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Abstract. The ever-increasing computational power of smart cards has
made them feasible for applications like electronic passports and mili-
tary id cards. However, these applications require a secure smart card
operating system.
In this paper we argue that smart card platforms pose additional security
challenges than traditional computer platforms. We discuss our design
for a secure smart card operating system, called Caernarvon, and show
it addresses these challenges, such as secure application download, pro-
tecting cryptographic functions from potentially malicious applications,
resolving covert channel issues, assuring both security and data integrity
in the face of arbitrary power losses, etc.

1 Introduction

Credit-card sized computers, called smart cards, are increasingly available and
their computing ability is increasing at a fast rate. Their ability to perform
computation, instead of just storing data like standard credit or memory cards,
makes them suitable for applications where card readers need authentication
before accessing card data, or where a transaction has to occur without access
to a central authority. Currently, smart cards are being used for both civilian and
military identification cards and for electronic passports. For a good overview of
smart card technology in general, see [27].

As the prime motivations for the use of smart cards are identification, au-
thorization or encryption, it is crucial that an appropriate amount of trust be
established between different applications executing on the same card. The lack
of a trusted secure operating system for smart cards has resulted in users having
a “necklace of cards”, each one hosting a different application. The Caernarvon
project was started to create such a secure smart card operating system. An
overview of the Caernarvon system can be found here [36].

In this paper we argue that smart cards provide security challenges as well as
opportunities for operating system development. Two major areas of the security
aspects of the Caernarvon operating system have already been published — the
security model [30] and the authentication protocol [31]. However, in pursuing
our goals, we found that it was like peeling an onion: when tackling each security



problem we found a deeper one behind it. This paper will discuss both these
smart-card specific challenges and the solutions developed by the Caernarvon
team.

1.1 Background – Smart Cards

Historically, smart card chips have been very weak computers by today’s stan-
dards. They typically have had no more than 128K of memory, slow 8-bit pro-
cessors, and no memory protection or supervisor state. However, the latest gen-
erations of smart card chips now have 16-bit or 32-bit processors and increased
memory capacities, although RAM memory still remains very restricted at typ-
ically only 8K to 16K bytes.

Due to physical limitations, smart cards are unable to contain their own
power source and instead receive power from their readers. This power can be
removed at any time, and this is even a common event as users pull their cards out
of the machine. Cards cannot retain enough charge to complete any in-progress
memory writes, and the result is that the target locations can become arbitrarily
scrambled. Attackers can potentially make use of this fact by removing power
either just before or during critical writes.

Smart cards have persistent memory to hold data when power is unavailable.
Usually this is EEPROM, but can be flash as well. Both of these memory types
have limitations on the number of write cycles (the number of times a given
cell can be re-written), to between 500,000 and 1,000,000 cycles for modern
EEPROM, and perhaps as few as 100,000 cycles for flash. Memory cells that are
written too many times are subject to failure, so that the data values are not
stored or retained correctly. However, chip vendors are significantly raising these
write cycle limits, so the problems are becoming less severe.

Another problem is that the write cycle time for EEPROM and flash is of
the order of 4 to 6 milliseconds, and many operations require multiple memory
writes. This increases the probability that a user will remove power during a
write.

The design of a smart card OS is constrained by pre-existing specifications,
of which the most important is ISO 7816–4 [18]. This specification defines the
communication protocol between a card and its reader using Application Proto-
col Data Units (APDUs). There are two kinds of APDUs — command APDUs
that go from the reader to the card, and response APDUs that return results. Of
particular note is the “SELECT” APDU which instructs the card to execute the
application which is specified by the command’s argument. (See Section 2.2.)

Although 7816–4 does not specify the internals of a smart card operating sys-
tem, it has implications that affect the file system design. Smart card filesystems
are hierarchic, like those of many conventional operating systems. However, the
smart card industry uses its own unique terminology for many of the common
components. The unique root of the file system is called the “MF” (Master File).
DFs (Dedicated Files) act as directories, while EFs (Elementary Files) are basic
data files. The MF and each DF can contain EFs and DFs. Each MF, DF and
EF is given a 16-bit file id, rather than a text name as in most other operating



systems. Each application is associated with a DF (not a file, like one might
expect), but not vice-versa.

1.2 Feasibility and Related Work

When the Caernarvon project to build a highly secure operating system for smart
cards began, the first question was “Would it be feasible at all to build such a
system?”. Early smart card chips did not have adequate hardware support for
security, such as separate supervisor and user states and memory protection. The
introduction of the NXP (formerly Philips) SmartXA2 chip met those needs.
Karger, Toll and McIntosh [23] discuss these hardware requirements in much
more depth. Furthermore, the memory management approach of the SmartXA2
was very similar to that of the DEC PDP–11/45 minicomputer [26].

The similarity to the DEC PDP–11/45 was very significant, because the
very first high assurance security kernel operating system was developed by
Lee Schiller [32] at the MITRE Corporation for the PDP–11/45. The Schiller
kernel was only 900 lines of higher level language - a very small amount of code
that could clearly fit into a smart card with limited memory. Also, the Schiller
kernel supported a very simple hierarchical file system with files named by small
integers in a manner not dissimilar to that used by smart cards.

2 Smart Card Applications Code and Security

2.1 Security Policy

The Caernarvon system builds on previous work on mandatory security policies
to provide multi-level security within the system. Security within the Caernar-
von system is enforced using a mandatory security policy [30] that is based on
modifications of the Bell and LaPadula secrecy model [5] and the Biba integrity
model [6]. The security policy is built around the concept of Access Classes.
Each Access Class (AC) is either an Organizational Access Class (OAC) or a
Universal Access Class (UAC). Details of an early design for UACs and OACs
can be found in [19].

An OAC consists of a type field (which specifies if the OAC is a secrecy OAC
or an integrity OAC), an organizational identifier (OID), a sensitivity level, and
an optional set of categories. The assignment and meaning of the sensitivity level
and categories in the OACs for a given organization are completely controlled
by that organization—there can be no collision between categories with the
same value chosen by other organizations because OIDs are unique. Categories
correspond to internal groups, departments or other organizational structures.
The organization may alternatively regard the categories as a formalized “need
to know” list. Note that, in the case of an integrity OAC, the sensitivity level is
replaced by an integrity level; the Caernarvon modification to the Biba model is
to specify that the integrity level is an integer in the range 0-7, where 0 implies
normal low integrity, and a value in the range 1 to 7 indicates a higher integrity
level that is the level n of a Common Criteria [12] evaluation at level EALn.



A UAC consists of a set of OACs, each of which has the same type (that is,
secrecy or integrity). Every OAC in a UAC must have a distinct organizational
ID.

There are well defined rules for the comparison of Access Classes—these are
discussed, together with many details of the Caernarvon security policy, in [21].

Authentication and Authorization Enforcement of a meaningful security
policy requires that there be a secure mechanism to ensure that the use of the
desired ACs is valid and correct. In Caernarvon, each time the smart card is
inserted into a reader, the system and the outside world perform a two-way
authentication, which verifies each party’s identity to the other and then sets up
a secure channel. This authentication must be performed by the operating system
itself and not by an application, so that the operating system is guaranteed, and
can guarantee to others, that the authentication has been correctly completed.
The operating system then knows with high assurance the identity of the user,
which is typically the host system behind the smart card reader. The operating
system can use this knowledge to safely grant the user access to files and other
system objects; conversely, it can also use this knowledge to ensure, with high
assurance, that a user is denied access to anything he is not authorized to see
or use. The full description of this authentication protocol is beyond the scope
and space limitations of this paper; more information is available in [31].

Handling of Trusted Processes The Caernarvon security model [30] incor-
porates the concept of trusted processes or guard processes directly in the model,
rather than as exceptions to the model as in most previous mandatory access
control schemes. In particular, the Caernarvon model explicitly requires that a
guard process have a high integrity access class, and that it be allowed to operate
over a specified range of access classes, much as in the GEMSOS system [29].
The integrity level of the trusted code, together with the range of allowed access
classes would be specified and digitally signed by the Common Criteria certi-
fying body that certified the trusted application. The idea of using a range of
access classes originated in an early design [34] of the US Air Force Strategic Air
Command’s secure packet switched network SATIN IV, later renamed SACDIN.

2.2 Application Selection Control

The Caernarvon system consists of a kernel, running in supervisor mode, and
user-mode applications. These applications are stored in the file system by files
marked as executables. In a multi-application smart card, with multiple access
classes specifying different levels of access to files, the security policy applies
equally to running a program file as it does to any other file access—insufficient
access to a file implies that the program in that file cannot be run in the current
session.

The Caernarvon kernel contains a component, the APDU Dispatcher, which
examines every incoming command, and determines if it is an APDU to be



handled by the system, for example those for the authentication process. Other
APDUs (those that are not explicitly handled by the system) are passed to the
currently selected application.

The SELECT APDU is handled directly by the APDU dispatcher. Assuming
that the access class(es) for the current session, selected during authentication,
allow the reader to execute the requested program, it is started by the APDU
dispatcher. Subsequent APDUs are sent to this application, which reads the
commands and returns responses through communications SVC calls. If, while
the application is running, another SELECT APDU is received to run a new
application, then this APDU is intercepted by the APDU dispatcher and is
not passed to the application. Instead the current application is notified that it
must terminate. If the current application continues to run and attempts any
communication with the outside world, the program is forcibly terminated.

2.3 Cryptographic Facilities

Many modern smart cards contain cryptographic hardware to implement (or
at least significantly ease the implementation of) algorithms such as DES and
triple–DES, AES, RSA, DSA and ECC. Where such hardware is not provided,
any cryptographic algorithms must be implemented entirely in software. Smart
cards are physically small, with little protection from attacks of various types, in-
cluding side-channel attacks or even direct probing of the memory. These attacks
are well documented in the literature, e.g. [25, 1]. Protection of cryptographic
functions against attack attack requires a combination of hardware counter mea-
sures and specific software coding techniques. For example, if a DES engine was
in use by one process, and is now to be re–assigned to another process, it is
necessary to ensure that any keys loaded into the hardware by the first process
cannot be read by the second. An example of a poor implementation is the attack
on DSA if the nonce k is not calculated correctly each time [33].

The Caernarvon system was designed from the very beginning to allow ap-
plication programs to be written by anyone—indeed, the design allows entirely
untrusted or even deliberately malicious code to be run. This design aim has
repercussions, in that poorly written applications can, either accidentally or de-
liberately, directly or indirectly, leak cryptographic information (primarily keys).
The Caernarvon system makes use of the processor’s hardware protection to en-
sure that the crypto hardware can be accessed only in supervisor state—that
is, applications have no access to the cryptographic hardware. Hence the kernel
provides crypto functions, accessed by SVCs, to implement the various crypto-
graphic algorithms for applications. This removes the possibility of an application
mis-using the crypto hardware, for example “accidentally” seeing DES keys that
belong to another process, or running the hardware in such a manner as to cause
it to leak information via side-channels.

Cryptographic algorithms within applications may be poorly written, or not
optimized for the particular processor on which they are executing. The result of
this could be information leakage by means of side channels or from poor software
design. Conversely, the cryptographic code in the Caernarvon kernel is carefully



written to provide all possible protection from attacks and information leakage.
The cryptographic code has completed an evaluation under the Common Criteria
at EAL5+ (and would need to be re–evaluated at EAL7 when Caernarvon is
evaluated). Thus if applications use the crypto functions in the kernel, they get
the best possible protection for crypto on this processor. Using the kernel crypto
functions also saves time and effort in implementing the application, and avoids
duplicated code within the smart card.

Another potential problem with cryptographic functions, particularly in smart
cards with their susceptibility to attack, is the key management. If the applica-
tion handles the key itself, it may inadvertently leak information (for example,
some bits of the key) by such simple operations as copying the key from one
memory location to another. Further, there is nothing to prevent a malicious
program from deliberately leaking the key to outside the smart card.

Caernarvon provides secure key management facilities within the kernel. Keys
can be loaded into the card by the kernel, so that the application never see the
key; the application refers to the key by a name of its choosing. The keys are
effectively stored in the file system with file IDs for names and hierarchical file
paths, the same as for regular files. This avoids covert channel problems that
could arise in the names of keys, if the keys were stored in a flat file system.
However, the key names are a separate name space from the file names, and, to
ensure security of the key, these key “files” cannot be accessed as regular files.
An application, when it wishes to use one of these secure keys, issues a request
quoting the key’s file path, and the operating system returns a key handle; the
subsequent crypto requests use this handle to specify the key. All key operations
are then kept within the kernel, where appropriate measures can be taken to
protect against attacks. In addition, keys can be marked, for example, to be
encryption keys or to be signing keys; the kernel can then prevent a signing key
from being used for encryption, or vice versa. This prevents certain cryptographic
weaknesses where a key is used for more than one purpose.

Unfortunately, a few smart card standards (such as the Global Platform
standard [4]) require that the keys be visible to applications (or in the Global
Platform case, the application security domain). To satisfy this requirement,
Caernarvon also supports a “raw” key mode, where the keys are handled entirely
by the application. Alternative crypto functions are provided in the kernel that
have their keys supplied in buffers, instead of using a handle as is the case for a
secure key. While applications may find this mode a necessity, its use is strongly
discouraged, since the secure kernel cannot ensure any security for these raw
keys.

Certain smart card application standards specify weak cryptographic proto-
cols, such as the standards for cryptography for GSM phones that have been
broken [3]. Currently the Caernarvon kernel contains implementations of only
known secure, standardized, crypto algorithms, such as DES, AES and RSA. If
implementations of weak algorithms were added to Caernarvon, the algorithm
would still be weak—there is no way a high security system can magic a weak



algorithm into a strong one. The only way to avoid such problems is to not devise
standards with weak cryptography.

Another problem that can arise is that a program can develop its own cryp-
tographic code, for example to implement an algorithm devised specially for
that application. Running such code on top of a high security kernel provides no
guarantee of the quality of the implementation of the cryptography, including
particularly immunity to side channel attacks. Again, the only way to avoid the
problem is to design the application to use only the strong crypto (and secure
key management) provided by the Caernarvon kernel.

3 Security Design Challenges

3.1 File System

The Caernarvon system implements a smart card file system, as described in
Section 1.1. Besides the inherent challenges caused by the specification and hard-
ware restrictions, the filesystem must also conform to and enforce the system’s
security policy. Also, there must be a quota mechanism and support for memory-
mapped files. We will now describe these challenges and our resultant design in
more detail.

File System Integrity It is imperative to maintain the integrity of the file
system in a smart card, even when the power source is unexpectedly removed,
as described in Section 1.1. In Caernarvon, the functionality is divided into two
separate components:

1. the Persistent Storage Manager (PSM), which handles the physical memory
blocks, and ensures their integrity. The PSM is described in the section 3.2.

2. the File System, which handles the logical file system structure within mem-
ory blocks provided and maintained by the PSM.

This avoids the necessity of maintaining the integrity of the persistent storage
within the code that is controlling the logical file structure.

ISO7816 File System In addition to the standard MF, DFs and EFs, the
Caernarvon system extends ISO 7816 by defining another file type, an “XF”
(Executable File), which are EFs that contain an executable program.

As an implementation optimization, the MF and DFs do not keep a table of
the file names that they contain; instead, each DF and EF in the system has
a pointer to its parent. This means that file system searches require examining
every file in the system; however, since the amount of persistent memory is
limited, there can be only a small number of files in any given smart card, so
this extended search is not a problem. Obviously, this algorithm does not scale
to large memories with lots of files. However, if there was a large amount of
memory there would be no necessity to shrink directories in this manner.



ISO 7816-4 defines certain types of record structure files; the Caernarvon
kernel does not implement these (this is left as a user program function); in the
Caernarvon file system, all files are treated as unstructured sequences of bytes.

Although this is not required by ISO 7816, Caernarvon requires that the file
ids be unique within a DF or the MF.

DFNames ISO 7816 defines the concept of a DF Name. These names are used
to select executable programs from outside the card, without having to know the
numeric file IDs. They consist of a string name assigned to the DF containing
the application. The DF Names are unique to the card, and, (as defined in ISO
7816) constitute a global address space.

Global address spaces cause two different operational problems. First, if two
different application developers happen to choose the same DFName, then the
first such name loading onto a particular card will win. Since ISO 7816-4 assumed
all applications would be preloaded onto the card, this was never a problem.
However, once you have multiple application providers downloading applications
to a card after the card has already been issued, the name collision problem can
become serious. Second, such name collisions could be used as a covert channel
to bypass mandatory access controls.

Caernarvon, to avoid these problems, stores the DF Names prepended with
the current AC chosen during the authentication for the current session. This
makes the DF Name space into a name space that is private to the current
access class. The ISO 7816 rules for DF Names are then applied within each
access class, rather than system wide. Within an access class, DF Names must
be unique, but the same DF Name may be repeated in a different access class.

Short File Identifier ISO 7816-4 defines the notion of a Short File Identifier,
or SFI, whereby a file can be specified by a single 5-bit identifier. The stan-
dard leaves the actual implementation of SFIs to the application, and existing
implementations of SFIs differ substantially.

Just like DFNames, SFIs could form a global address space, and have the
same collision and covert channel implications. In Caernarvon, SFIs are imple-
mented as local to a DF (that is, to a current directory). Thus there are multiple
local SFI address spaces, which removes the covert channel.

Access Classes and the File System In order to reduce memory usage, files
(EFs and XFs) do not have associated access classes while DFs may but are
not required to. DFs without an access class of their own, and EFs and XFs,
inherit the access class of their immediate parent DF. Note that the MF has
secrecy access class System Low, and the secrecy access classes are monotonically
increasing as the file system tree is traversed away from the MF. Similarly, the
MF has integrity access class System High, and the integrity access classes are
monotonically decreasing as the file system tree is traversed away from the MF.



Access to a DF, and hence to the files within it, is controlled by comparing
the current access class of the process (for example, the AC chosen during system
authentication) to the access class of the target file.

A program, if it has appropriate access to a file, may change the access class
of that file, for example to raise its secrecy level or to lower its integrity level.
In either case, it is quite likely that, having changed the access class of the file,
the program no longer has access to the file. In this case, any open file handles
for the file in question are marked, and then the program can perform no more
operations such as read and write using the file handle until it has closed the
file and attempted to re-open it. If the program no longer has access to the file
then the re-open will fail.

This facility to change the access class of a DF (and hence of all the files
within it) can be used to move data from one access class to another. Thus
if a program at AC a wishes to move a DF (also at AC a) to AC b then the
program must change the DF to the AC a+b. Note that this is quite legitimate
- a program may always change a file to a higher secrecy level. Having done
this, the program, which is still at AC a, no longer has access to the DF. At
this stage, a special guard process must be run; this is an evaluated application
that has been certified as fit to perform the downgrade of secrecy level a+b to a.
This guard program would verify that it is indeed legitimate to downgrade the
secrecy of the DF, and if all is well, change the AC of the DF to b.

Quota In order to protect against both inadvertent and malicious denial of
service attacks when one application takes all the persistent storage on the card,
Caernarvon provides a quota facility. This also enables the card issuer to control
(and charge for) the amount of space on the card used by each application
or, possibly more importantly to the card issuer, by each application provider.
Covert channels whereby a Trojan horse could signal by either allocating all
memory or freeing some are prevented.

The algorithms used for the quota allocation are basically those from Mul-
tics [37, section 3.7.3.1], except that in Caernarvon, due to the severe limitations
of the platform on persistent storage space, we are more careful about including
system overhead such as control blocks in the quota calculations.

Each DF may (but need not) have a quota; if the DF does not have its own
quota then that DF and all the files within it are charged against the quota of the
nearest parent DF that does have a quota. When a new top-level DF is created
for an application, then that DF would normally be allocated its own quota. The
application can quite legitimately give some of its quota to a DF below its own
top-level DF. If a DF is moved from one AC to another (as described above),
then the quota occupied by that DF and all the files within it is also moved to
the new parent DF of the DF that has been moved.

Discretionary Security Policy - Capabilities The Caernarvon system, in
addition to the mandatory security policy, provides capabilities—these are dis-



cretionary security policy rules that may be associated with an individual exe-
cutable program (an XF). These capabilities take two forms:

1. a bit array that specifies whether that program is, or is not, permitted to issue
certain SVCs or groups of SVCs. For example, there is a special, evaluated,
Admin Application issued with the system that is used for the administra-
tion of (in particular, the creation of) Access Classes and top-level DFs for
applications. This program uses certain special SVCs for the administration
of ACs; the capability bit for this group of SVCs is unset for every other XF
in the system, so that no other program can issue those SVCs.

2. there can be special access rules to allow or forbid access to individual files
by this program. Note that any access granted by these rules is still subject
to the mandatory security policy—that is, a capability rule cannot grant
access to a file when the access class comparison would forbid it.

It is important to note that these capabilities are not a fully general capability
system, as defined by Dennis and Van Horn [15]. In particular, Caernarvon
capabilities cannot be passed from one process to another.

3.2 Persistent Storage Manager - PSM

In the Caernarvon system, the physical blocks of storage are managed by the
Persistent Storage Manager (PSM). While the principal client of the PSM is the
File System, the PSM is also used by the Access Class Manager and the Key
Management system.

A solution to the errors that ensue when power is removed during a write
is to ensure that all memory transactions, for example a request to extend a
file and update its contents, be treated as a single atomic operation. That is,
the entire transaction must be completed in its entirety, or not performed at
all. There is a back-trace buffer where, when memory is to be updated, the old
values are stored before the new data is written. This is done for every step of
the operation - the backtrace buffer is cleared only when the entire transaction
is completed. When the card is powered-up, if the backtrace buffer is not empty,
the items in the backtrace buffer are restored one-by-one, in the reverse order to
which the original steps were performed. In this case, when the backtrace buffer
has been emptied, the state of the memory is as if the transaction had never
been started.

The PSM takes two measures to prevent or recover from memory corruption
due to the cells wearing out. The first is that, on every write to persistent
memory, once the write is completed and before control is returned to its caller,
the low-level code that wrote the data compares the updated contents of the
memory with the data in the caller’s buffer (in RAM). If a mismatch is detected,
an error is returned; in this case, the data that was to be written is still available
in the buffer. The second protective measure employed by the PSM is to place a
checksum on every memory object under its management, including any control
blocks or descriptors that define the memory blocks. This checksum is verified



on read operations, and hence memory failures can be detected—an attempt is
then made to recover the lost data byte(s). Once a memory error is detected,
the block in question is marked as bad, and the data is re-written to a different
location.

3.3 Application Download

A primary design aim of the Caernarvon system is to allow for the secure down-
load of applications in the field. The download process is to be under the control
of the card issuer—it is up to the card issuer to allow or forbid the download of
applications, and when download is permitted, to control which organizations
are or are not allowed to install their applications on the card and the amount
of file quota to be allocated to each organization. It should be noted that, in the
context of download, the term “application” is not limited to just XFs; it may
also encompass DFs, EFs, file quota, keys, etc.

The download process can be divided into two main steps:

1. creation of access classes for organizations that currently are not present on
the card, and allocation of file quota.

2. download of application files, including executable programs, for an organi-
zation that is present on the card.

Obviously, download of an application for a new organization requires the com-
pletion of both of these steps.

Creation of Access Classes The creation of a new access class is a tricky
operation on a smart card, because the card is physically in the possession of an
end user who may not be privileged to create access classes. The smart card also
does not have a system administrator or security officer who can perform such
operations. Requiring the card holder to carry the card back to the card issuer
to have access classes installed would be unacceptable to most customers.

Instead, the Caernarvon operating system includes secure cryptographic pro-
tocols to perform the following operations:

1. create the Organizational Access Class (OAC).
2. create the Universal Access Class (UAC).
3. create the necessary top-level DF associated with the new UAC, and set its

allocated quota.

A full description of these protocols is beyond the scope and space limitations
of this paper, and will be the subject of a future paper.

File Download Once an organization has been authorized to be present on a
Caernarvon card, that is, once any necessary access class(es) have been created,
then that organization may download such files as it needs, subject to the file
space the quota imposed by the card issuer.



A file is downloaded simply by authenticating at the appropriate access class,
running a program to create any required DFs and EFs, and writing the appro-
priate data to those files. The Caernarvon system includes a utility program,
the ISO7816 application, which implements many of the APDUs specified in
ISO 7816-4 and which can be used under any access class to perform such file
operations. An executable file, once it is downloaded, must be “activated” to
convert the file from an EF to an XF.

The card issuer may wish to restrict the programs that are run. For example,
only approved applications or Common Criteria evaluated applications might be
allowed. In the former case the application would have a signature from the card
issuer, while in the latter case a signature from the certification agency would
exist. If such restrictions are in place, the Caernarvon kernel will validate the
necessary restrictions when the activate operation executes.

3.4 Side Channel Issues

Just as other smart cards, the Caernarvon operating system could be subject to
power analysis, RF analysis, or timing attacks against its cryptographic mech-
anisms. We made use of standard techniques for addressing these attacks, as
described in [8, 1, 9].

We also had to consider the implications of side channel attacks on random
number generators (RNGs). Common Criteria evaluation of hardware random
number generators requires consideration of possible hardware failure modes. As
a result, Germany requires [16] that the random numbers from a hardware RNG
be tested prior to use. However, the act of testing the random numbers could
easily leak the values of the numbers via power or RF analysis. To overcome this
problem, the Caernarvon operating system includes a new kind of RNG that will
be the subject of a future paper. At present, the only description can be found
here [10].

3.5 Chip Initialization

Chip initialization is another design challenge that we had to address. Details
can be found in Appendix A.

4 Common Criteria Problems Solved

During the Caernarvon development, we ran into several issues related to the
Common Criteria itself. These included composite evaluation, lack of appropriate
protection profiles, and dealing with testing.

4.1 Composite Evaluation

The purpose of composite evaluation is to allow an upper level product (such
as a smart card operating system) to benefit from the results of an evalua-
tion of a lower level product (such as a smart card chip) without requiring a



full re-evaluation. Composite evaluation was not defined under version 2.3 of
the Common Criteria [12], but rather by supplemental documents. These doc-
uments limited the amount of information available to the software developers
and evaluators about the underlying smart card chip.

Limiting the interaction between the software developers and the hardware
evaluators, often leads to security vulnerabilties being completely missed in the
composite evaluation. In [22], we have described a number of problems with such
an approach. Since that time, the Common Criteria version 3.1 [13] has been
published that includes provisions for composite evaluation. However, smart card
composite evaluation does not use the techniques specified in version 3.1, but
rather has a new supplemental document [14] for smart cards only that does
not appear to address the problems that we encountered and reported in [22]. A
more complete analysis of the new smart card composite evaluation approach is
beyond the scope of this paper.

4.2 Protection Profiles

One major problem we encountered is that none of the smart card protection pro-
files available at the time adequately described the requirements of the Caernar-
von operating system. In particular, all the protection profiles assumed that all
smart card software was fully trustworthy and installed prior to the issuance of
the card to end users. To overcome this lack of appropriate protection profiles,
Helmut Kurth (of atsec information security) helped us develop a security target
that addressed the many new security requirements we faced.

4.3 Testing

Thorough testing is well-recognized as an important part of the development
process for secure software and is required for Common Criteria certification.
Full code coverage testing (that is, ensuring that all code is executed during
testing) is often performed. Branch coverage, ensuring that both branches of
every conditional are executed, should be the minimum standard of testing for
high-assurance code. Ideally, one would like to make sure all possible execution
paths are tested. This clearly can’t be done for any code with a non-trivial num-
ber of conditional tests, as the number of execution paths is either exponential
in the number of tests, or infinite (in the case of unbounded loops).

Even if full path testing were accomplished, this would still not be sufficient
to prove system security, as Trojan horses have been demonstrated that exploit
data flow, not just control flow. Testing is not a panacea, but it does serve as an
independent check upon the design and code of the system.

Test strategies for smart cards must also consider that the persistent mem-
ories (EEPROM or flash) will fail if too many write cycles are carried out. The
limits on write cycles have gotten much better in recent years, so that normal
pre-deployment testing is not likely to be a problem, because many of the test
cases will abort before actually performing a write operation. However, if the
card issuer or any servers with which the card communicates require too many



self-test sequences that involve writing to persistent storage, then the memories
could begin to fail.

5 Applications and Impact of the Technology

A number of applications could benefit from a commercially available high assur-
ance smart card operating system. In general terms, those applications have data
or software from multiple parties co-residing on the same card, and require some
level of data sharing between the parties. The trust relationship of those parties
ranges from friendly (e.g. allies and business partners) to mistrustful (e.g. coali-
tions) to hostile (e.g. competitors or military combatants). The threats addressed
range from honest mistakes in software to attacks by financially-motivated card-
holders to industrial espionage to comprehensive logical and physical attacks by
hostile adversaries and insiders. Below is a list of sample applications:

– an intelligent electronic passport issued by one government, with electronic
entry/exit timestamps added by other governments, some potentially hostile

– one card for access to multiple security levels of government networks, ending
the “necklace of cards”

– a corporate/school campus card, with multiple application providers for
copiers, vending machines, canteens, public transit, and building and room
access

– a frequent traveler ID card with loyalty software from multiple airlines, rental
car companies, hotels, and restaurants

– an ID card for coalition military forces for access to physical and logical
services

– a subscriber identity module for mobile phones to hold credentials for mul-
tiple institutions, e.g. financial institutions, governments, and phone service
providers

There are roadblocks hindering the commercialization of a high assurance
smart card operating system. First, the development, evaluation, and commer-
cialization of such a system could not be described as “low hanging fruit.” Sig-
nificant investment in time and funding is required by multiple institutions. The
skills required cross several domains, and are not typically found in any one
organization: hardware design, operating system design, formal methods, soft-
ware and hardware testing, vulnerability analysis, and evaluation methodology.
Second, some existing smart card application specifications have mandated pro-
tocols that preclude a high level of security. For example, the electronic passports
specified by the International Civil Aviation Authority (ICAO) require the use
of weak cryptographic authentication protocols [24], and while the protocols of
the Federal Employee Personal Identity Verification (PIV) program are cryp-
tographically strong, they also require some very sensitive information to be
transmitted in unencrypted form [20].

Although the Caernarvon OS is not commercially available, the technology
created as part of the project has had impact in multiple areas. The privacy-
preserving authentication protocol is now part of the European CEN standard



for application of digital signatures in smart cards [2]. The Caernarvon cryp-
tographic library has been certified under the Common Criteria at EAL5+ in
Germany [7]. The mandatory security policy is a fundamental part of the Fuzzy
Multi-Level Security Model [11] for System S, a large-scale, distributed, stream
processing system for analyzing large amounts of unstructured data [38]. The
mandatory security policy has also been incorporated into the Simple Linux In-
tegrity Module (SLIM) in a Trusted Linux Client [28]. Lastly, the lessons learned
from a developer’s perspective were documented in [35].

6 Conclusion

In summary, the Caernarvon operating system project has shown the feasibility
of building smart card systems with much higher levels of security. It is possi-
ble to support downloading of applications from multiple sources that may be
mutually hostile, yet these applications can be prevented from interfering with
each other or with the underlying operating system.

Accomplishing these goals required reconsideration of many of the traditional
smart card software practices, as well as solving many security problems that
are not present in larger-scale computers.
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APPENDIX

A Chip Initialization

Smart card chips containing the Caernarvon system are intended to be high
security devices. To this end, it is imperative that each individual chip be secure
right from the point of manufacture, with no opportunity for the chip or its
contents to be compromised while in the factory, nor between the factory and the
end user. Manufacture and initialization are the most security-sensitive stages
in the chip’s entire lifecycle, because the chip is in its most vulnerable, exposed



state, and it is during these stages that important roles and security parameters
are set for the remainder of the chip’s lifecycle. A fundamental assumption is that
the manufacturing line is secure, which requires the chip manufacturer to assure
that it is safe from tampering, collusion, theft, and other threats, including those
from insiders.

In a typical smart card chip manufacturing facility, manufacturing test soft-
ware is built into each chip to assure the viability of the chip. The test soft-
ware tests the processor, memory subsystem, internal peripherals, and other
subsystems such as cryptographic accelerators. These tests typically destroy the
contents of writable memory, thus, the chips cannot be initialized with unique
persistent data until all manufacturing tests are complete, and the chip is known
to be good. Once the manufacturing tests have completed successfully, the test
software downloads a copy of the initial file system for that chip, decrypting it
with a triple-DES key held in read-only memory, and used only once (during
manufacture). The image of each chip’s initial file system is pre-calculated by
the chip manufacturer by filling in the values of security-relevant data items in
predefined locations. Some of these items include certificates, private and public
keys, Diffie-Hellman key parameters, a chip-unique seed for random number gen-
eration, initial access classes, and uncertified application binary files. Because it
is difficult for the smart card chip’s processor to meet the demanding speed re-
quired by the manufacturing line, these security-relevant items are not typically
generated on-chip. Instead, they must be generated and digitally signed in ad-
vance in hardware security modules such as the IBM 4764 [17], and injected into
each smart card chip at very high speeds. Additionally, the chip manufacturer
digitally signs a certificate unique to each chip, thus enabling external (off-chip)
applications to verify (as part of an interactive authentication protocol) that
communications emanate from an authentic Caernarvon chip, and not an im-
poster. This chip certificate includes a serial number and public key unique to
each chip, a chip type / configuration code, the Caernarvon software hash value,
version number, and evaluation assurance level.

The chip makes use of a public key hierarchy to establish identities and public
keys of the actors that set the final configuration of the chip’s software and data.
Actors include the chip manufacturer, the smart card enabler, the smart card
personalizer, the smart card issuer, the application certifying body, and others.
During initialization, some of the public keys and roles of these actors are set
by the chip manufacturer. Others are initialized later in the chip’s lifecycle, and
can only be set by an actor authenticated in a specific role.

After the test code has completed the initialization of a chip, it disables
itself so that it can never be run again. At this point in the chip’s lifecycle, the
OS is fully functional and secure. Thus, when the chip is first powered up for
any purpose outside of the manufacturing line (for example, for personalization
of the smart card for the end user), the Caernarvon system is in control. In
particular, full system authentication is required to perform any operations such
as personalization or the installation of applications.


