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ABSTRACT  
 

VMMs have become an attractive way to improve system security by providing 
strong isolation between different guest operating systems.  However, the primary 
reason to believe that a VMM can create stronger isolation between guest 
operating systems than the operating system can create isolation between 
processes is that the VMM can be much smaller and simpler than the operating 
system.  Madnick and Donovan [31] first proposed VMMs for security in 1973 by 
pointing out that “… since virtual machine monitors tend to be shorter, simpler, 
and easier to debug than conventional multiprogramming operating systems, … 
the VMM is less error-prone.” One difficult problem in keeping a VMM small is 
the complexity of modern I/O architectures and devices. Many current hypervisors 
move the large, complex, and sometimes proprietary device drivers out of the 
VMM, into one or more guest partitions which causes inherent tradeoffs in 
complexity, security and performance. This paper discusses these tradeoffs. 
 

1 Introduction 
This paper covers two separate issues in virtualization of I/O.  One involves the size and 
complexity of the software needed to handle the I/O, which impacts the security of the system.  
The other issue is the performance of the I/O, which impacts all hypervisors, regardless of their 
security requirements.  Resolving these issues is not simple, because they are tightly intertwined 
in the implementation of I/O in the hypervisor. These two issues are particularly relevant to 
modern hypervisors. 
 
In 1970, when Virtual Machine Monitors (VMM) were first developed [33] for the IBM 
System/360 Model 67 mainframe computer [6] the strategy for I/O emulation was quite 
straightforward as all I/O is done by channel programs.  A channel is essentially a special 
purpose stored-program computer that is optimized for high-performance I/O, and a mainframe 
typically has many of them.  When a device driver wishes to perform I/O, it writes a channel 
program that can perform many I/O operations, including conditional operations, all triggered by 
a single privileged Start I/O instruction.   
 
Virtualization of I/O is straightforward, as the Start I/O from a guest operating system will trap 
to the hypervisor which can easily re-write the instructions to reference only the I/O devices and 
memory locations authorized to the virtual machine. As this single virtualization mechanism 
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covers all channel attached devices, including disk and network, the hypervisor code can be quite 
small and simple. Also, since each Start I/O trap can perform many I/O operations, the overhead 
for these hypervisor traps is minimized. (The only security problem is with self-modifying 
channel programs, because the addresses in question could not be relocated at Start I/O time, 
since the addresses could change dynamically.  Initially hypervisors banned self-modifying 
channel programs, until PR/SM introduced I/O MMUs.  Note that I/O channels have nothing to 
do with covert or side channel security problems.) 
 
This type of I/O virtualization using channel programs is still very relevant today, as it 
contributes to IBM’s PR/SM product receiving an EAL5 Common Criteria evaluation [4], the 
highest assurance level for any hypervisor product on the market today. 
 
Problems developed in virtualizing I/O interfaces as soon as there was an attempt to build a 
VMM for a computer that did not have channels.  The UCLA PDP-11 Virtual Machine Monitor 
[38] had to deal with UNIBUS devices that could be affected by almost any unprivileged CPU 
instruction.  Their solution was a special hardware device [43] to generate the necessary traps.   
Furthermore, the vast array of devices available for the UNIBUS had little or no standardization 
of interface.  Thus, a simple re-writing of channel programs was no longer sufficient to make the 
virtualization work.  
 
With modern I/O architectures, the virtualization of I/O devices has become even more complex, 
and modern hypervisors have responded to this complexity in a number of different ways. 

2 Security Benefits of Hypervisors 
It is a commonly held belief that hypervisors provide significant security benefits, because they 
are much smaller and simpler than full operating systems.  Madnick and Donovan [31] first 
proposed VMMs for security in 1973 by pointing out that “… since virtual machine monitors 
tend to be shorter, simpler, and easier to debug than conventional multiprogramming operating 
systems, … the VMM is less error-prone.”  The early hypervisors, such as CP/67-CMS [33] were 
much smaller than operating systems of the day, and their successors, such as z/VM are similarly 
still quite small and simple.  However, the reality of this security benefit is nuanced, as modern 
hypervisors, such as Xen [12] are actually much larger and more complex, because they include 
full operating systems in their special privileged I/O partitions.  Why these partitions must be 
fully trusted is discussed in Section  4.1.   
 
The feasibility of using some hypervisors for very high levels of security has been demonstrated 
by the KVM/370 project [20] and DEC’s A1-secure VMM project [29].  Note that KVM/370 
should not be confused with kvm, the Linux Virtual Machine Monitor [30]. 

3 Classes of Hypervisors 
A key aspect of modern hypervisor design concerns three issues in providing virtualized access 
to the current complex devices: 

• Are devices drivers shared? 
• Are the device drivers trusted? 
• Where are the device drivers located? 
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Different hypervisors answer these questions differently, with inherent tradeoffs in complexity, 
security, and performance.  Pure isolation hypervisors, such as IBM’s PR/SM [18] on zSeries 
mainframes and MILS [11] let each guest have its own dedicated I/O hardware and device 
drivers, with no sharing of devices between guests. This comes with an obvious limitation of 
scalability, and all of the security issues of any sharing are simply punted up to the guest level. 
Other sharing hypervisors, such as Xen [12] and IBM’s PHYP [17, 44] on pSeries systems, place 
the device drivers in a specially privileged partition, and this partition shares the devices with 
other guests through the VMM. The use of a privileged I/O partition comes with inherent 
performance and security issues.  The tradeoffs actually have little to do with the content of the 
drivers themselves.  This paper discusses these inherent tradeoffs that come from where the 
drivers are placed in the system. 

3.1 Pure Isolation Hypervisors on a Server 
The simplest and most secure case is a pure isolation hypervisor on a server system (Figure 1), 
such as PR/SM on an IBM System z server, a MILS separation kernel [45], or a server version of 
Xen with I/O MMU support on x86 hardware. In this case, no devices are directly shared, with 
each guest partition having its own dedicated storage and network, and, as a server, there is no 
physical display or keyboard to deal with.  
 
In this case, the hypervisor can be very small and simple, the device drivers are located in the 
guests, and the device drivers are not trusted. As there is no sharing of a given device, most of 
the difficult timing, allocation, and traffic flow issues go away.  The hypervisor still needs to be 
high assurance, but it can be a simple, small code base.  However, side channel attacks on 
processor cache [15, 36] and/or branch predication units [9, 10] remain serious threats. 
 
If pure isolation is all that is desired, then this is sufficient. A MILS (Multiple Independent 
Levels of Security) separation kernel isolates each level of security and does not directly permit 
sharing across levels.  A Top Secret process or guest VM would not be allowed to read data from 
an Unclassified process or guest VM.  This is in contrast to a traditional multi-level security 
(MLS) model, such as Bell and LaPadula [14], which would allow a Top Secret process read-only 
access to the data belonging to an Unclassified process.  If there needs to be sharing across 
security levels in a pure isolation system, such as MILS, that can be accomplished by creating a 
special Guard partition above the separation kernel that allows selective flows between levels.  
However, such Guard partitions have several issues that are not present in MLS kernels, such as 
Multics [46] or the DEC A1-secure VMM [29]: 

• performance cost  -  extra context switching from guest to guest 
• incompatibility – if two different MLS layers are built on top of a pure isolation kernel by 

two different contractors, applications may not be compatible back and forth.  The DoD 
has suffered from this type of incompatibility many times in the past.   

• difficulty of composite evaluation – MLS layer design and evaluation will need complete 
information about exactly how the hypervisor is built.   If the MLS layer contract is won 
by a different contractor (who competes with the first), that information may not be 
available.   Worse still, if two different evaluators are used, the evaluation reports may be 
proprietary and not available.   See [27] for a discussion of how difficult composite 
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evaluation can be and how composite evaluation can completely miss serious security 
vulnerabilities. 

 
If sharing applications are needed, then it would be better to select a sharing hypervisor, rather 
than trying to implement the sharing on top of an isolation hypervisor.  See [25] for details on 
why sharing hypervisors are important for many DoD multi-level security (MLS) applications. 

3.2 Sharing Hypervisors on a Server 
With a sharing hypervisor on a server, we fortunately don't have to deal with the display and 
keyboard problems, but still do need to handle shared network and shared storage devices.  For 
the network device, if the guests encrypt all traffic, then the data cannot be directly leaked by the 
device driver, but there are still covert timing channel [22] and traffic flow analysis channels [13, 
26, 35].  Some of this could be blinded from the device driver by the guest and/or hypervisor 
using continuous transmission protocols and slotted transmission allocations, but it is difficult for 
the device driver to be completely blinded.  Examples of how high-assurance hypervisors can 
handle such covert channels can be found in the work of Schaefer, et. al. [39], Hu [22], and Karger 
and Wray [28]. 
 
In a similar vein, the device driver for shared storage, even if all data is encrypted, must be 
trusted, because it is difficult to blind it from covert timing and traffic flow analysis channels.  
An untrusted storage driver can learn a lot from traffic flow analysis, as discussed in [42], and it 
can also be subject to covert channel attacks [28]. 
 
Sharing drivers cannot be located in the guests, but must be located either in the hypervisor 
(Figure 2), or in a privileged I/O partition (Figure 3). The main point here is that simply moving 
the shared driver out of the hypervisor does not remove it from the TCB – instead, the TCB is 
now expanded to include the driver and any parts of the privileged partition with control over the 
driver. 
 
In the existing implementations of privileged I/O partitions, such as Xen [12] or [17], the 
privileged I/O partition includes an entire operating system.  As a result, the size and complexity 
of the code is comparable to the operating systems themselves.  The Linux-based kvm [30] does 
not use a privileged I/O partition.  Instead it places the hypervisor in a full Linux kernel which 
means that again the size and complexity is comparable to a guest operating system.   

3.3 Sharing Hypervisors on a Client 
By far, the most difficult situation is a client where all devices (display, keyboard, storage, 
network) must be shared. All of the sharing issues from the server (shared storage, and network) 
apply, but we must now also try to solve the display and keyboard problem. Fortunately, 
keyboard drivers are small and reasonably simple, and it is easy for the hypervisor to virtualize 
them safely, and to provide secure attention key at the same time.  The trusted display device 
driver is an extremely difficult, unsolved problem. Unless the display device can accept 
encrypted data (such as with High-bandwidth Digital Content Protection (HDCP) [5]) displays, 
the data can't be encrypted, the device drivers are often very large (2-3 MB), and typically are 
proprietary, and thus very difficult/impossible to modify. Since the driver deals with unencrypted 
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data at multiple levels, and the driver is low assurance, there is high risk of direct leakage, let 
alone timing channel attacks [37]. 

4 Special Privileged I/O Partitions 
Modern VMMs, such as Xen [12] and PHYP [17] address the difficulties of virtualizing the huge 
numbers of I/O drivers by creating special privileged partitions, called Dom0 in Xen and VIOS 
in PHYP.  The VMMs then run a full Linux or AIX system in the special partitions and redirect 
all I/O requests from guest virtual machines to these special partitions which are granted the 
privilege to directly control the real I/O devices.  This approach has been very attractive to VMM 
developers, because it allows them to support a very large number of possible I/O devices very 
quickly, with little development work required, and greatly helps keep the VMM small.  In 
particular, the use of a special privileged I/O partition can significantly reduce the time to market 
for a new hypervisor, and this can be critical in getting market acceptance of a product.   
 
However, this choice of special privileged partitions for I/O drivers is not without costs.  This 
paper will examine the costs of the special partitions to see what the VMM designers have given 
up in exchange for a smaller VMM and getting large numbers of I/O drivers running quickly and 
easily.  These costs come in two places – security and performance. 

4.1 Security Implications of Special Privileged I/O Partitions 
The first cost of special privileged I/O partitions is security.  The problem is that the special 
privileged I/O partition is effectively part of the VMM, and it contains an entire Linux operating 
system.  Now, rather than the VMM being smaller and simpler than the guest operating system, 
it is actually larger and more complex, since it consists of the small VMM kernel plus an entire 
operating system.  In Xen, Dom0 runs an entire Linux system.  While some may argue that the 
I/O guests are de-privileged with respect to the VMM, running in  real ring 1 (virtual ring 0) 
while the VMM runs in real ring 0, the drivers still have to ensure secure sharing, particularly 
with respect to issues such as side and covert channels, and thus must remain trusted.  
 
From a theoretical perspective, this is a fundamental limitation of protection ring systems.  In his 
PhD thesis, Schroeder [40, p. 27] shows how a protection ring system, such as the one he and 
Saltzer had earlier developed for Multics [41], cannot support mutually suspicious subsystems in 
a single process.  This is because all programs in a given protection ring must trust one another, 
and the hierarchic nature of rings means that they cannot be used for mutual suspicion.  A special 
privileged I/O partition, such as Xen’s Dom0, is performing I/O on behalf of multiple different, 
mutually suspicious guest VMs.  Schroeder’s theoretical results show the fallacy here.  Even 
though the special privileged I/O partition is running in a less privileged protection ring, that 
does nothing to guarantee that the mutually suspicious guests are protected from one another. If 
the all I/O devices can each be dedicated to a single partition, then one could run a separate I/O 
Partition for each guest and avoid the security problems, because separate partitions avoid the 
hierarchic nature of protection rings.  With an IOMMU [2, 23], one could assign the devices 
directly to the guest partitions and also avoid the performance problems described below.  
(IOMMUs were first proposed for Multics [16] and the first implementation was for the 
Honeywell SCOMP [19].)  However, some devices, most notably display devices, must 
inherently be shared and therefore must deal with sensitive data from multiple guests.  For those 
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cases, neither special privileged I/O partitions nor assigning directly to the guest partition will be 
sufficient.   
 
In principle, the special privilege I/O partition need not run a full operating systems, but only a 
set of device drivers.  In that case, however, the drivers could not simply be copied from an 
existing operating system, such as Linux, but would need significant modifications.  No current 
hypervisor have tried this approach. 

4.2 Performance Cost of Special Privileged I/O Partitions 
The second cost of special privileged I/O partitions is performance.  VMMs have always 
performed best on compute-bound workloads and worst on I/O-bound workloads, because of the 
cost of translating the I/O operations.  Even on mainframes with I/O channels, the cost of 
translating the channel programs is significant.  However, the special privileged I/O partitions 
introduce significant additional performance costs.  In this section, we use the term context 
switch to include both ring crossings and process switches.  In most machines, ring crossings are 
less expensive than process switches.  However, that distinction serves only to complicate the 
analysis for this paper.   
 
With no VMM at all, an I/O operation requires a context switch from user mode to supervisor 
mode to start the I/O operation, and later when the I/O interrupt occurs, a context switch from 
supervisor mode to user mode.  A traditional VMM doubles that cost, because there must be 
context switches from user mode to the guest operating system and from the guest operating 
system to the VMM.  When you introduce the special I/O partitions, the number of context 
switches significantly increases, as the VMM must send the I/O operations to the special I/O 
domain which then must initiate the actual I/O operations.  There can also be additional costs due 
to either copying or mapping the data into the I/O partition. 
 
In the following figures, the hypervisor is shown running in real ring 0, and the guest operating 
system is shown running in virtual ring 0.  There are multiple approaches to virtualizing 
protection rings, and the concepts in this paper are the same, regardless of the approach chosen.  
Intel and AMD have chosen to add an extra protection ring for the hypervisor [1, 7], essentially a 
ring -1.  That technique does not support self-virtualization (running a hypervisor in a partition 
on top of a hypervisor).  Alternatively, the technique of ring compression [21] could be used 
which does support self-virtualization.  It is important to note that the addition of hardware 
virtualization support by Intel and AMD has no direct impact on I/O performance.  In fact, as 
will be seen in Figure 7, the software in Xen that uses hardware virtualization in Dom0 actually 
makes the performance worse.  In addition, Intel [23] and AMD [3] have added IOMMU support, 
and Figure 6 and Figure 7 for the Xen I/O partition cases, assume the use of the IOMMU. 
 
Figure 4 shows the context switches required for an asynchronous I/O operation initiated from 
an application running in ring 3 on an operating system that is running directly on the hardware 
without an underlying hypervisor.  Each numbered step corresponds to a context switch shown in 
the figure. 
 

1. The application issues a system call to initiate an asynchronous I/O operation. 
2. The operating system starts the I/O operation on the I/O device. 
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3. The operating system returns to the application, since this is asynchronous I/O. 
4. Some time later, the I/O operation completes and sends an interrupt to the operating 

system. 
5. The operating system generates an interrupt to the application with the results of the 

completed I/O operation. 
 
Figure 5 shows the context switches for an asynchronous I/O operation when the operating 
system is running above a conventional hypervisor in which the I/O drivers are in the hypervisor 
itself.  Such hypervisors include CP/67 [33], z/VM [8], and the DEC A1-secure VMM for the 
VAX [29].  Each numbered step corresponds to a context switch shown in the figure. 
 

1. The application issues a system call to initiate an asynchronous I/O operation. 
2. The guest operating system starts the I/O operation.  In a fully virtualized hypervisor, 

the START IO instruction traps to the hypervisor.  In a para-virtualized hypervisor, 
the operating system issues an HCALL to the hypervisor. 

3. The hypervisor initiates the I/O operation on the I/O device. 
4. The hypervisor returns to the guest operating system, as this is an asynchronous I/O 

request. 
5. The guest operating system returns to the application program, as this is an 

asynchronous I/O request. 
6. Some time later, the I/O operation completes and sends an interrupt to the hypervisor. 
7. The hypervisor generates a virtual interrupt to the guest operating system. 
8. The guest operating system generates an interrupt to the application with the results 

of the completed I/O operation. 
 
Figure 6 shows the context switches required for an asynchronous I/O operation in which the 
hypervisor I/O control is entirely done in a special privileged I/O partition in virtual ring 0 of that 
partition.  This is how Xen operates for paravirtualized domains.  Each numbered step 
corresponds to a context switch shown in the figure. 
 

1. The application issues a system call to initiate an asynchronous I/O operation. 
2. The guest operating system starts the I/O operation.  In a fully virtualized hypervisor, the 

START IO instruction traps to the hypervisor.  In a para-virtualized hypervisor, the 
operating system issues an HCALL to the hypervisor. 

3. The hypervisor passes the I/O operation to the special privileged I/O partition. 
4. The hypervisor returns to the guest operating system, as this is an asynchronous I/O 

request. 
5. The guest operating system returns to the application program, as this is an asynchronous 

I/O request. 
6. The operating system in the special privileged I/O partition uses the IOMMU to gain 

access to the I/O device and  start the I/O. 
7. Some time later, the I/O operation completes and sends an interrupt to the hypervisor. 
8. The hypervisor generates a virtual interrupt to the special privileged I/O partition 

operating system. 
9. The special privileged I/O partition operating system completes the I/O and makes an 

HCALL to the hypervisor to wake up the guest operating system. 
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10. The hypervisor delivers the I/O completion interrupt to the guest operating system. 
11. The guest operating system generates an interrupt to the application with the results of the 

completed I/O operation. 
 
 
Figure 7 shows how Dom0 in the Xen hypervisor [12] actually works for fully virtualized I/O.  
Xen controls the I/O, not from virtual ring 0 of Dom0, but rather from virtual ring 3 (the user 
ring) of Dom0.  This introduces still more context switches.  Each numbered step corresponds to 
a context switch shown in the figure. 
 

1. The application issues a system call to initiate an asynchronous I/O operation. 
2. The guest operating system starts the I/O operation.  In a fully virtualized hypervisor, the 

START IO instruction traps to the hypervisor.  In a para-virtualized hypervisor, the 
operating system issues an HCALL to the hypervisor. 

3. The hypervisor passes the I/O operation to Dom0. 
4. The hypervisor returns to the guest operating system, as this is an asynchronous I/O 

request. 
5. The guest operating system returns to the application program, as this is an asynchronous 

I/O request. 
6. The operating system in Dom0 now starts the I/O virtualization software in virtual ring 3. 
7. The I/O virtualization software now issues an asynchronous I/O request to the Dom0 

operating system. 
8. The Dom0 operating system uses the IOMMU to start the I/O device. 
9. The Dom0 operating system returns to the virtual ring 3 I/O virtualization software, as 

this is an asynchronous I/O request. 
10. Some time later, the I/O operation completes and sends an interrupt to the hypervisor. 
11. The hypervisor sends a virtual interrupt to the Dom0 operating system. 
12. The Dom0 operating system generates a virtual interrupt to the virtualization software in 

virtual ring 3. 
13. The virtualization software in virtual ring 3 completes the I/O and issues a system call to 

the Dom0 operating system to wake up the guest operating system.. 
14. The Dom0 operating system issues an HCALL to the hypervisor to wake up the guest 

operating system. 
15. The hypervisor delivers the I/O completion interrupt to the guest operating system. 
16. The guest operating system generates an interrupt to the application with the results of the 

completed I/O operation. 
 

We can see that the Xen Dom0 approach requires roughly 3 times the number of context 
switches of an operating system running directly on the hardware and roughly double the number 
of context switches of a conventional hypervisor with I/O drivers in the hypervisor itself.  These 
extra context switches can explain some of the performance issues seen by Menon, et. al. [32]. 
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4.3 Analyzing the Performance Implications 
The previous section predicted the performance implications of special privileged I/O partitions, 
by counting context switches. Several other papers have measured actual performance tradeoffs, 
consistent with these counts. 
 
Nakajima and Mallik [34] discuss the performance tradeoffs between software, hardware, and 
para-virtualization in the Intel environment. They measure several aspects of file I/O 
performance on KVM, and on Xen with paravirtualization with the drivers in DOM0. They did 
not measure Xen's worst case of full virtualization, in which the DOM0 application level 
provides device emulation. Even with the milder para-virtualization case, Xen's I/O performance 
was two to four times slower than KVM's, which fits well with our analysis. 
 
Menon, et. al. [32] measure the DOM0 performance for TCP/IP, and show a throughput cap 
roughly one third that of a native Linux kernel on the same hardware. In their analysis, the 
dominant issue was TLB misses and flushes, with context switch overhead second. 
 
Zhang, et. al. [47] also discuss the performance impact of DOM0 based TCP/IP, showing a full 
order of magnitude reduction in throughput of the para-virtualized Xen/DOM0 case compared to 
native Linux. Their measurements indicated that the performance problem was due mainly to the 
overhead of multiple hypercalls, and second to the number of TLB flushes associated with the 
context switches. 
 
These studies show anywhere from a factor of 2 to 10 overhead in I/O for the para-virtualized 
DOM0 case compared to native, for file and network operations, which is consistent with our 
predictions. Interestingly none of the studies measured the worst case of full virtualization in 
DOM0. 
 
It is important to note that processors with address space tags in the TLBs can reduce some of the 
performance costs of the context switches.  Karger [24] includes a much more in-depth study of 
reducing the cost of context switching in high-security systems.  He examines not just TLB 
tagging, but also register save/restore requirements.  His measurements were based on the design 
of DEC’s A1-secure virtual machine monitor [29], but the hypervisor is not actually mentioned in 
[24], as it was still an unannounced product. 

5 Conclusions 
We have discussed the difficulty in virtualization of modern complex I/O architectures. Different 
hypervisors have approached this complex I/O virtualization in different ways, with differing 
tradeoffs in implementation complexity, security, and performance. Depending on the goals and 
requirements for a given system, particularly with respect to the type of devices present, and 
whether or not they need to be shared, different hypervisors will be more or less suitable. The 
most difficult case is when devices, particularly a display adapter need to be shared. In this case, 
the choice of a separate I/O partition provides significant ease of implementation, at the cost of 
large TCB and poorer performance due to a doubling of context shifts.  
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Figure 1.  Pure Isolation Hypervisor with device drivers in Guest partitions 
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Figure 2.  Sharing Hypervisor with Device Drivers in the Hypervisor 
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Figure 3. Sharing Hypervisor with Device drivers in Privileged I/O Partition

I/O Partition

Operating system 

Application 

Virtual Machine Guest

Hypervisor 

Device Driver 

Operating system 

Sharing 
Application 

Disk sharing 

I/O Device 



13 

OS Running on Bare Hardware 

Ring 0

Ring 1

Ring 2

Ring 3

2

1

3

4

5

OS Running on Bare Hardware

I/O Device

Application

Device Driver

 
Figure 4.  .  I/O in an Operating System without Virtualization 
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Figure 5.  .  Guest OS Running on a Hypervisor with I/O in the Hypervisor  
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Figure 6.  .  Special I/O Partition with I/O drivers in virtual ring 0 
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Figure 7.  Xen Dom0 with I/O controlled from virtual ring 3 
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