
RC 24500 (W0802-069), 14 February 2008, Revision 1, 21 July 2008
Computer Science

IBM Research Report

Security and Performance Trade-Offs in I/O
Operations for Virtual Machine Monitors

Paul A. Karger and David R. Safford

IBM Research Division
Thomas J. Watson Research Center

P. O. Box 704
Yorktown Heights, NY 10598, USA

Research Division
IBM Almaden – Austin – Beijing – Delhi – Haifa – T.J. Watson – Tokyo – Zurich

Limited Distribution Notice: This report has been submitted for publication outside of IBM and will probably be
copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the
transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies
of the article (e.g., payment of royalties). Copies may requested from IBM T.J. Watson Research Center, 16-220, P.O. Box 218,
Yorktown Heights, NY 10598 USA (email to reports@us.ibm.com). Some reports are available on the internet at
http://domino.watson.ibm.com/library/CyberDig.nsf/home.

This paper has been submitted for publication in IEEE Security & Privacy magazine.

1

Security and Performance Trade-Offs in I/O Operations for
Virtual Machine Monitors
Paul A. Karger and David R. Safford

IBM Corporation, Thomas J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598

karger@watson.ibm.com safford@watson.ibm.com

ABSTRACT

VMMs have become an attractive way to improve system security by providing
strong isolation between different guest operating systems. However, the primary
reason to believe that a VMM can create stronger isolation between guest
operating systems than the operating system can create isolation between
processes is that the VMM can be much smaller and simpler than the operating
system. Madnick and Donovan [31] first proposed VMMs for security in 1973 by
pointing out that “… since virtual machine monitors tend to be shorter, simpler,
and easier to debug than conventional multiprogramming operating systems, …
the VMM is less error-prone.” One difficult problem in keeping a VMM small is
the complexity of modern I/O architectures and devices. Many current hypervisors
move the large, complex, and sometimes proprietary device drivers out of the
VMM, into one or more guest partitions which causes inherent tradeoffs in
complexity, security and performance. This paper discusses these tradeoffs.

1 Introduction
This paper covers two separate issues in virtualization of I/O. One involves the size and
complexity of the software needed to handle the I/O, which impacts the security of the system.
The other issue is the performance of the I/O, which impacts all hypervisors, regardless of their
security requirements. Resolving these issues is not simple, because they are tightly intertwined
in the implementation of I/O in the hypervisor. These two issues are particularly relevant to
modern hypervisors.

In 1970, when Virtual Machine Monitors (VMM) were first developed [33] for the IBM
System/360 Model 67 mainframe computer [6] the strategy for I/O emulation was quite
straightforward as all I/O is done by channel programs. A channel is essentially a special
purpose stored-program computer that is optimized for high-performance I/O, and a mainframe
typically has many of them. When a device driver wishes to perform I/O, it writes a channel
program that can perform many I/O operations, including conditional operations, all triggered by
a single privileged Start I/O instruction.

Virtualization of I/O is straightforward, as the Start I/O from a guest operating system will trap
to the hypervisor which can easily re-write the instructions to reference only the I/O devices and
memory locations authorized to the virtual machine. As this single virtualization mechanism

2

covers all channel attached devices, including disk and network, the hypervisor code can be quite
small and simple. Also, since each Start I/O trap can perform many I/O operations, the overhead
for these hypervisor traps is minimized. (The only security problem is with self-modifying
channel programs, because the addresses in question could not be relocated at Start I/O time,
since the addresses could change dynamically. Initially hypervisors banned self-modifying
channel programs, until PR/SM introduced I/O MMUs. Note that I/O channels have nothing to
do with covert or side channel security problems.)

This type of I/O virtualization using channel programs is still very relevant today, as it
contributes to IBM’s PR/SM product receiving an EAL5 Common Criteria evaluation [4], the
highest assurance level for any hypervisor product on the market today.

Problems developed in virtualizing I/O interfaces as soon as there was an attempt to build a
VMM for a computer that did not have channels. The UCLA PDP-11 Virtual Machine Monitor
[38] had to deal with UNIBUS devices that could be affected by almost any unprivileged CPU
instruction. Their solution was a special hardware device [43] to generate the necessary traps.
Furthermore, the vast array of devices available for the UNIBUS had little or no standardization
of interface. Thus, a simple re-writing of channel programs was no longer sufficient to make the
virtualization work.

With modern I/O architectures, the virtualization of I/O devices has become even more complex,
and modern hypervisors have responded to this complexity in a number of different ways.

2 Security Benefits of Hypervisors
It is a commonly held belief that hypervisors provide significant security benefits, because they
are much smaller and simpler than full operating systems. Madnick and Donovan [31] first
proposed VMMs for security in 1973 by pointing out that “… since virtual machine monitors
tend to be shorter, simpler, and easier to debug than conventional multiprogramming operating
systems, … the VMM is less error-prone.” The early hypervisors, such as CP/67-CMS [33] were
much smaller than operating systems of the day, and their successors, such as z/VM are similarly
still quite small and simple. However, the reality of this security benefit is nuanced, as modern
hypervisors, such as Xen [12] are actually much larger and more complex, because they include
full operating systems in their special privileged I/O partitions. Why these partitions must be
fully trusted is discussed in Section 4.1.

The feasibility of using some hypervisors for very high levels of security has been demonstrated
by the KVM/370 project [20] and DEC’s A1-secure VMM project [29]. Note that KVM/370
should not be confused with kvm, the Linux Virtual Machine Monitor [30].

3 Classes of Hypervisors
A key aspect of modern hypervisor design concerns three issues in providing virtualized access
to the current complex devices:

• Are devices drivers shared?
• Are the device drivers trusted?
• Where are the device drivers located?

3

Different hypervisors answer these questions differently, with inherent tradeoffs in complexity,
security, and performance. Pure isolation hypervisors, such as IBM’s PR/SM [18] on zSeries
mainframes and MILS [11] let each guest have its own dedicated I/O hardware and device
drivers, with no sharing of devices between guests. This comes with an obvious limitation of
scalability, and all of the security issues of any sharing are simply punted up to the guest level.
Other sharing hypervisors, such as Xen [12] and IBM’s PHYP [17, 44] on pSeries systems, place
the device drivers in a specially privileged partition, and this partition shares the devices with
other guests through the VMM. The use of a privileged I/O partition comes with inherent
performance and security issues. The tradeoffs actually have little to do with the content of the
drivers themselves. This paper discusses these inherent tradeoffs that come from where the
drivers are placed in the system.

3.1 Pure Isolation Hypervisors on a Server
The simplest and most secure case is a pure isolation hypervisor on a server system (Figure 1),
such as PR/SM on an IBM System z server, a MILS separation kernel [45], or a server version of
Xen with I/O MMU support on x86 hardware. In this case, no devices are directly shared, with
each guest partition having its own dedicated storage and network, and, as a server, there is no
physical display or keyboard to deal with.

In this case, the hypervisor can be very small and simple, the device drivers are located in the
guests, and the device drivers are not trusted. As there is no sharing of a given device, most of
the difficult timing, allocation, and traffic flow issues go away. The hypervisor still needs to be
high assurance, but it can be a simple, small code base. However, side channel attacks on
processor cache [15, 36] and/or branch predication units [9, 10] remain serious threats.

If pure isolation is all that is desired, then this is sufficient. A MILS (Multiple Independent
Levels of Security) separation kernel isolates each level of security and does not directly permit
sharing across levels. A Top Secret process or guest VM would not be allowed to read data from
an Unclassified process or guest VM. This is in contrast to a traditional multi-level security
(MLS) model, such as Bell and LaPadula [14], which would allow a Top Secret process read-only
access to the data belonging to an Unclassified process. If there needs to be sharing across
security levels in a pure isolation system, such as MILS, that can be accomplished by creating a
special Guard partition above the separation kernel that allows selective flows between levels.
However, such Guard partitions have several issues that are not present in MLS kernels, such as
Multics [46] or the DEC A1-secure VMM [29]:

• performance cost - extra context switching from guest to guest
• incompatibility – if two different MLS layers are built on top of a pure isolation kernel by

two different contractors, applications may not be compatible back and forth. The DoD
has suffered from this type of incompatibility many times in the past.

• difficulty of composite evaluation – MLS layer design and evaluation will need complete
information about exactly how the hypervisor is built. If the MLS layer contract is won
by a different contractor (who competes with the first), that information may not be
available. Worse still, if two different evaluators are used, the evaluation reports may be
proprietary and not available. See [27] for a discussion of how difficult composite

4

evaluation can be and how composite evaluation can completely miss serious security
vulnerabilities.

If sharing applications are needed, then it would be better to select a sharing hypervisor, rather
than trying to implement the sharing on top of an isolation hypervisor. See [25] for details on
why sharing hypervisors are important for many DoD multi-level security (MLS) applications.

3.2 Sharing Hypervisors on a Server
With a sharing hypervisor on a server, we fortunately don't have to deal with the display and
keyboard problems, but still do need to handle shared network and shared storage devices. For
the network device, if the guests encrypt all traffic, then the data cannot be directly leaked by the
device driver, but there are still covert timing channel [22] and traffic flow analysis channels [13,
26, 35]. Some of this could be blinded from the device driver by the guest and/or hypervisor
using continuous transmission protocols and slotted transmission allocations, but it is difficult for
the device driver to be completely blinded. Examples of how high-assurance hypervisors can
handle such covert channels can be found in the work of Schaefer, et. al. [39], Hu [22], and Karger
and Wray [28].

In a similar vein, the device driver for shared storage, even if all data is encrypted, must be
trusted, because it is difficult to blind it from covert timing and traffic flow analysis channels.
An untrusted storage driver can learn a lot from traffic flow analysis, as discussed in [42], and it
can also be subject to covert channel attacks [28].

Sharing drivers cannot be located in the guests, but must be located either in the hypervisor
(Figure 2), or in a privileged I/O partition (Figure 3). The main point here is that simply moving
the shared driver out of the hypervisor does not remove it from the TCB – instead, the TCB is
now expanded to include the driver and any parts of the privileged partition with control over the
driver.

In the existing implementations of privileged I/O partitions, such as Xen [12] or [17], the
privileged I/O partition includes an entire operating system. As a result, the size and complexity
of the code is comparable to the operating systems themselves. The Linux-based kvm [30] does
not use a privileged I/O partition. Instead it places the hypervisor in a full Linux kernel which
means that again the size and complexity is comparable to a guest operating system.

3.3 Sharing Hypervisors on a Client
By far, the most difficult situation is a client where all devices (display, keyboard, storage,
network) must be shared. All of the sharing issues from the server (shared storage, and network)
apply, but we must now also try to solve the display and keyboard problem. Fortunately,
keyboard drivers are small and reasonably simple, and it is easy for the hypervisor to virtualize
them safely, and to provide secure attention key at the same time. The trusted display device
driver is an extremely difficult, unsolved problem. Unless the display device can accept
encrypted data (such as with High-bandwidth Digital Content Protection (HDCP) [5]) displays,
the data can't be encrypted, the device drivers are often very large (2-3 MB), and typically are
proprietary, and thus very difficult/impossible to modify. Since the driver deals with unencrypted

5

data at multiple levels, and the driver is low assurance, there is high risk of direct leakage, let
alone timing channel attacks [37].

4 Special Privileged I/O Partitions
Modern VMMs, such as Xen [12] and PHYP [17] address the difficulties of virtualizing the huge
numbers of I/O drivers by creating special privileged partitions, called Dom0 in Xen and VIOS
in PHYP. The VMMs then run a full Linux or AIX system in the special partitions and redirect
all I/O requests from guest virtual machines to these special partitions which are granted the
privilege to directly control the real I/O devices. This approach has been very attractive to VMM
developers, because it allows them to support a very large number of possible I/O devices very
quickly, with little development work required, and greatly helps keep the VMM small. In
particular, the use of a special privileged I/O partition can significantly reduce the time to market
for a new hypervisor, and this can be critical in getting market acceptance of a product.

However, this choice of special privileged partitions for I/O drivers is not without costs. This
paper will examine the costs of the special partitions to see what the VMM designers have given
up in exchange for a smaller VMM and getting large numbers of I/O drivers running quickly and
easily. These costs come in two places – security and performance.

4.1 Security Implications of Special Privileged I/O Partitions
The first cost of special privileged I/O partitions is security. The problem is that the special
privileged I/O partition is effectively part of the VMM, and it contains an entire Linux operating
system. Now, rather than the VMM being smaller and simpler than the guest operating system,
it is actually larger and more complex, since it consists of the small VMM kernel plus an entire
operating system. In Xen, Dom0 runs an entire Linux system. While some may argue that the
I/O guests are de-privileged with respect to the VMM, running in real ring 1 (virtual ring 0)
while the VMM runs in real ring 0, the drivers still have to ensure secure sharing, particularly
with respect to issues such as side and covert channels, and thus must remain trusted.

From a theoretical perspective, this is a fundamental limitation of protection ring systems. In his
PhD thesis, Schroeder [40, p. 27] shows how a protection ring system, such as the one he and
Saltzer had earlier developed for Multics [41], cannot support mutually suspicious subsystems in
a single process. This is because all programs in a given protection ring must trust one another,
and the hierarchic nature of rings means that they cannot be used for mutual suspicion. A special
privileged I/O partition, such as Xen’s Dom0, is performing I/O on behalf of multiple different,
mutually suspicious guest VMs. Schroeder’s theoretical results show the fallacy here. Even
though the special privileged I/O partition is running in a less privileged protection ring, that
does nothing to guarantee that the mutually suspicious guests are protected from one another. If
the all I/O devices can each be dedicated to a single partition, then one could run a separate I/O
Partition for each guest and avoid the security problems, because separate partitions avoid the
hierarchic nature of protection rings. With an IOMMU [2, 23], one could assign the devices
directly to the guest partitions and also avoid the performance problems described below.
(IOMMUs were first proposed for Multics [16] and the first implementation was for the
Honeywell SCOMP [19].) However, some devices, most notably display devices, must
inherently be shared and therefore must deal with sensitive data from multiple guests. For those

6

cases, neither special privileged I/O partitions nor assigning directly to the guest partition will be
sufficient.

In principle, the special privilege I/O partition need not run a full operating systems, but only a
set of device drivers. In that case, however, the drivers could not simply be copied from an
existing operating system, such as Linux, but would need significant modifications. No current
hypervisor have tried this approach.

4.2 Performance Cost of Special Privileged I/O Partitions
The second cost of special privileged I/O partitions is performance. VMMs have always
performed best on compute-bound workloads and worst on I/O-bound workloads, because of the
cost of translating the I/O operations. Even on mainframes with I/O channels, the cost of
translating the channel programs is significant. However, the special privileged I/O partitions
introduce significant additional performance costs. In this section, we use the term context
switch to include both ring crossings and process switches. In most machines, ring crossings are
less expensive than process switches. However, that distinction serves only to complicate the
analysis for this paper.

With no VMM at all, an I/O operation requires a context switch from user mode to supervisor
mode to start the I/O operation, and later when the I/O interrupt occurs, a context switch from
supervisor mode to user mode. A traditional VMM doubles that cost, because there must be
context switches from user mode to the guest operating system and from the guest operating
system to the VMM. When you introduce the special I/O partitions, the number of context
switches significantly increases, as the VMM must send the I/O operations to the special I/O
domain which then must initiate the actual I/O operations. There can also be additional costs due
to either copying or mapping the data into the I/O partition.

In the following figures, the hypervisor is shown running in real ring 0, and the guest operating
system is shown running in virtual ring 0. There are multiple approaches to virtualizing
protection rings, and the concepts in this paper are the same, regardless of the approach chosen.
Intel and AMD have chosen to add an extra protection ring for the hypervisor [1, 7], essentially a
ring -1. That technique does not support self-virtualization (running a hypervisor in a partition
on top of a hypervisor). Alternatively, the technique of ring compression [21] could be used
which does support self-virtualization. It is important to note that the addition of hardware
virtualization support by Intel and AMD has no direct impact on I/O performance. In fact, as
will be seen in Figure 7, the software in Xen that uses hardware virtualization in Dom0 actually
makes the performance worse. In addition, Intel [23] and AMD [3] have added IOMMU support,
and Figure 6 and Figure 7 for the Xen I/O partition cases, assume the use of the IOMMU.

Figure 4 shows the context switches required for an asynchronous I/O operation initiated from
an application running in ring 3 on an operating system that is running directly on the hardware
without an underlying hypervisor. Each numbered step corresponds to a context switch shown in
the figure.

1. The application issues a system call to initiate an asynchronous I/O operation.
2. The operating system starts the I/O operation on the I/O device.

7

3. The operating system returns to the application, since this is asynchronous I/O.
4. Some time later, the I/O operation completes and sends an interrupt to the operating

system.
5. The operating system generates an interrupt to the application with the results of the

completed I/O operation.

Figure 5 shows the context switches for an asynchronous I/O operation when the operating
system is running above a conventional hypervisor in which the I/O drivers are in the hypervisor
itself. Such hypervisors include CP/67 [33], z/VM [8], and the DEC A1-secure VMM for the
VAX [29]. Each numbered step corresponds to a context switch shown in the figure.

1. The application issues a system call to initiate an asynchronous I/O operation.
2. The guest operating system starts the I/O operation. In a fully virtualized hypervisor,

the START IO instruction traps to the hypervisor. In a para-virtualized hypervisor,
the operating system issues an HCALL to the hypervisor.

3. The hypervisor initiates the I/O operation on the I/O device.
4. The hypervisor returns to the guest operating system, as this is an asynchronous I/O

request.
5. The guest operating system returns to the application program, as this is an

asynchronous I/O request.
6. Some time later, the I/O operation completes and sends an interrupt to the hypervisor.
7. The hypervisor generates a virtual interrupt to the guest operating system.
8. The guest operating system generates an interrupt to the application with the results

of the completed I/O operation.

Figure 6 shows the context switches required for an asynchronous I/O operation in which the
hypervisor I/O control is entirely done in a special privileged I/O partition in virtual ring 0 of that
partition. This is how Xen operates for paravirtualized domains. Each numbered step
corresponds to a context switch shown in the figure.

1. The application issues a system call to initiate an asynchronous I/O operation.
2. The guest operating system starts the I/O operation. In a fully virtualized hypervisor, the

START IO instruction traps to the hypervisor. In a para-virtualized hypervisor, the
operating system issues an HCALL to the hypervisor.

3. The hypervisor passes the I/O operation to the special privileged I/O partition.
4. The hypervisor returns to the guest operating system, as this is an asynchronous I/O

request.
5. The guest operating system returns to the application program, as this is an asynchronous

I/O request.
6. The operating system in the special privileged I/O partition uses the IOMMU to gain

access to the I/O device and start the I/O.
7. Some time later, the I/O operation completes and sends an interrupt to the hypervisor.
8. The hypervisor generates a virtual interrupt to the special privileged I/O partition

operating system.
9. The special privileged I/O partition operating system completes the I/O and makes an

HCALL to the hypervisor to wake up the guest operating system.

8

10. The hypervisor delivers the I/O completion interrupt to the guest operating system.
11. The guest operating system generates an interrupt to the application with the results of the

completed I/O operation.

Figure 7 shows how Dom0 in the Xen hypervisor [12] actually works for fully virtualized I/O.
Xen controls the I/O, not from virtual ring 0 of Dom0, but rather from virtual ring 3 (the user
ring) of Dom0. This introduces still more context switches. Each numbered step corresponds to
a context switch shown in the figure.

1. The application issues a system call to initiate an asynchronous I/O operation.
2. The guest operating system starts the I/O operation. In a fully virtualized hypervisor, the

START IO instruction traps to the hypervisor. In a para-virtualized hypervisor, the
operating system issues an HCALL to the hypervisor.

3. The hypervisor passes the I/O operation to Dom0.
4. The hypervisor returns to the guest operating system, as this is an asynchronous I/O

request.
5. The guest operating system returns to the application program, as this is an asynchronous

I/O request.
6. The operating system in Dom0 now starts the I/O virtualization software in virtual ring 3.
7. The I/O virtualization software now issues an asynchronous I/O request to the Dom0

operating system.
8. The Dom0 operating system uses the IOMMU to start the I/O device.
9. The Dom0 operating system returns to the virtual ring 3 I/O virtualization software, as

this is an asynchronous I/O request.
10. Some time later, the I/O operation completes and sends an interrupt to the hypervisor.
11. The hypervisor sends a virtual interrupt to the Dom0 operating system.
12. The Dom0 operating system generates a virtual interrupt to the virtualization software in

virtual ring 3.
13. The virtualization software in virtual ring 3 completes the I/O and issues a system call to

the Dom0 operating system to wake up the guest operating system..
14. The Dom0 operating system issues an HCALL to the hypervisor to wake up the guest

operating system.
15. The hypervisor delivers the I/O completion interrupt to the guest operating system.
16. The guest operating system generates an interrupt to the application with the results of the

completed I/O operation.

We can see that the Xen Dom0 approach requires roughly 3 times the number of context
switches of an operating system running directly on the hardware and roughly double the number
of context switches of a conventional hypervisor with I/O drivers in the hypervisor itself. These
extra context switches can explain some of the performance issues seen by Menon, et. al. [32].

9

4.3 Analyzing the Performance Implications
The previous section predicted the performance implications of special privileged I/O partitions,
by counting context switches. Several other papers have measured actual performance tradeoffs,
consistent with these counts.

Nakajima and Mallik [34] discuss the performance tradeoffs between software, hardware, and
para-virtualization in the Intel environment. They measure several aspects of file I/O
performance on KVM, and on Xen with paravirtualization with the drivers in DOM0. They did
not measure Xen's worst case of full virtualization, in which the DOM0 application level
provides device emulation. Even with the milder para-virtualization case, Xen's I/O performance
was two to four times slower than KVM's, which fits well with our analysis.

Menon, et. al. [32] measure the DOM0 performance for TCP/IP, and show a throughput cap
roughly one third that of a native Linux kernel on the same hardware. In their analysis, the
dominant issue was TLB misses and flushes, with context switch overhead second.

Zhang, et. al. [47] also discuss the performance impact of DOM0 based TCP/IP, showing a full
order of magnitude reduction in throughput of the para-virtualized Xen/DOM0 case compared to
native Linux. Their measurements indicated that the performance problem was due mainly to the
overhead of multiple hypercalls, and second to the number of TLB flushes associated with the
context switches.

These studies show anywhere from a factor of 2 to 10 overhead in I/O for the para-virtualized
DOM0 case compared to native, for file and network operations, which is consistent with our
predictions. Interestingly none of the studies measured the worst case of full virtualization in
DOM0.

It is important to note that processors with address space tags in the TLBs can reduce some of the
performance costs of the context switches. Karger [24] includes a much more in-depth study of
reducing the cost of context switching in high-security systems. He examines not just TLB
tagging, but also register save/restore requirements. His measurements were based on the design
of DEC’s A1-secure virtual machine monitor [29], but the hypervisor is not actually mentioned in
[24], as it was still an unannounced product.

5 Conclusions
We have discussed the difficulty in virtualization of modern complex I/O architectures. Different
hypervisors have approached this complex I/O virtualization in different ways, with differing
tradeoffs in implementation complexity, security, and performance. Depending on the goals and
requirements for a given system, particularly with respect to the type of devices present, and
whether or not they need to be shared, different hypervisors will be more or less suitable. The
most difficult case is when devices, particularly a display adapter need to be shared. In this case,
the choice of a separate I/O partition provides significant ease of implementation, at the cost of
large TCB and poorer performance due to a doubling of context shifts.

10

6 Acknowledgements
We must thank David Toll, J. R. Rao, and Michael Steiner for their comments and suggestions
on the paper, and particularly Stefan Berger for his assistance on Figure 6 and Figure 7.

Figure 1. Pure Isolation Hypervisor with device drivers in Guest partitions

Device Driver

Operating system

Application

Virtual Machine Guest

Device Driver

Operating system

Application

Virtual Machine Guest

Hypervisor

I/O
Device

I/O
Device

11

Figure 2. Sharing Hypervisor with Device Drivers in the Hypervisor

Operating system

Application

Virtual Machine Guest

Operating system

Application

Virtual Machine Guest

Hypervisor

Device driver

Virtual disk Virtual disk

I/O
Device

12

Figure 3. Sharing Hypervisor with Device drivers in Privileged I/O Partition

I/O Partition

Operating system

Application

Virtual Machine Guest

Hypervisor

Device Driver

Operating system

Sharing
Application

Disk sharing

I/O Device

13

OS Running on Bare Hardware

Ring 0

Ring 1

Ring 2

Ring 3

2

1

3

4

5

OS Running on Bare Hardware

I/O Device

Application

Device Driver

Figure 4. . I/O in an Operating System without Virtualization

14

Virtual Ring 3

Virtual Ring 1

Virtual Ring 2

Virtual Ring 0
Virtual Device Driver

Virtual Ring 3

Real Ring 0

1

2

4

5

3

Guest Partition

6

7

8

Guest OS Running on
Hypervisor with I/O in the
Hypervisor

Hypervisor

I/O Device

Virtual Ring 1

Virtual Ring 2

Application

Figure 5. . Guest OS Running on a Hypervisor with I/O in the Hypervisor

15

Virtual Ring 3

Virtual Ring 1

Virtual Ring 2

Virtual Ring 0
Virtual Device Driver

Virtual Ring 3
Application

Virtual Ring 1

Virtual Ring 2

Real Ring 0

Virtual Ring 3

Virtual Ring 1

Virtual Ring 0
Virtual Device Driver

Virtual Ring 3

Virtual Ring 1

Virtual Ring 2

1

2

3 4

5 6

8

7

9

10

11

Guest Partition

Special I/O Partition
with I/O in virtual ring 0

Hypervisor

I/O Device

Figure 6. . Special I/O Partition with I/O drivers in virtual ring 0

16

Virtual Ring 1

Virtual Ring 2

Virtual Ring 0

Virtual Ring 3
Application

Virtual Ring 1

Virtual Ring 2

Real Ring 0

Virtual Ring 3

Virtual Ring 1

Virtual Ring 2

Virtual Ring 0

Virtual Ring 3

Virtual Ring 1

Virtual Ring 2

1

2

3 4

5

6
8

7

9

10

11

12

13

Guest Partition
Xen Dom0 with I/O in

Virtual Ring 3

14

15

16

Hypervisor

I/O Device

Figure 7. Xen Dom0 with I/O controlled from virtual ring 3

17

7 References

1. AMD64 Virtualization Codenamed “Pacifica” Technology: Secure Virtual Machine
Architecture Reference Manual, Publication No. 33047, Revision 3.01, May 2005, Advanced
Micro Devices: Sunnyvale, CA. URL: http://www.amd.com/us-
en/assets/content_type/white_papers_and_tech_docs/33047.pdf

2. AMD I/O Virtualization Technology (IOMMU) Specification, Publication No. 34434, 3
February 2006, Advanced Micro Devices. URL: http://www.amd.com/us-
en/assets/content_type/white_papers_and_tech_docs/34434.pdf

3. AMD I/O Virtualization Technology (IOMMU) Specification, Publication # 34434, Revision
1.20, February 2007, Advanced Micro Devices. URL: http://www.amd.com/us-
en/assets/content_type/white_papers_and_tech_docs/34434.pdf

4. Certification Report for PR/SM LPAR for the IBM System z9 Enterprise Class and the IBM
System z9 Business Class, BSI-DSZ-CC-0378-2006, 4 September 2006, Bundesamt für
Sicherheit in der Informationstechnik: Bonn, Germany. URL:
http://www.commoncriteriaportal.org/files/epfiles/0378a.pdf

5. High-bandwidth Digital Content Protection System, Revision 1.3, 21 December 2006, Digital
Content Protection LLC: Beaverton, OR. URL: http://www.digital-
cp.com/files/static_page_files/8006F925-129D-4C12-
C87899B5A76EF5C3/HDCP_Specification%20Rev1_3.pdf

6. IBM System/360 Model 67 Functional Characteristics, A27-2719-0, 1967, IBM Corporation:
Kingston, NY. URL: http://www.bitsavers.org/pdf/ibm/360/funcChar/A27-2719-0_360-
67_funcChar.pdf

7. Intel Virtualization Technology Specification for the IA-32 Intel Architecture, C97063-002,
April 2005, Intel Corporation.

8. z/VM: CP Programming Services, SC24-6084-02, May 2006, IBM Corporation:
Poughkeepsie, NY. URL: http://publibz.boulder.ibm.com/epubs/pdf/hcse5b11.pdf

9. Aciiçmez, O., Ç.K. Koç, and J.-P. Seifert. On the Power of Simple Branch Prediction
Analysis. in Proceedings of the 2nd ACM Symposium on Information, Computer and
Communications Security. 20-22 March 2007, Singapore: ACM. p. 312-320. URL:
http://islab.oregonstate.edu/koc/papers/c40.pdf

10. Aciiçmez, O., Ç.K. Koç, and J.-P. Seifert. Predicting Secret Keys Via Branch Prediction. in
Topics in Cryptology - CT-RSA 2007: The Cryptographers' Track at the RSA Conference.
5-9 February 2007, San Francisco, CA:Lecture Notes in Computer Science Vol. 4377. Springer.
p. 225-242. URL: http://security.ece.orst.edu/koc/papers/c39.pdf

18

11. Alves-Foss, J., C. Taylor, and P. Oman. A Multi-layered Approach to Security in High
Assurance Systems. in Proceedings of the 37th Hawaii International Conference on System
Sciences. 5-8 January 2004, Waikoloa, HI: IEEE Computer Society. p. 90302.2b. URL:
http://csdl.computer.org/comp/proceedings/hicss/2004/2056/09/205690302b.pdf

12. Barham, P., B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the Art of Virtualization. in Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles (SOSP). 19-22 October 2003, Bolton Landing,
NY: ACM Press. URL: http://www.cl.cam.ac.uk/Research/SRG/netos/papers/2003-xensosp.pdf

13. Bauer, K., D. McCoy, D. Grunwald, T. Kohno, and D. Sicker. Low-Resource Routing
Attacks Against Tor. in Proceedings of the 2007 ACM Workshop on Privacy in Electronic
Society. 29 October 2007, Alexandria, VA: ACM. p. 11-20. URL:
http://systems.cs.colorado.edu/%7Ebauerk/papers/wpes25-bauer.pdf

14. Bell, D.E. and L.J. LaPadula, Computer Security Model: Unified Exposition and Multics
Interpretation, ESD-TR-75-306, March 1976, The MITRE Corporation, Bedford, MA: HQ
Electronic Systems Division, Hanscom AFB, MA. URL:
http://csrc.nist.gov/publications/history/bell76.pdf

15. Bernstein, D.J., Cache-timing attacks on AES, 2005, University of Illinois at Chicago:
Chicago, IL. URL: http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

16. Biba, K.J., S.R. Ames, E.L. Burke, P.A. Karger, W.R. Price, R.R. Schell, and W.L. Schiller,
A Preliminary Specification of a Multics Security Kernel, WP-20119, April 1975, The MITRE
Corporation: Bedford, MA.

17. Blank, A., P. Keifer, C. Sallave Jr., G. Valencia, J. Wain, and A.M. Warda, Advanced
POWER Virtualization on IBM System p5, SG24-7940-01, December 2005, IBM Corporation:
Austin, TX. URL: http://www.redbooks.ibm.com/redbooks/pdfs/sg247940.pdf

18. Borden, T.L., J.P. Hennessy, and J.W. Rymarczyk, Multiple Operating Systems on One
Processor Complex. IBM Systems Journal, 1989. 28(1): p. 104-123. URL:
http://www.research.ibm.com/journal/sj/281/ibmsj2801H.pdf

19. Broadbridge, R. and J. Mekota, Secure Communications Processor Specification, ESD-TR-
76-351, Vol. II, June 1976, Honeywell Information Systems, Inc., McLean, VA: HQ Electronic
Systems Division, Hanscom AFB, MA.

20. Gold, B.D., R.R. Linde, R.J. Peeler, M. Schaefer, J.F. Scheid, and P.D. Ward. A Security
Retrofit of VM/370. in AFIPS Conference Proceedings, Volume 48, 1979 National Computer
Conference. 1979, Montvale, NJ: AFIPS Press. p. 335-344.

21. Hall, J.S. and P.T. Robinson. Virtualizing the VAX Architecture. in 18th International
Symposium on Computer Architecture. May 1991, Toronto, ON, Canada: published in

19

Computer Architecture News, Vol. 19, No. 3. p. 380-389. URL:
http://doi.acm.org/10.1145/115952.115990

22. Hu, W.-M. Reducing Timing Channels with Fuzzy Time. in Proceedings of the 1991 IEEE
Symposium on Research in Security and Privacy. 20-22 May 1991, Oakland, CA: IEEE
Computer Society. p. 8-20.

23. Humphreys, J. and T. Grieser, Mainstreaming Server Virtualization: The Intel Approach,
June 2006, IDC: Framingham, MA. URL:
http://www.intel.com/business/technologies/idc_virtualization_wp.pdf

24. Karger, P.A., Improving Security and Performance for Capability Systems, Computer
Laboratory Technical Report No. 149, October 1988, University of Cambridge: Cambridge,
England. URL:
http://domino.research.ibm.com/comm/research_people.nsf/pages/karger.pubs.html/$FILE/trthes
is.pdf

25. Karger, P.A. Multi-Level Security Requirements for Hypervisors. in 21st Annual Computer
Security Applications Conference. 2005, Tucson, AZ: IEEE Computer Society. p. 240-248.
URL: http://www.acsa-admin.org/2005/papers/154.pdf

26. Karger, P.A., Non-Discretionary Access Control for Decentralized Computing Systems,
MIT/LCS/TR-179, May 1977, Laboratory for Computer Science, Massachusetts Institute of
Technology: Cambridge, MA. URL: http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-
TR-179.pdf

27. Karger, P.A. and H. Kurth. Increased Information Flow Needs for High-Assurance
Composite Evaluations. in Second IEEE International Information Assurance Workshop. 8-
9 April 2004, Charlotte, NC: IEEE Computer Society. p. 129-140.

28. Karger, P.A. and J.C. Wray. Storage Channels in Disk Arm Optimization. in Proceedings of
the 1991 IEEE Computer Society Symposium on Research in Security and Privacy. 20-22
May 1991, Oakland, CA: p. 52-61.

29. Karger, P.A., M.E. Zurko, D.W. Bonin, A.H. Mason, and C.E. Kahn, A Retrospective on the
VAX VMM Security Kernel. IEEE Transactions on Software Engineering, November 1991.
17(11): p. 1147-1165.

30. Kivity, A., Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the Linux Virtual Machine
Monitor. in Proceedings of the Linux Symposium. 27-30 June 2007, Ottawa, ON, Canada: Vol.
1. p. 225-230. URL: http://ols.108.redhat.com/2007/Reprints/nakajima-Reprint.pdf

31. Madnick, S.E. and J.J. Donovan. Application and Analysis of the Virtual Machine Approach
to Information System Security. in Proceedings of the ACM SIGARCH-SIGOPS Workshop
on Virtual Computer Systems. 26-27 March 1973, Cambridge, MA: Association for
Computing Machinery. p. 210-224. URL: http://portal.acm.org/citation.cfm?id=803961

20

32. Menon, A., J.R. Santos, Y. Turner, G.J. Janakiraman, and W. Zwaenepoel. Diagnosing
Performance Overheads in the Xen Virtual Machine Environment. in First ACM/USENIX
Conference on Virtual Execution Environments. 2005, Chicago, IL: p. 13-23. URL:
http://www.hpl.hp.com/techreports/2005/HPL-2005-80.pdf

33. Meyer, R.A. and L.H. Seawright, A Virtual Machine Time-Sharing System. IBM Systems
Journal, 1970. 9(3): p. 199-218. URL:
http://www.research.ibm.com/journal/sj/093/ibmsj0903D.pdf

34. Nakajima, J. and A.K. Mallick. Hybrid-Virtualization - Enhanced Virtualization for Linux.
in Proceedings of the Linux Symposium. 27-30 June 2007, Ottawa, ON, Canada: Vol. 2. p. 87-
96. URL: http://ols.108.redhat.com/2007/Reprints/nakajima-Reprint.pdf

35. Padlipsky, M.A., D.W. Snow, and P.A. Karger, Limitations of End-to-End Encryption in
Secure Computer Networks, ESD-TR-78-158, August 1978, The MITRE Corporation: Bedford
MA, HQ Electronic Systems Division: Hanscom AFB, MA. URL: http://stinet.dtic.mil/cgi-
bin/GetTRDoc?AD=A059221&Location=U2&doc=GetTRDoc.pdf

36. Percival, C., Cache Missing for Fun and Profit, 2005. URL:
http://www.daemonology.net/papers/htt.pdf

37. Picciotto, J. and J. Epstein. A Comparison of Trusted X Security Policies, Architectures, and
Interoperability. in Proceedings of the Eighth Annual Computer Security Applications
Conference. 30 November - 4 December 1992, San Antonio, TX: IEEE Computer Society. p.
142-152.

38. Popek, G.J. and C.S. Kline, The PDP-11 Virtual Machine Architecture: A Case Study.
Operating Systems Review, 19-21 November 1975. 9(5): p. 97-105. Proceedings of the Fifth
ACM Symposium on Operating Systems Principles, Austin, TX.

39. Schaefer, M., B. Gold, R. Linde, and J. Scheid. Program Confinement in KVM/370. in
Proceedings of the 1977 ACM Annual Conference. 16-19 October 1977, Seattle, WA: p. 404-
410.

40. Schroeder, M.D., Cooperation of Mutually Suspicious Subsystems in a Computer Utility, Ph.
D. Thesis, Department of Electrical Engineering, MAC TR-104, September 1972, Massachusetts
Institute of Technology: Cambridge, MA. URL:
http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-104.pdf

41. Schroeder, M.D. and J.H. Saltzer, A Hardware Architecture for Implementing Protection
Rings. Comm. ACM, March 1972. 15(3): p. 157-170.

42. Smith, S.W. and D. Safford, Practical Server Privacy with Secure Coprocessors. IBM
Systems Journal, 2001. 40(3): p. 683-695. URL:
http://www.research.ibm.com/journal/sj/403/tocpdf.html

21

43. Vahey, M.D., A Virtualizer Efficiency Device, M.S. Thesis in Department of Computer
Science 1975, University of California: Los Angeles, CA.

44. Valdez, E., R. Sailer, and R. Perez. Retrofitting the IBM POWER Hypervisor to Support
Mandatory Access Control. in Proceedings of the 23rd Annual Computer Security
Applications Conference (ACSAC). 10-14 December 2007, Miami Beach, FL: IEEE Computer
Society. p. 221-231. URL: http://acsac.org/2007/papers/153.pdf

45. Vanfleet, W.M., J.A. Luke, R.W. Beckwith, C. Taylor, B. Calloni, and G. Uchenick, MILS:
Architecture for High-Assurance Embedded Computing. Crosstalk: The Journal of Defense
Software Engineering, August 2005. 18(8): p. 12-16. URL:
http://www.stsc.hill.af.mil/crosstalk/2005/08/0508Vanfleet_etal.pdf

46. Whitmore, J., A. Bensoussan, P. Green, D. Hunt, A. Kobziar, and J. Stern, Design for
Multics Security Enhancements, ESD-TR-74-176, December 1973, Honeywell Information
Systems, Inc., HQ Electronic Systems Division: Hanscom AFB, MA. URL:
http://csrc.nist.gov/publications/history/whit74.pdf

47. Zhang, X., S. McIntosh, P. Rohatgi, and J.L. Griffin. XenSocket: A High-Throughput
Interdomain Transport for Virtual Machines. in ACM/IFIP/USENIX 8th International
Middleware Conference. 26-30 November 2007, Newport Beach, CA:Lecture Notes in
Computer Science Vol. 4834. Springer. p. 184-203. URL:
http://www.ece.cmu.edu/~griffin2/papers/2007-11-28-middleware-xensocket-a-high-throughput-
interdomain-transport-for-virtual-machines.pdf

