algorithms:
our algorithm (APC), EDF, and FCFS.

Figure 15 shows the percentage of jobs that met their
completion time goal. There is no significant difference be-
tween the algorithms when inter-arrival times are greater
than 100s – this is expected, as the system is underloaded

in this configuration. However, with an inter-arrival period
of 100s or less, FCFS starts struggling to make even 50%
of the jobs meet their goals. EDF and APC have a signif-
icantly higher, and comparable, ratio of jobs that met their
goals. At a 50s inter-arrival time, the goal satisfaction rate
for FCFS has dropped to 40%, and the goal satisfaction rate
is actually higher for EDF than for APC.

Figure 16 shows the penalty for EDF’s higher on-time
completion rate at low inter-arrival times – EDF makes con-
siderably more placement changes than does the APC once
the inter-arrival time is 150s or less. Recall that FCFS is
non-preemptive, and so makes no changes. Note that in this
experiment, we did not consider the cost of the various types
of placement changes – this does not change the conclu-
sions, as our technique is making many fewer changes that
EDF under heavy load. This figure, coupled with Figure 15,
shows our algorithm’s ability to making few changes to the
system whilst still achieving a high on-time rate.

Figure 17 shows the distribution of distance to the dead-
line at job completion time for the three different relative
goal factors (1.3, 2.5 and 4.0). We show these results for
inter-arrival times of 400, 300, 200, 100, and 50 seconds,
in Figure 17 (a), (b), (c), (d), and (e), respectively. Points
with distance to the goal greater than zero, indicate jobs that
completed before their goal. Observe that for inter-arrival
times of 200s or greater, all three algorithms are capable of
making the majority of jobs meet their goal, and the points
for each algorithm are concentrated – for each algorithm
and each relative goal factor, the distance points form three
clusters, one for each job length.

However, as the inter-arrival time becomes 100s or less,
the algorithms produce different distributions of distance to
the goal. In particular, observe that for APC the data points
are closer together than for EDF (this is most easily ob-
served for the relative goal factor of 1.3). This illustrates
that APC outperforms EDF in equalizing the satisfaction of
all jobs in the system.

5.5 Experiment Five: Heterogeneity

The last of the experiments included here illustrates how
our integrated management technique is applicable to com-
bined management of transactional and long-running work-
loads.

We extend Experiment Two by adding transactional
workload to the system. The experiment will show how our
algorithm will allocate resources to both of the workloads
in a such a way that equalizes their satisfaction in terms
of distance between their actual response time and their re-
sponse time goal. To simplify the experiment, the transac-
tional workload is handled by a single application, and is
kept constant throughout. Note that the long-running work-
load is exactly the same as that presented in Section 5.2.

The memory demand of a single instance of the transac-
tional application was set to a sufficiently low value that one
instance could be placed on each node alongside the three
long-running instances that fit on each node in Experiment
Two. This was done to ensure that the two different types
of workload compete only for CPU resources.

Figure 18 shows the utility function used for the transac-
tional workload. It shows how much CPU power must be al-
located to this application for it to achieve a certain level of
utility. The utility of transactional workloads is calculated
as described in Section 3.3. A utility of zero means that
the actual response time exactly meets the response time
goal: lower utility values indicate that the response time is
greater than the goal (the requests are being serviced too
slowly), and higher utility values indicate that the response
time is less than the goal (the requests are being serviced
quickly). The maximum achievable utility is around 0.66, at
an approximate allocation of 130,000MHz. Allocating CPU
power in excess of 130,000MHz to this application will not
further increase its satisfaction: that is, it will not decrease
the response time. This is normal behavior for transactional
applications – the response time cannot be reduced to zero
by continually increasing the CPU power assigned.

The experiment starts with a system subject to the con-
stant transactional workload used throughout, in addition
to a small (insignificant) number of long-running jobs al-
ready placed. In this state, the transactional application gets
as much CPU power as it can consume, as there is little
or no contention with long-running jobs. As more long-
running jobs are submitted, following the workload prop-
erties described in Section 5.2, the hypothetical utility for
those long-running jobs starts to decrease as the system be-
comes increasingly crowded. As soon as the hypothetical
utility calculated for the long-running jobs becomes lower
that the utility observed for the transactional workload (that
is to say, no more resources can be allocated to the long-
running workload without taking CPU power away from
the transactional workload), our algorithm starts to reduce
the allocation for the transactional workload and give that
CPU power instead to the long-running workload, until the
utility each achieves is equalized. At the end of the exper-
iment the job submission rate is slightly decreased, what
results in more CPU power being returned to the transac-
tional workload again. Figure 19 shows the utility for both
of the workloads during the experiment. The utility for both
workloads is continuously adjusted by dynamically allocat-
ing resources over time. Figure 20 shows the particular al-
location at each moment of the experiment, as well as the
CPU demand that would make each workload achieve its
maximum utility. Notice how, as it was pursued, our tech-
nique makes an uneven distribution of resources in terms of
CPU capacity, but it results in an even level of utility across
the workloads.

6 Conclusions and future work

In this paper we present a technique that allows an inte-
grated management of heterogeneous workloads, composed
of transactional applications and long-running jobs, dynam-
ically placing the workloads in such a way that equalizes
their satisfaction. We use utility functions to make the sat-
isfaction and performance of both workloads comparable.
We formally describe the technique and then demonstrate
that it not only performs well in presence of heterogeneous
workloads but it also shows consistent performance in pres-
ence only of long-running jobs as compared to other well-
known scheduling algorithms. We carry on our experiments
with a simulator already used and validated against a sys-
tem prototype in [20, 2]. While here we mainly focus on
the description and evaluation of the management of long-
running jobs, transactional workloads were widely covered
in [2]. We expect to extend this technique in the future to
offer explicit support of the characteristics of parallel and
distributed long-running jobs.

Acknowledgments

This work is partially supported by the Ministry of Science and
Technology of Spain and the European Union (FEDER funds) un-
der contract TIN2007-60625 and by the BSC-IBM collaboration
agreement SoW Adaptive Systems.

References

[1] U. Balli and J. S. Anderson. Utility accrual real-time
scheduling under variable cost functions. IEEE Trans. Com-
put., 56(3):385–401, 2007. Member-Haisang Wu and Senior
Member-Binoy Ravindran and Member-E. Douglas Jensen.

[2] D. Carrera, M. Steinder, I. Whalley, J. Torres, and
E. Ayguadé. Utility-based placement of dynamic web appli-
cations with fairness goals. In 11th IEEE/IFIP Network Op-
erations and Management Symposium (NOMS 2008), Sal-
vador Bahia, Brazil, 2008.

[3] B. N. Chun and D. E. Culler. User-centric performance anal-
ysis of market-based cluster batch schedulers. In CCGRID
’02: Proceedings of the 2nd IEEE/ACM International Sym-
posium on Cluster Computing and the Grid, page 30, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

[4] G. Czajkowski, M. Wegiel, L. Daynes, K. Palacz, M. Jor-
dan, G. Skinner, and C. Bryce. Resource management for
clusters of virtual machines. pages 382–389, Cardiff, UK,
May 2005.

[5] D. M. David Vengerov, Lykomidis Mastroleon and N. Bam-
bos. Adaptive data-aware utility-based scheduling in
resource-constrained systems. Sun Technical Report TR-
2007-164, Sun Microsystems, April 2007.

[6] S. Feizabadi and G. Back. Automatic memory manage-
ment in utility accrual scheduling environments. In ISORC

’06: Proceedings of the Ninth IEEE International Sympo-
sium on Object and Component-Oriented Real-Time Dis-
tributed Computing (ISORC’06), pages 11–19, Washington,
DC, USA, 2006. IEEE Computer Society.

[7] I. Foster, T. Freeman, K. Keahey, D. Scheftner, B. So-
tomayor, , and X. Zhang. Virtual clusters for grid communi-
ties. Singapore, May 2006.

[8] E. D. Jensen, C. D. Locke, and H. Tokuda. A time-driven
scheduling model for real-time operating systems. In IEEE
Real-Time Systems Symposium, pages 112–122, 1985.

[9] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Stein-
der, M. Sviridenko, and A. Tantawi. Dynamic placement
for clustered web applications. In WWW Conference, Edin-
burgh, Scotland, May 2006.

[10] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Prob-
lems. 2004.

[11] T. Kimbrel, M. Steinder, M. Sviridenko, and A. Tantawi.
Dynamic application placement under service and memory
constraints. In International Workshop on Efficient and Ex-
perimental Algorithms, Santorini Island, Greece, May 2005.

[12] C. B. Lee and A. Snavely. On the user-scheduler dialogue:
Studies of user-provided runtime estimates and utility func-
tions. Int. J. High Perform. Comput. Appl., 20(4):495–506,
2006.

[13] C. B. Lee and A. E. Snavely. Precise and realistic utility
functions for user-centric performance analysis of sched-
ulers. In HPDC ’07: Proceedings of the 16th interna-
tional symposium on High performance distributed comput-
ing, pages 107–116, New York, NY, USA, 2007. ACM.

[14] B. Lin and P. Dinda. Vsched: Mixing batch and interac-
tive virtual machines using periodic real-time scheduling. In
Proc. ACM/IEEE Supercomputing, Seattle, WA, Nov. 2005.

[15] G. Pacifici, W. Segmuller, M. Spreitzer, M. Steinder,
A. Tantawi, and A. Youssef. Managing the response time
for multi-tiered web applications. Technical Report Tech.
Rep. RC 23651, IBM, 2005.

[16] G. Pacifici, W. Segmuller, M. Spreitzer, and A. Tantawi. Dy-
namic estimation of cpu demand of web traffic. In VALUE-
TOOLS, Pisa, Italy, Oct. 2006.

[17] G. Pacifici, M. Spreitzer, A. Tantawi, and A. Youssef. Per-
formance management for cluster-based web services. IEEE
Journal on Selected Areas in Communications, 23(12), Dec.
2005.

[18] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Sing-
hal, A. Merchant, and K. Salem. Adaptive control of virtu-
alized resources in utility computing environments. In Eu-
roSys ’07: Proceedings of the ACM SIGOPS/EuroSys Eu-
ropean Conference on Computer Systems 2007, pages 289–
302, New York, NY, USA, 2007. ACM.

[19] B. Ravindran, E. D. Jensen, and P. Li. On recent advances in
time/utility function real-time scheduling and resource man-
agement. In ISORC ’05: Proceedings of the Eighth IEEE In-
ternational Symposium on Object-Oriented Real-Time Dis-
tributed Computing (ISORC’05), pages 55–60, Washington,
DC, USA, 2005. IEEE Computer Society.

[20] M. Steinder, I. Whalley, D. Carrera, I. Gaweda, and
D. Chess. Server virtualization in autonomic management
of heterogeneous workloads. In 10th IEEE/IFIP Symposium
on Integrated Management (IM 2007), Munich, Germany,
2007.

[21] Sun Microsystems. Behavior of mixed workloads consoli-
dated using Solaris Resource Manager software. Technical
report, May 2005.

[22] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource over-
booking and application profiling in shared hosting plat-
forms. In Proc. Fifth Symposium on Operating Systems De-
sign and Implementation, Boston, MA, Dec. 2002.

[23] X. Wang, D. Lan, G. Wang, X. Fang, M. Ye, Y. Chen, and
Q. Wang. Appliance-based autonomic provisioning frame-
work for virtualized outsourcing data center. In ICAC ’07:
Proceedings of the Fourth International Conference on Au-
tonomic Computing, page 29, Washington, DC, USA, 2007.
IEEE Computer Society.

[24] Z. Wang, X. Zhu, P. Padala, and S. Singhal. Capacity and
performance overhead in dynamic resource allocation to vir-
tual containers. Integrated Network Management, 2007.
IM ’07. 10th IFIP/IEEE International Symposium on, pages
149–158, May 21 2007-Yearly 25 2007.

[25] H. Wu, B. Ravindran, E. D. Jensen, and P. Li. Energy-
efficient, utility accrual scheduling under resource con-
straints for mobile embedded systems. Trans. on Embedded
Computing Sys., 5(3):513–542, 2006.

[26] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif. On
the use of fuzzy modeling in virtualized data center manage-
ment. Autonomic Computing, 2007. ICAC ’07. Fourth Inter-
national Conference on, pages 25–25, 11-15 June 2007.

[27] X. Zhu, Z. Wang, and S. Singhal. Utility-driven workload
management using nested control design. American Control
Conference, 2006, pages 6 pp.–, 14-16 June 2006.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

Τstart
m

+1xT
+2xT

+3xT
+4xT

+5xT
+6xT

+7xT
+8xT

+9xT

5000 7500 10000 12500 15000 17500 20000 22500 25000

-1

-0.5

 0

 0.5

 1

Utility

Max allocation allowed (Mhz)

Current time

ωreq
m (Mhz)

Utility

Figure 1. Evolution of maximum achievable utility for long-running jobs

 0

 2000

 4000

 6000

 8000

 10000

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

A
llo

ca
tio

n
(M

hz
)

Target utility

Aggregated

Application 1

Application 2

A BC D

Figure 2. Allocation as a function of target utilities as used to estimate application utility given ag-
gregate CPU allocation (used to fill vectors V and W). Notice that the maximum achievable utility for
some jobs may be lower than the target utility (i.e. target utilities beyond point A for application 1,
and beyond point B for application 2). Cells of vectors W and V for application 1 that correspond to
target utilities beyond point A are filled with values 6000 and 0.14 (maximum achievable utility of 0.14
for allocation 6000Mhz). In the case of application 2 for target utilities beyond point B, vector cells
are filled with values 3000 and 0.44

Wk+1,job1

Wk+1,job2

Σm Wk,m

Σm Wk+1,m

Wk,job1

Wk,job2

ωg

ωjob2
~

ωjob1
~

Actual

allocation

Figure 3. Estimating ω̃m using ratiog

Wk+1,job1

Wk+1,job2

Σm Wk,m

Σm Wk+1,m

Wk,job1

Wk,job2

ωg

ωjob1
~

ωjob2
~

Using ratiog only

Using ratiog only

ωjob2
~

Using ratiog and

app_ratiom

ωjob1
~

Using ratiog and

app_ratiom

Actual

allocation

Figure 4. Estimating ω̃m using ratiog and app ratiom

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 100000 200000 300000 400000 500000 600000

A
llo

ca
tio

n
(M

hz
)

Current time (ms)

2 jobs with different time completion goals

Aggregated
Stopped job (relaxed deadline)

Running job (tight deadline)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 100000 200000 300000 400000 500000 600000

A
llo

ca
tio

n
(M

hz
)

Current time (ms)

2 jobs with identical time completion goals

Aggregated
Stopped job
Running job

Figure 5. Hypothetical utility: effect of resource competition on the required allocation to obtain
utility -0.1. Only one job can be placed (running) while the other is stopped. When both jobs have
identical characteristics and same deadline (upper chart), the hypothetical utility for both jobs can
be equalized over time by hypothetically allocating more CPU power to the job that is stopped to
compensate the time it is stopped, resulting in a constant aggregate allocation. When both jobs are
different (lower chart), their hypothetical utility still can be equalized but the aggregate allocation is
not constant

Figure 6. Experiment One: Summary

Figure 7. Experiment One: Scenario 1

Figure 8. Experiment One: Scenario 2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

#j
ob

s

Time (s)

Jobs in the system
Placed jobs

Figure 9. Experiment Two: Jobs in the system and jobs placed

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

U
til

ity

Time (s)

Avg hypothetical utility
Utility at completion time

Figure 10. Experiment Two: Average hypothetical utility over time and actual utility achieved at com-
pletion time

 0

 500

 1000

 1500

 2000

 2500

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

T
im

e
(m

s)

Time (s)

Execution time

Figure 11. Experiment Two: Algorithm execution time

 0

 20

 40

 60

 80

 100

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

#j
ob

s

Time (s)

Jobs in the system
Placed jobs

Figure 12. Experiment Three: jobs in the system and jobs placed

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

U
til

ity

Time (s)

Umax
 RGF
 1.9

Umax
 RGF
 2.5

Umax
 RGF
 10.0

Avg hypothetical utility

Figure 13. Experiment Three: average hypothetical utility over time and actual utility achieved at
completion time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

#j
ob

s

Time (s)

Suspend
Migrate

Figure 14. Experiment Three: total number of virtualization operations over time

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

400 350 300 250 200 150 100 50

Job interrarrival time (s)

%
 o

f j
ob

s

FCFS EDF Brain

Figure 15. Experiment Four: Percentage of jobs that met the deadline

0,00

200,00

400,00

600,00

800,00

1000,00

1200,00

1400,00

400 350 300 250 200 150 100 50

Job interrarrival time (s)

pl

ac
em

en
t c

ha
ng

es

FCFS EDF Brain

Figure 16. Experiment Four: Number of jobs migrated, suspended, and moved and resumed

-80000

-60000

-40000

-20000

 0

 20000

 40000

 60000

APC EDF

1.3X

FCFS APC EDF

2.5X

FCFS APC EDF

4.0X

FCFS

D
is

ta
nc

e
to

 th
e

de
ad

lin
e

(s
)

1.3X 2.5X 4.0X

(a) 400s

-80000

-60000

-40000

-20000

 0

 20000

 40000

 60000

APC EDF

1.3X

FCFS APC EDF

2.5X

FCFS APC EDF

4.0X

FCFS

D
is

ta
nc

e
to

 th
e

de
ad

lin
e

(s
)

1.3X 2.5X 4.0X

(b) 300s

-80000

-60000

-40000

-20000

 0

 20000

 40000

 60000

APC EDF

1.3X

FCFS APC EDF

2.5X

FCFS APC EDF

4.0X

FCFS

D
is

ta
nc

e
to

 th
e

de
ad

lin
e

(s
)

1.3X 2.5X 4.0X

(c) 200s

-80000

-60000

-40000

-20000

 0

 20000

 40000

 60000

APC EDF

1.3X

FCFS APC EDF

2.5X

FCFS APC EDF

4.0X

FCFS

D
is

ta
nc

e
to

 th
e

de
ad

lin
e

(s
)

1.3X 2.5X 4.0X

(d) 100s

-80000

-60000

-40000

-20000

 0

 20000

 40000

 60000

APC EDF

1.3X

FCFS APC EDF

2.5X

FCFS APC EDF

4.0X

FCFS

D
is

ta
nc

e
to

 th
e

de
ad

lin
e

(s
)

1.3X 2.5X 4.0X

(e) 50s

Figure 17. Experiment Four: distribution of distance to the goal at job completion time, for five
different mean interarrival times (50s to 400s)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0 20000 40000 60000 80000 100000 120000 140000

U
til

ity

Allocation (Mhz)

Figure 18. Experiment Five: utility function for the transactional workload (utility as a function of
allocated CPU power)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10000 20000 30000 40000 50000 60000 70000

U
til

ity

Time (s)

Long running
Transactional

Figure 19. Experiment Five: actual utility for the transactional workload and average calculated hy-
pothetical utility for the long-running workload

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 10000 20000 30000 40000 50000 60000 70000

D
em

an
d

(M
hz

)

Time (s)

Transactional demand

Long running demand

 Satisfied
 transactional demand

 Satisfied
 long running demand

Figure 20. Experiment Five: CPU power allocated to each workload and CPU demands to achieve
maximum utility

