
RC24661 (W0810-034) October 7, 2008
Computer Science

IBM Research Report

Inferring Synchronization under Limited Observability

Martin Vechev, Eran Yahav, Greta Yorsh
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Inferring Synchronization under Limited Observability
Martin Vechev, Eran Yahav, and Greta Yorsh

IBM Research

Abstract. This paper addresses the problem of automatically inferring synchronization for
concurrent programs. Given a program and a specification, we infer synchronization that
avoids all interleavings violating the specification, but permits as many valid interleavings
as possible. We let the user specify an upper bound on the cost of synchronization, which
may limit the observability — what observations on program state can be made by the
synchronization code. We present an algorithm that infers, under certain conditions, the
maximally permissive synchronization for a given cost. We implemented a prototype of our
approach and applied it to infer synchronization in a number of small programs.

1 Introduction
Concurrency is hard. Concurrent execution of operations that share data requires syn-
chronization to guarantee correctness. Typically, the programmer is required to reason
about all the ways in which concurrent operations can interleave, and introduce syn-
chronization code that avoids incorrect interleavings. Because of the excruciating diffi-
culty in finding even a single choice of synchronization that makes the program correct
and reasonably efficient [37], programmers often introduce synchronization in an ad-
hoc manner, and rarely explore alternative choices. In particular, programmers often
resort to coarse-grained synchronization because: (i) it simplifies reasoning about the
program, and (ii) the overhead incurred by finer-grained synchronization is prohibitive.

Our goal is to assist the programmer in systematically exploring alternative choices
of synchronization, based on the cost that she is willing to accept. Given a program P ,
and a specification S, we define the set VP(P, S) of concurrent programs that satisfy
S and can be obtained from P by adding synchronization. To understand the tradeoffs
between different choices of synchronization code, we examine two dimensions along
which programs in VP(P, S) can be compared:

– Permissiveness: Given two programs P1, P2∈VP(P, S), we say that P1 is more
permissive than P2 when the set of traces permitted by P1 is a superset of the set of
traces permitted by P2.

– Synchronization Cost: Given two programs P1, P2 ∈ VP(P, S), we say that P1

has lower cost than P2 when the running time of the synchronization code in P1 is
lower than that of P2.
There is a connection between the cost of synchronization and its permissiveness.

For the synchronization code to be more permissive, it needs to draw finer distinc-
tions between interleavings, which typically requires atomically observing more of the
program’s state. Observing more of the program’s state means increasing the synchro-
nization cost.

In general, the user would like to maximize permissiveness and minimize the cost.
However, the synchronization solution that provides maximal permissiveness maybe
too costly. There may be another (incomparable) solution, with lower permissiveness
and lower cost, which is acceptable. We let the user specify an upper bound on the cost,
and infer a maximally permissive solution within the limits of her acceptable cost.

There are various synchronization mechanisms made available to concurrent pro-
grammers today. In this paper we choose to focus on the classical conditional critical
regions (CCRs), an elegant construct originally introduced by Hoare [16]. A CCR con-
sists of a guard and a sequence of statements that are to be executed atomically if the
guard evaluates to true. If the guard evaluates to false, the thread blocks until it is able to
atomically re-evaluate the guard. Guards only observe program state, but cannot mod-
ify it. CCRs have been implemented as a synchronization construct in the language
Edison [13], as a language extension of Java via software transactional memory [14],
and recently in the high-performance parallel language X10 [30]. One of the advan-
tages of CCRs over other lower-level operational primitives such as locks and condition
variables is their concise and declarative nature.

One of the key challenges in using CCRs is to find the appropriate guard expres-
sions. A programmer must address the following: (i) correctness — guards must elim-
inate invalid interleavings that violate S; (ii) permissiveness — guards should allow as
many interleavings as possible: a thread executing a guard should not block unless its
execution is doomed to violate S; (iii) cost — it is important to reduce the cost of evalu-
ating the guard expression. This cost is typically dictated by the number of shared vari-
ables accessed in the guard, because the guard is evaluated atomically. Hence, one way
to reduce the cost is by restricting the code to observe only a subset of these variables
variables. There is a trade-off between the above components. For example, limiting
the cost of the guard may reduce the permissiveness. Moreover, manually dealing with
these trade-offs may require the programmer to simultaneously consider all guards in
all of the CCRs in the program.

This work addresses the challenge of automatically inferring correct and maximally
permissive guards, without exceeding the upper bound on the cost of the guards, speci-
fied by the user. This bound restricts the language of guards — the expressions that can
be used as guards — to those that cost less than the specified bound.

Consider a concurrent program P , a specification S, and a language of guards LG.
We denote by VP(P, S, LG) the set of programs that satisfy S and are obtained from
P by adding guards from LG. It is possible that no program P ′ ∈ VP(P, S, LG) per-
mits all valid interleavings of P . The reason is that the language LG may not be ex-
pressive enough to distinguish between a valid and an invalid interleaving and thus
a valid program P ′ must avoid both. It is therefore natural to define the notion of a
maximally-permissive program under a given language of guards: P ′ ∈ VP(P, S, LG)
is maximally-permissive with respect to LG if there is no program in VP(P, S, LG) that
permits more interleavings than P ′. In other words, it is impossible to modify P ′ using
expressions from LG to permit more interleavings without violating the specification S.
Our goal in this paper can be stated as follows:

Given a concurrent program P , a specification S, and a language of guards
LG, construct a program P ′ ∈ VP(P, S, LG), such that P ′ is maximally per-
missive with respect to LG, and has minimal synchronization cost.
The above problem statement is closely related to the ones addressed by program

repair [19] and controller synthesis [27]. However, in contrast to these approaches, our
work focuses on inferring synchronization code that observes the state without modi-
fying it, and takes into account the cost of synchronization when attempting to find the
maximally permissive solution.

2

1.1 Main Contributions

The contributions of this paper can be summarized as follows:

– We present a technique for automatically inferring correctly-synchronized concur-
rent programs. To explore alternative choices of synchronization, we let the user
control the upper bound on the cost.

– We first present an exponential algorithm that infers a maximally permissive pro-
gram for a given language of guards. Next, we define a greedy algorithm that infers,
under certain conditions, the maximally permissive program for the given language
of guards. Both algorithms minimize synchronization cost.

– We implemented a prototype of our approach and applied it to several programs,
including classical ones such as dining philosophers and asynchronous counters.

Next, we use a simple example to illustrate the challenges that our goal presents,
and show how they are addressed in our approach.

1.2 A Simple Motivating Example

Fig. 1 is a simple program consisting of three operations op1, op2, and op3, that are
executed concurrently by the client program (the main procedure). The interleavings
for this example are shown in Fig. 3. In this example, the global state consists of the pro-
gram counter of each of the three threads, and the value of the shared variables x,y,z.
We denote the global state using a tuple 〈pc1, pc2, pc3, x, y, z〉 where pc1,pc2, pc3 are
program counters and x, y, z are the values of the corresponding shared variables. For
this program, we would like to guarantee that the global invariant y 6= 2 ∨ z 6= 1 is
maintained. Unfortunately, while most interleavings indeed satisfy this specification,
the interleaving x=z+1;z=y+1;y=x+1 leads to its violation. In the figure, we use nodes
with red dotted boundaries to denote states in which the invariant is violated.

op1 { 1: x = z + 1 }
op2 { 2: y = x + 1 }
op3 { 3: z = y + 1 }

main:
int x = 0, y = 0, z = 0;
op1 || op2 || op3

Fig. 1. An example program with three threads.

Implementability Our goal in the example is to construct a new maximally permissive
program in which the invalid interleaving above is not allowed. Generally, to eliminate
invalid traces, we consider the (possibly infinite) set of program traces represented using
a transition system, and compute a subset of the transitions in the transition system for
which all resulting traces are guaranteed to be accepting. However, since our goal is to
construct a program, it is not sufficient to find a valid transition system, we need to find
one that is expressible as a program in the provided programming language. Similar
implementability challenges occur in other synthesis settings, e.g., synthesis of reactive
modules [27].

Cost vs. Permissiveness The ability to avoid a specific transition depends on the amount
of information that can be obtained atomically from the global state and reflected in a
CCR guard. Atomically reading the entire program state is often too costly. By reduc-
ing the cost of synchronization we restrict the languages of guards. When the language
of guards is restricted, the information available for a guard might not be sufficient to

3

uniquely identify a single transition. This limited observability induces a natural equiv-
alence between transitions. Informally, we define two transitions to be equivalent when
they execute the same statement, and their source states cannot be distinguished by the
language of guards. Under limited observability, the addition of a guard to a statement
in order to eliminate a transition t results in the elimination of all transitions that are
equivalent to t.

Fig. 2(a) shows a valid version of the example of Fig. 1 using CCRs with guards
where the bound on the cost allows the solution to observe the entire program state.
The synchronization in this program was automatically inferred by our tool. In this pro-
gram, the guard (x 6= 1 ∨ y 6= 0 ∨ z 6= 0) (directly) eliminates only the transition

〈e, 2, 3, 1, 0, 0〉 z=y+1−→ 〈e, 2, e, 1, 0, 1〉 which would have inevitably led to an error state.
The transition system for the program of Fig. 2 is shown in Fig. 4 (a). Removed transi-
tions and states are shown as greyed-out. Note that in this example, allowing the guards
to observe the values of all shared variables leads to the maximally permissive result of
only eliminating invalid interleavings.

op1 { 1: x = z + 1 }
op2 { 2: y = x + 1 }
op3 { 3: (x 6= 1 ∨ y 6= 0 ∨ z 6= 0) ->

z = y + 1 }

op1 { 1: (x 6= 0 ∨ z 6= 0) ->
x = z + 1 }

op2 { 2: y = x + 1 }
op3 { 3: (x 6= 1 ∨ z 6= 0) ->

z = y + 1 }
(a) (b)

Fig. 2. Operations of the example program with synchronization using observability of (a) all
shared variables , and (b) variables x,z.

< 1,2,3,
 0,0,0 >

< e,2,3,
 1,0,0 >

x=z+1

< 1,e,3,
 0,1,0 >

y=x+1

< 1,2,e,
 0,0,1 >

z=y+1

< e,e,3,
 1,2,0 >

y=x+1

< e,2,e,
 1,0,1 >

z=y+1

< e,e,3,
 1,1,0 >

x=z+1

< 1,e,e,
 0,1,2 >

z=y+1

< e,2,e,
 2,0,1 >

x=z+1

< 1,e,e,
 0,1,1 >

y=x+1

< e,e,e,
 1,2,3 >

z=y+1

< e,e,e,
 1,2,1 >

y=x+1

< e,e,e,
 1,1,2 >

z=y+1

< e,e,e,
 3,1,2 >

x=z+1

< e,e,e,
 2,3,1 >

y=x+1

< e,e,e,
 2,1,1 >

x=z+1

Fig. 3. Transition system for the example program of Fig. 1

Fig. 2(b) shows a valid version of the example of Fig. 1 inferred by our tool,
that uses CCR guards whose cost is limited to only observe the values of the vari-
ables x,z (not the entire program state). The transition system for the program of
Fig. 2 is shown in Fig. 4 (b). Under limited observability, observing only x and z,
the states 〈e, 2, 3, 1, 0, 0〉, 〈e, e, 3, 1, 2, 0〉, and 〈e, e, 3, 1, 1, 0〉 cannot be distinguished
by any guard. Therefore, the guard (x 6= 1 ∨ z 6= 0) added to the statement z=y+1 to

eliminate the bad transition 〈e, 2, 3, 1, 0, 0〉 z=y+1−→ 〈e, 2, e, 1, 0, 1〉 has the side effect of
eliminating the two other equivalent transitions.

4

The key point is that by restricting the cost on synchronization, we may be forced
to use a cheap and coarse synchronization, with limited observability, which cannot
distinguish valid interleavings from invalid ones. In such cases, elimination of invalid
interleavings leads to unavoidable elimination of the valid ones. For example, the pro-
gram in Fig. 2(b) permits a subset of the traces permitted by the program in Fig. 2(a).
More examples of this connection are provided in Appendix B.

(a)

< 1,2,3,
 0,0,0 >

< e,2,3,
 1,0,0 >

x=z+1

< 1,e,3,
 0,1,0 >

y=x+1

< 1,2,e,
 0,0,1 >

(x!=1 || y !=0 || z!=0)
 -> z=y+1

< e,e,3,
 1,2,0 >

y=x+1

< e,2,e,
 1,0,1 >

(x!=1 || y !=0 || z!=0)
 -> z=y+1

< e,e,3,
 1,1,0 >

x=z+1

< 1,e,e,
 0,1,2 >

(x!=1 || y !=0 || z!=0)
 -> z=y+1

< e,2,e,
 2,0,1 >

x=z+1

< 1,e,e,
 0,1,1 >

y=x+1

< e,e,e,
 1,2,3 >

(x!=1 || y !=0 || z!=0)
 -> z=y+1

< e,e,e,
 1,2,1 >

y=x+1

< e,e,e,
 1,1,2 >

(x!=1 || y !=0 || z!=0)
 -> z=y+1

< e,e,e,
 3,1,2 >

x=z+1

< e,e,e,
 2,3,1 >

y=x+1

< e,e,e,
 2,1,1 >

x=z+1

(b)

< e,2,3,
 1,0,0 >

< e,e,3,
 1,2,0 >

y=x+1

< e,2,e,
 1,0,1 >

(x!=1 || z!=0)
 -> z=y+1

< 1,2,3,
 0,0,0 >

(x!=0 || z!=0)
 -> x=z+1

< 1,e,3,
 0,1,0 >

y=x+1

< 1,2,e,
 0,0,1 >

(x!=1 || z!=0)
 -> z=y+1

< e,e,3,
 1,1,0 >

(x!=0 || z!=0)
 -> x=z+1

< 1,e,e,
 0,1,2 >

(x!=1 || z!=0)
 -> z=y+1

< e,2,e,
 2,0,1 >

(x!=0 || z!=0)
 -> x=z+1

< 1,e,e,
 0,1,1 >

y=x+1

< e,e,e,
 1,2,3 >

(x!=1 || z!=0)
 -> z=y+1

< e,e,e,
 1,2,1 >

y=x+1

< e,e,e,
 1,1,2 >

(x!=1 || z!=0)
 -> z=y+1

< e,e,e,
 3,1,2 >

(x!=0 || z!=0)
 -> x=z+1

< e,e,e,
 2,3,1 >

y=x+1

< e,e,e,
 2,1,1 >

(x!=0 || z!=0)
 -> x=z+1

Fig. 4. Different choices of observable state in program guards and the different sets of inter-
leavings they permit: (a) observing all shared variables (Fig. 2), (b) only observe the value of
variables x,z (Fig. 2).

Outline The rest of this paper is organized as follows. In Section 2 we provide necessary
preliminaries. Section 3 defines two algorithms for computing maximally permissive
programs under limited observability. In Section 4 we define an example synchroniza-
tion cost and show how to minimize it. In Section 5, we discuss the challenges of in-
ferring synchronization under abstraction. In Section 6 we briefly discuss our prototype
implementation. Finally, in Section 7 we discuss related work.

The appendix contains additional material: Appendix A describes an algorithm for
minimizing the cost function defined in Section 4, Appendix B provides details on
our example programs, and Appendix C provides proofs for all theorems stated in Sec-
tion 3.

5

2 Preliminaries
Transition System A transition system ts is a tuple 〈Σ, T, Init〉 where Σ is a set of
states, T ⊆ Σ × Σ is a set of transitions between states, and Init ⊆ Σ are the initial
states. For a transition t ∈ T , we use src(t) to denote the source state of t, and dst(t)
to denote its destination state.

For a transition system ts, we use the following notations (see Fig. 5). We use
s Ãts s′ to denote that there exists a path in ts starting in state s and ending in state
s′. Formally, the relation Ãts is the reflexive transitive closure of the successor relation
defined by T. A stuck state is a state that does not have any successors in ts. The set of
stuck states is denoted by Stuckts. A doomed state is a state from which all paths end
in stuck states. The set of doomed states is denoted by Doomedts. We say that a state
s ∈ Σ is reachable when there exists a path to s from some initial state. The set of all
reachable states of ts is denoted by Reachts. A transition system ts is valid, denoted by
valid(ts), if and only if no doomed state is reachable.

For a transition system ts, a trace is a (possibly infinite) sequence of transitions
t0, t1, . . . such that src(t0) ∈ Init and for every i ≥ 0, ti ∈ T and dst(ti) = src(ti+1).
We use [[ts]] to denote the set of traces of a transition system ts. A trace is valid if it
does not contain any doomed state.

s Ãts s′
def
= RTC(T)(s, s′)

successors(s)
def
= {s′|(s, s′) ∈ T}

Stuckts
def
= {s | successors(s) = ∅}

Doomedts
def
= LFP(f)(Stuckts)

f
def
= λX.X ∪ {s | successors(s) ⊆ X}

Reachts
def
= {s ∈ Σ | i Ãts s, i ∈ Init}

valid(ts)
def
= Doomedts ∩ Reachts = ∅

Fig. 5. Definitions for a transition system ts = 〈Σ, T, Init〉.

Conditional Critical Regions (CCRs) The conditional critical region (CCR) construct,
originally introduced by Hoare [16], is an elegant construct that allows the programmer
to specify what operations have to be executed atomically and under what condition. A
CCR has the form: guard → stmt where guard is a boolean expression and stmt is
a statement (including a sequential composition of statements) that have to be executed
atomically. The guard is evaluated atomically and if true, the statements are executed
atomically. Otherwise, the thread blocks until the guard evaluates to true.

Program Syntax For the purpose of this paper, we consider a program that consists of
a set of (named) operations, Op def= {op1, . . . , opn}, and a client. An operation is a code
fragment defined using a simple, flat, programming language with assignment, condi-
tional and unconditional goto, sequential composition, and CCRs. The language does
not contain parallel composition, allocation of threads, nested CCRs, and invocation of
operations.

If not stated otherwise, each basic statement is in a separate CCR, guarded by true,
and the guard is omitted. The user may define CCRs in which the atomic statement
consists of a sequence of statements, and not a single basic statement. We assume that
every statement participates in (exactly one) CCR.

6

We use Var to denote the set of (shared) program variables, which can be referenced
by any operation. To simplify the exposition, we do not use local variables. There is
nothing in our approach that prevents us from using local variables, but having local
variables makes the formal definitions cumbersome. We assume that that all program
variables have integer values.

A client initializes the variables and invokes k threads in parallel, for some k:
opi1 || . . . ||opik

, where 1 ≤ itid ≤ n, 1 ≤ tid ≤ k. Several threads may execute
the same operation. We use op(tid) to denote the operation invoked by a thread whose
identifier is tid, for 1 ≤ tid ≤ k.

Program Semantics Let P be a program with variables Var. A program state s is a pair
〈vals, pcs〉where vals : Var → Int is a valuation of the variables and pcs : {1, . . . , k} →
Int is the program counter of each thread, which ranges over program locations in the
operation executed by the thread. We use ΣP to denote the set of all program states.
The set of initial program states is denoted by InitP ⊆ ΣP . The value of a program
expression e in a state s ∈ ΣP is denoted by [[e]](s). It is computed using standard
evaluation rules for program expressions.

We define a transition system for a program P to be 〈ΣP , TP , InitP 〉 where a tran-
sition (s, s′) ∈ TP is labeled by a program location l and a thread identifier tid. A
transition (s, s′) labeled with l and tid is in TP if (i) the program counter of the thread
tid in state s is at program location l, (ii) the guard of the CCR at program location l
is satisfied in s, and (iii) execution of the statement corresponding to CCR at l in pro-
gram state s by thread tid results in state s′. In addition, we guarantee that states at
the program exit are not stuck by adding the corresponding self-loop transitions to ts.
For a transition t ∈ TP , we use lbl(t), and tid(t) to denote the corresponding program
location and thread id. We use ccr(t) to denote the (unique) CCR at program location
lbl(t).

The semantics of a program P , denoted by [[P]], is the (prefix closed) set of traces
of the corresponding transition system 〈ΣP , TP , InitP 〉.
Specification The user can specify a global invariant S, which describes a set of states.
An invariant can refer to program variables and to the program counter of each thread
(e.g., to model local assertions). Our approach can be extended to handle any temporal
safety specifications, expressed as a property automaton, by computing the synchronous
product of program’s transition system and the property automaton [8].

We define a transition system for a program P and global invariant S to be 〈ΣP , TP,S , InitP 〉
where TP,S ⊆ TP is defined by removing from TP all transitions in which the source
state does not satisfy S: TP,S = {t ∈ TP |src(t) satisfies S}. This effectively means
that in the transition system for P and S, all states which do not satisfy S become stuck
states — states with no successor transitions. In such cases, the transition system for P
and S is not valid.

A program P is valid with respect to S if and only if the corresponding transition
system 〈ΣP , TP,S , InitP 〉 is valid. This notion of validity includes both safety properties
defined by the global invariant S and a progress guarantee that the program does not
get stuck.

Because we deal with non-deterministic programs in which a state may have more
than one transition, a scheduler can pick one of these transitions and executes it. We

7

assume strong fairness of the scheduler, i.e., if a transition is enabled infinitely often, it
is taken infinitely often.

In the next sections, we often refer to a transition system obtained from the transition
system of P and S by removing some transitions: ts = 〈ΣP , T, InitP 〉, where T ⊆
TP,S .

3 Maximally-Permissive Programs
Given an input program P and a specification S, we modify P by adding synchroniza-
tion such that the modified program satisfies the specification S. Conceptually, we take
the following steps: (i) construct the transition system ts of P and S; (ii) remove a min-
imal set of transitions from ts such that the resulting transition system ts′ is valid with
respect to S; (iii) implement ts′ as a program, by adding synchronization code to P .

In this work, we rely on standard techniques to construct the transition system of P ,
e.g., [17], and focus on steps (ii) and (iii).

By limiting the cost of synchronization code, we induce limited observability. Hence,
not every transition system obtained by removing a bunch of transitions from ts can be
implemented as a program by adding synchronization code to P .

3.1 Removing Transitions under Limited Observability
To remove a transition t, and implement the result as a program, the input program P is
modified by strengthening the guard of ccr(t), preventing its execution from the source
state src(t). When the state src(t) can be uniquely characterized by an expression in
LG, we can use its characterization to strengthen the guard of ccr(t) without affecting
transitions other than t. Our ability to uniquely characterize a state src(t) depends on
the available language of guards. Usually, due to limited observability, we are not able
to uniquely characterize src(t).

When the language of guards cannot uniquely characterize src(t), the removal of
the transition t cannot be implemented without removing other transitions executing
the same statement, because they have the same guard. We say that two transitions are
equivalent when the language of guards is not expressive enough to remove one of the
transition without removing the other one. We now provide a formal definition of the
transition equivalence under limited observability.

Observational Equivalence First, we define equivalence relation on states with respect
to LG. Two states are equivalent with respect to LG, when there is no guard in LG that
can be used to distinguish them. Formally, for all s, s′ ∈ ΣP ,

s ≈LG s′ if and only if for all g ∈ LG.[[g]](s) = [[g]](s′) (1)

We now define equivalence relation on transitions with respect to LG. Two tran-
sitions t and t′ are equivalent when they execute the same statement and their source
states are indistinguishable by LG. Formally, for all t, t′ ∈ TP,S ,

t ≈LG t′ if and only if lbl(t) = lbl(t′) and src(t) ≈LG src(t′) (2)

We use [t]LG to denote the equivalence class of t with respect to ≈LG. For a set of
transitions E ⊆ TP,S , we use [E]LG to denote ∪t∈E [t]LG.

8

Characterizing Observable States We define a characterization function to respect the
equivalence relation ≈LG. Let χ be a function that takes as input a state s ∈ ΣP and
returns a guard in LG. We say that χ characterizes the states observable by LG, when
for all s, s′ ∈ ΣP ,

[[χ(s)]](s′) = true if and only if s ≈LG s′ (3)

Our method is applicable to any guard languages for which a characterization func-
tion is defined. Usually, it is easy to define a characterization function, e.g., by enumer-
ating the values of observable variables in the state.

Example 1. Consider the program of Fig. 1 and its transition system in Fig. 3. Let LG
be boolean combinations of predicates of the form var == c, where var is one of the
program variables {x,z}, and c is a constant. Under LG, many of the states in Fig. 3 are
equivalent. For example, the states s1 = 〈e, 2, 3, 1, 0, 0〉, s2 = 〈e, e, 3, 1, 2, 0〉, and s3 =
〈e, e, 3, 1, 1, 0〉 are equivalent as they cannot be distinguished by LG. Consequently, the
transitions corresponding to the statement z=y+1 outgoing from s1, s2, and s3 are
equivalent. When the characterization function is defined by enumerating the values of
observable variables in the state, χ(s1)=χ(s2)=χ(s3) = (x == 1)∧(z == 0).

3.2 Implementability

We can use χ to define a guard in LG that removes a transition t ∈ TP,S , and all the
transitions in its equivalence class [t]LG, but does not affect any other transitions.

Lemma 1. For all t, t′ ∈ TP,S such that lbl(t) = lbl(t′), t′ ≈LG t if and only if
[[χ(src(t))]](src(t′)).

A transition system ts is implementable from P and LG when there exists a program
P ′ obtained from P by introducing guards from LG such that the set of traces of ts and
P ′ are the same.

The following theorem relates implementability to observational equivalence. Intu-
itively, if we remove an equivalence class of transitions from an implementable transi-
tion system, the result is an implementable transition system.

Theorem 1 (Implementability). For every R ⊆ TP,S , the transition system ts defined
by 〈ΣP , TP,S \ [R]LG, InitP 〉 is implementable from P and LG:
(1) There exists a program P ′ such that [[P ′]] = [[ts]].
(2) P ′ can obtained from P by introducing guards from LG.

Given P and [R]LG, for some R ⊆ TP,S , the simple algorithm implement shown
in Fig. 6 computes such P ′. It relies on Lemma 1 to guarantee that only transitions from
[R]LG are removed. The algorithm constructs P ′ from P by strengthening the guards
of CCRs that correspond to transitions in [R]LG.

For a transition t, we use P ′[l : ¬χ(src(t))∧guard → stmt] to denote the program
obtained from P ′ by strengthening the guard of ccr(t) to be ¬χ(src(t))∧ guard. Note
that by Lemma 1 this change is sufficient to remove the transition t itself and all its
equivalence class [t]LG, but only them.

9

implement(P: Program, R : Set of Transitions) : Program {
P ′ = P
foreach t ∈ R

let ccr(t) be l : guard → stmt in
P ′ = P ′[l : ¬χ(src(t)) ∧ guard → stmt]

return P ′

}
Fig. 6. The procedure implement.

3.3 Maximally Permissive Programs

We now define the natural notion of a maximally-permissive program for a given lan-
guage of guards. We note that maximal permissiveness arises in many other settings
(e.g., [21, 29]).

Definition 1 (Maximally-Permissive). Consider a program P and a language of guards
LG. Let P ′ be a program obtained from P by introducing guards from LG. P ′ is
maximally-permissive with respect to LG if and only if P ′ is valid and for every pro-
gram P ′′ obtained from P by introducing guards from LG, if [[P ′]] ⊂ [[P ′′]], then P ′′ is
not valid.

We use MP(P, LG) to denote the set of all maximally-permissive programs that
can be obtained from P by introducing guards from LG. Note that the programs in
MP(P, LG) have identical or incomparable sets of traces, i.e., for every pair P1, P2 ∈
MP(P, LG), [[P1]] 6⊂ [[P2]]. When we cannot eliminate all invalid interleavings (that end
in stuck states) only by introducing guards, MP(P, LG) is empty.

In the rest of this section, we show that every maximally-permissive program can
be implemented by removing edges from the transition system of P . We present two
algorithms for computing maximally permissive programs with respect to the language
of guards LG. The language LG is required in all of the algorithms. To avoid clutter we
do not pass it as an explicit parameter.

3.4 EXHAUSTIVE Algorithm

Theorem 1 allows us to implement any transition system defined by removing a set of
transitions [R]LG from the transition system that corresponds to the original program
P and S. We are interested in valid transition systems. Therefore, we restrict our atten-
tion to sets of transitions that yield valid and implementable transition systems. Rather
than considering all subsets of transitions as possible candidates for removal, we define
the set of bad transitions, and only consider transitions from this set as candidates for
removal.

We define a bad transition as a transition that lies on an invalid trace. More formally,
given a transition system 〈Σ, T, Init〉 we say that a transition t ∈ T is a bad transition
when i Ãts src(t), dst(t) Ãts d, such that i ∈ Init, d ∈ Doomedts. Using this defi-
nition, we would like to construct an algorithm that computes a maximally permissive
program, but only considers bad transitions as candidates for removal.

10

EXHAUSTIVE(P : Program) : Program {
1: R = ∅
2: while (true) {
3: ts = 〈ΣP , TP,S \R, InitP 〉
4: if valid(ts) return implement(P,R)
5: B = bad-transitions(ts)
6: if B = ∅ abort “cannot find valid synchronization”
7: select a transition t ∈ B
8: R = R ∪ [t]LG

}
}
bad-transitions(ts : TransSys) : Set of Transitions {

let ts be 〈Σ, T, Init〉 in
return {t ∈ T | i Ãts src(t), dst(t) Ãts d, i ∈ Init, d ∈ Doomedts}

}
Fig. 7. EXHAUSTIVE algorithm.

Side effects Implementability restrictions require that when we remove a transition t
we also remove all other equivalent transitions [t]LG. As a result, the removal of a bad
transition might introduce additional bad transitions.

Definition 2. We say that a removal of a transition t has a side effect when |[t]LG| > 1.
When the removal of a transition t does not have a side-effect, we say that it is side-
effect free.

Example 2. Consider the example program of Fig. 1 and its transition system in Fig. 3.
Assume that the algorithm has chosen to remove the bad transition t = 〈e, 2, 3, 1, 0, 0〉 z=y+1−→
〈e, 2, e, 1, 0, 1〉. The statement executed by this transition is the statement 3: true →
z=y+1. Under observability limited to the variables x,z, this removal has the side ef-
fect of removing the (equivalent) transitions from 〈e, e, 3, 1, 1, 0〉 and 〈e, e, 3, 1, 2, 0〉.
Since there are no other outgoing transitions from these states, the removal of t makes
these states doomed, thus adding bad transitions.

Because the removal of a bad transition can introduce additional bad transitions (by
introducing doomed and stuck states), an algorithm based on selecting bad transitions
has to remove transitions gradually, and recompute the set of bad transitions after every
step. This leads to the following algorithm.

The EXHAUSTIVE algorithm Fig. 7 shows the EXHAUSTIVE algorithm for inferring syn-
chronization. The algorithm takes a program as input and constructs a valid program by
iteratively eliminating bad transitions. The algorithm maintains a set R of transitions
to be removed. Initially, this set is empty. On every iteration of the algorithm, we con-
struct a transition system ts by removing the transitions in R from the transition system
of the input program P . If the resulting transition system is valid, the algorithm uses
the procedure implement to return a modified version of P that avoids all transitions
in R. If the transition system ts is not valid, the algorithm computes a set of bad tran-
sitions by using the procedure bad-transitions(ts). If the set is empty, it means that the

11

transition system is not valid, but there are no more bad transitions to be removed (in
this algorithm, it means that no transitions in ts remain and all states in Init are stuck).
If the set B of bad transitions is not empty, the algorithm non-deterministically chooses
one of the transitions in B as the transition to be removed. To guarantee that a program
that avoids transitions in R is implementable, when we add a bad transition t to R, we
add to R all transitions in its equivalence class [t]LG.

Theorem 2 (Correctness of EXHAUSTIVE). A run of the EXHAUSTIVE algorithm termi-
nates with either a valid program or abort.

Example 3. This example demonstrates how the algorithm is applied to the program
of Fig. 1 and its transition system in Fig. 3. The first step in the algorithm it to check
whether ts = 〈ΣP , TP,S \ R, InitP 〉 is valid. Since at this point R = ∅, the transi-
tion system is the one of Fig. 3 which is invalid (there is a trace reaching the stuck
state 〈e, e, e, 1, 2, 1〉). The algorithm now computes the set B, and lets assume that it

chooses to remove the bad transition t = 〈e, 2, 3, 1, 0, 0〉 z=y+1−→ 〈e, 2, e, 1, 0, 1〉. The
statement executed by this transition is the statement 3: true → z=y+1. Under full
observability, χ(src(t)) = (x == 1 ∧ y == 0 ∧ z == 0). Using this formula, the
algorithm creates a new program P ′ in which the statement has the guard ¬sep, that is:
3: (x 6= 1 ∨ y 6= 0 ∨ z 6= 0) → z=y+1.

Next, we show how to use the EXHAUSTIVE algorithm to compute all maximally
permissive programs for a given input program, specification and language of guards.

Lemma 2. For every maximally permissive program P ′ ∈ MP (P, LG), there exists a
run of the EXHAUSTIVE algorithm that returns P ′′ such that [[P ′]] = [[P ′′]].

Let PS denote the set of (valid) programs obtained from all possible runs of EX-
HAUSTIVE, for different choices of t ∈ B. To compare permissiveness of two programs
P1, P2 ∈ PS, we look at the corresponding sets of removed transitions R1, R2 ⊆ TP,S ,
computed by the EXHAUSTIVE algorithm, such that Pi = implement(P, Ri), for i =
1, 2. If R1 ⊂ R2, then the transition system obtained by removing R1 has more traces
(is more permissive) than the transition system obtained from R2. Formally, let RS be
the set of sets of removed transitions that correspond to the programs in PS. We de-
fine the operation min(RS) that chooses from RS the minimal sets of transitions that
guarantee a valid transition system:

min(RS) def= {R ∈ RS | ∀R′ ∈ RS.R′ 6⊂ R} (4)

This allows us to generate all maximally permissive programs:

Theorem 3. For every maximally permissive program P ′ ∈ MP (P, LG), there exists
R ∈ min(RS) such that [[P ′]] = [[implement(P, R)]]. For every R ∈ min(RS),
implement(P,R) ∈ MP (P, LG).

Complexity A single run of EXHAUSTIVE is polynomial in the size of the transition
system. The size of RS is exponential in the transition system. Computing min(RS) is
polynomial in the size of RS. Therefore, computing MP (P, LG) is exponential in the
size of the transition system.

12

3.5 GREEDY Algorithm
The EXHAUSTIVE algorithm of Fig. 7 is choosing transitions for removal from the set
bad-transitions(ts). This set may also contain transitions from one doomed state to an-
other. Removal of a transition between doomed states is redundant, as such a tran-
sition will become unreachable (and therefore transitively removed) when transitions
into dominating doomed states are removed.

We can further leverage the structure of the transition system and avoid removal of
a transition between doomed states by having the algorithm pick transitions from the
cut between non-doomed and doomed states.

The GREEDY algorithm is a modification of the EXHAUSTIVE algorithm such that
instead of using bad-transitions(ts), it uses the following procedure cut-transitions(ts).
cut-transitions(ts : TransSys) : Transitions {
let ts be 〈Σ, T, Init〉 in
return {t ∈ Tts | i Ãts src(t), i ∈ Init, src(t) /∈ Doomedts, dst(t) ∈ Doomedts}

}
Example 4. Consider the program of Fig. 1. Assume the language of guards is as
earlier boolean combinations of equality to constants, and is limited to only observ-
ing the values of variables x and z. The starting point of the algorithm is the transi-
tion system of Fig. 3. In the first step, the only transition in the cut is the transition
t = 〈e, 2, 3, 1, 0, 0〉 z=y+1−→ 〈e, 2, e, 1, 0, 1〉, and so the algorithm chooses to eliminate
this transition. The statement executed by t is 3: true → z=y+1. Therefore, this step
results in the addition of the guard (x 6= 1∨z 6= 0) to the statement z=y+1, and has the
side-effect of removing the transition from 〈e, e, 3, 1, 1, 0〉 and 〈e, e, 3, 1, 2, 0〉, which
now become doomed states. The transition system after this step is shown in Fig. 8. In
the second step, the algorithm chooses to eliminate the transition 〈1, e, 3, 0, 1, 0〉 x=z+1−→
〈e, e, 3, 1, 1, 0〉. This adds the guard (x 6= 0 ∨ z 6= 0) to the statement x=z+1, which
has the side effect of removing the transition 〈1, 2, 3, 0, 0, 0〉 x=z+1−→ 〈e, 2, 3, 1, 0, 0〉. The
transition system after this step is shown in Fig. 4 (b), and only permits valid traces. The
resulting program is shown in Fig. 2.

Theorem 4 (Correctness of GREEDY). A run of the GREEDY algorithm terminates with
either a valid program or abort.

When the removal of transitions has no side-effects, we can show that GREEDY can
compute a maximally permissive program for a given input program, specification and
language of guards.

Theorem 5. If a run of GREEDY has no side-effects then it computes a maximally per-
missive program for P and LG or aborts. If it aborts, then MP(P, LG) = ∅.

Note that the theorem only requires that transitions removed during the run of
GREEDY to be side-effect free. It does not require full observability. That is, even under
limited observability, the algorithm can produce maximally permissive results. How-
ever, in cases where limited observability causes side-effects, there are no guarantees:
GREEDY may fail or succeed in finding a maximally permissive solution. The following
example demonstrates that GREEDY fails to find a maximally permissive program when
EXHAUSTIVE manages to find it.

13

< 1,2,3,
 0,0,0 >

< e,2,3,
 1,0,0 >

x=z+1

< 1,e,3,
 0,1,0 >

y=x+1

< 1,2,e,
 0,0,1 >

(x!=1 || z!=0)
 -> z=y+1

< e,e,3,
 1,2,0 >

y=x+1

< e,2,e,
 1,0,1 >

(x!=1 || z!=0)
 -> z=y+1

< e,e,3,
 1,1,0 >

x=z+1

< 1,e,e,
 0,1,2 >

(x!=1 || z!=0)
 -> z=y+1

< e,2,e,
 2,0,1 >

x=z+1

< 1,e,e,
 0,1,1 >

y=x+1

< e,e,e,
 1,2,3 >

(x!=1 || z!=0)
 -> z=y+1

< e,e,e,
 1,2,1 >

y=x+1

< e,e,e,
 1,1,2 >

(x!=1 || z!=0)
 -> z=y+1

< e,e,e,
 3,1,2 >

x=z+1

< e,e,e,
 2,3,1 >

y=x+1

< e,e,e,
 2,1,1 >

x=z+1

Fig. 8. First step of the GREEDY algorithm for the example of Fig. 1 with observability limited to
variables x,z.

Example 5. Consider the program of Fig. 1, and its transition system in Fig. 3. For
this program, when the guard language is limited to only allow the observability of
the variable z, the result of GREEDY is a program that admits no traces. However, the
EXHAUSTIVE algorithm does find a solution with this guard language. The solution found
by EXHAUSTIVE is the addition of a guard z 6= 0 to the statements x=z+1 and z=y+1.

In most practical examples we considered, GREEDY was always able to find the best
solution, even with side-effects. Characterizing more accurately when GREEDY guaran-
tees maximal permissiveness is a subject of future work.

4 Reducing Synchronization Cost
The algorithms presented so far infer correct (and maximally permissive) guards whose
cost is less than a user-specified upper bound, however, the guards they produce are
not guaranteed to have the least synchronization cost for that level of permissibility.
Therefore, it may be possible to further reduce the cost of the guards while maintaining
correctness and maximal permissiveness. We now demonstrate how this is done for a
specific cost model.

Cost as the Number of Shared Accesses Depending on the environment and the under-
lying architecture (e.g. specific cache costs), there may be many different cost models
for comparing the synchronization cost of two guard expressions. Here, we consider
one intuitive cost model: we compare the number of distinct shared variables accessed
in each guard. This is a natural measure reflecting the atomic observations about the
shared state.

Formally, given a program P , we denote the number of distinct variables accessed
by the CCR guard in location l of P by nga(P, l). Given a program P , and a specifica-
tion S, we say that P1 ∈ VP(P, S) has lower cost than a program P2 ∈ VP(P, S) if for
every location l of P , nga(P1, l) ≤ nga(P2, l).

The language of guards is restricted to boolean combinations of equalities between
a variable in the user-provided set Obs and an (integer) constant. We denote this lan-
guage of guards by EQ(Obs) and define a characterization function χ. The function

14

characterizes the observable part of a state by conjoining the values of all observable
program variables:

χObs(s)
def=

∧

v∈Obs,[[v]](s)=c

v = c

It is easy to see that χObs is well defined and characterizes the states observable by the
language defined above. The characterization function χObs can be extended naturally
to apply to sets of states. Given a set of states S ⊆ Σ, χObs(S) =

∨
s∈S χObs(s).

The simple version of implement shown in Fig. 6 uses a characterization func-
tion χ which finds a guard in the language, but does not attempt to minimize its cost.
Synchronization derived using simple version of implement always has the same
high cost: for each label l, nga(P, l) = |Obs|. Our tool uses an improved version of
implement, which results in a program with the same permissiveness as for the sim-
ple version of implement, but has minimal cost. This version of implement is
based on the notion of a separator, explained in Appendix A.

5 Challenges in Inferring Synchronization under Abstraction
The algorithms presented in this paper operate on a finite transition system. To apply
our technique to infinite-state systems, we can use finite-state abstraction.

Given a program P and a specification S, we first compute an abstract transition
system for it (see, e.g., [9]). Intuitively, we partition the set of concrete states Σ into
a finite number of equivalence classes, A, the states of the abstract transition system.
There is a transition (a, a′) in the abstract transition system if there exists a transition
t in the concrete transition system for P and S such that src(t) and dst(t) are in the
partitions a and a′, respectively.

op1 {
1: x = x + 1
2: y = y + 1
3: goto 1

}

op2 {
4: x = x - 1
5: y = y - 1
6: goto 4

}

main {
x = 0, y =0;
op1 || op2

}

Fig. 9. Example program with an infinite state space.

Example 6. Fig. 9 shows a simple example program that has an infinite state space. For
this example program, we would like to make sure that the invariant I = (pc2 = 6) ⇒
even(x + y). To apply our algorithm for this program, we employ a simple abstraction
that abstracts the value of variables to their parity. Fig. 10 shows the synchronization
inferred for this program under the parity abstraction.

We can apply any of the algorithms from Section 3 to an abstract transition sys-
tem. If the algorithm does not abort, then the resulting program is guaranteed to satisfy
S. However, under abstraction, we cannot guarantee that the resulting program does
not reach a stuck state. That is, we might generate guards that make a thread block
indefinitely. The reason for this limitation is that under abstraction we might lose the
information that a state becomes stuck.

We can conservatively eliminate abstract states that potentially become stuck, los-
ing the ability to guarantee that the result is maximally-permissive. In many cases the

15

op1 {
1: ((¬even(x) ∨ ¬even(y)) ∧ ((even(x) ∨ even(y))) -> x = x + 1
2: y = y + 1
3: goto 1

}
op2 {
4: x = x - 1
5: ((¬even(x) ∨ ¬even(y)) ∧ ((even(x) ∨ even(y))) -> y = y - 1
6: goto 4

}

Fig. 10. Inferred synchronization for the infinite state program of Fig. 9.

conservative approach does not manage to find even a single valid program and aborts.
Another approach is to refine an abstract transition system when a state becomes po-
tentially stuck. In the case that the concrete transition system has a finite bisimulation
quotient, our algorithm terminates and produces a valid program (or abort). Yet another
approach is to use an abstraction that record information about stuck states. There are
abstractions that can record some progress properties, e.g., [5], but their precision for
properties of stuck states has not been evaluated. This is a challenging problem, but it
is beyond the scope of this paper.

6 Prototype Implementation
We have implemented a prototype tool based on the GREEDY algorithm. The tool takes as
input a program P , which uses CCRs, a specification S and a set of variables Obs ⊆ Var
that guards may refer to. This set of variables is used to determine an upper bound on the
synchronization cost. The tool then automatically infers correct synchronization with
minimal cost (with cost function defined in Section 4). The implementation is based on
the SPIN model-checker [17].

We used the tool on several small but instructive examples. In all of the examples
we start with a program that is initially incorrect and does not use any synchronization.
We use the tool to automatically infer the maximally permissive synchronization for
the given synchronization cost. The examples illustrate the connection between syn-
chronization cost and permissiveness. We describe these examples in Appendix B.

7 Related Work
Synthesis from Temporal Specifications Early work by Emerson and Clarke [7] uses
temporal specifications to generate a synchronization skeleton. The generated programs
assume full observability of the program state. This has been later extended by Attie and
Emerson to synthesize programs with finer grained atomic sections [2]. Early work by
Manna and Wolper [23] synthesizes CSP programs. In contrast, we synthesize programs
for shared memory. These approaches have no notion of optimality, and no notion of
synchronization cost. Our approach is to phrase the question of synchronization cost
and optimality as maximal permissiveness under limited observability of the guards.
We also assume that the computation performed by the program is provided, and the
goal of the synthesis algorithm is to add the required synchronization that guarantees

16

that the specification is satisfied. Our work can be viewed as supervisory controller syn-
thesis [29], because we control the program by observing its state and blocking certain
interleavings, without modifying the state. Pnueli and Rosner [27] consider the problem
of synthesizing a reactive module based on an LTL specification. They discuss the prob-
lem of implementability in this setting, and define necessary and sufficient conditions
for the implementability of a given specification.

Program Repair Jobstmann et. al. [19] consider the problem of program repair as a
game. In their approach, a game is constructed from (a modified version of) the pro-
gram to be repaired, and an LTL specification of the correctness property. The problem
of repair boils down to finding a winning strategy in that game. This approach has been
later extended to provide fault localization and fixing [36, 20]. Similarly to us, the work
of Janjua et al. [18] presents an algorithm that eliminates incorrect program traces in
a concurrent program by inserting blocking calls. However, they do not discuss syn-
chronization cost or its inherent connection to permissiveness. Finally, our algorithms
can also be viewed as a special case of inferring a maximally-permissive memoryless
winning strategy in a game with incomplete information.

Maximal Concurrency The work of Joshi et. al. [21] discusses a method for proving
that a given program P is maximally concurrent (permissive) with respect to a specifica-
tion S. This requires a manual phase where the input program P is translated to another
equivalent program P’ and maximal concurrency is then manually proved on P’. In
contrast, we recognize that maximal concurrency is only one component of a more gen-
eral problem that involves other important dimensions such as synchronization cost. We
study how both of these two dimensions are connected and provide algorithms that take
into account both dimensions when inferring synchronization.

Formal Derivation Another related line of research is the systematic derivation of con-
current programs from formal specifications [1, 12]. Typically, such derivations start
from a correct sequential or a coarse-grained atomic program and at each step prove
that its refinement to a finer-grained atomic program is correct. This approach is typi-
cally used to re-construct existing algorithms, rather than to study how to create new
ones. Usually, these methods are not concerned with maximal concurrency or observ-
ability (as they are reconstructing an existing algorithm with already fixed dimensions).

Dynamic Approaches The problem of restricting the program to valid executions can
be addressed by monitoring the program at runtime and forcing it to avoid executions
that violate the specification. However, restricting the executions of a program at run-
time requires a recovery mechanism in case the program already performed a step that
violates the specification, and/or a predictive mechanism to check whether future steps
lead to a violation.

Existing approaches using recovery mechanisms typically require additional user
annotations to define a corrective action to be taken when the specification is violated.
For example, software transactional memory [31] is a special case of a recovery mech-
anism in which the user provides atomicity annotations defining atomic sections. The
system then requires the absence of read/write conflicts, and if this property is violated,
the execution of an atomic section is restarted. Other recent examples include Tolerace

17

[26] which creates local copies of variables to detect and recover from race conditions,
and ISOLATOR [28] which can recover from violations of isolation.

Existing approaches that use predictive mechanisms such as deadlock avoidance
methods [10], are generally only successful for limited classes of properties, as the pre-
dictive mechanism needs to predict the violation in a state that still permits its avoid-
ance, which is a hard problem.

Search-based Synthesis In previous work [39, 38], we used a semi-automated approach
for exploring a space of various concurrent algorithms: concurrent garbage collectors
and linearizable data-structures. The work used a search procedure and an abstraction
specifically geared towards the safety property required for the specific domain.

In the work of [4], the authors deal with mutual exclusion algorithms. They perform
syntactic exploration and discover various interesting algorithms, some of which are
better than known solutions under the given space constraints.

In sketching [34, 35, 32], the user provides a reference program of the desired im-
plementation and some sketches which partially specifies certain optimized functions.
The sketching compiler automatically fills in the missing low-level details to create an
optimized implementation. Sketching has been used to synthesize several bitstream pro-
gram implementing cryptographic ciphers. More recently [33], sketching has been used
to generate concurrent data-structures based on a bounded-checking procedure.

In previous work [39], we used a semi-automated approach for exploring a space
of concurrent garbage collector algorithms. That work used a limited search proce-
dure and an abstraction specifically geared towards the safety property required for that
specific domain. In [38], we used a similar search procedure for deriving linearizable
data-structures. The work of [24, 3] on superoptimization finds the shortest instruction
sequence to compute a function.

Locks for Atomicity Recently, there have been several works on pessimistic implemen-
tation of atomic sections (usually assuming weak atomicity). In the work by McCloskey
et. al. [25], a tool called Autolocker is presented. The tool takes as input a program
that has been manually annotated with (i) atomic sections and (ii) a mapping between
locks and memory locations protected by these locks. Autolocker takes this input and
produces a program that implements the atomic sections in (i) with the locks in (ii).
Further work by Emmi et. al. [11] proposed a technique to automate part (ii) above.
The actual assignment of locations to locks is solved as an optimization problem where
the goal is to minimize the total number of locks while still achieving minimum inter-
ference between the computed locks. The latest work of Cherem et. al. [6] proposes
another alternative to automate requirement (ii) while also computing the actual lock
placement in the code. Our work is complementary to these approaches, as our focus
is not on optimizing the implementation of CCRs, but on studying how to restrict non-
determinism (here it is technically via CCRs) as a function of two fundamental entities:
user-provided invariants and state observability. A complementary research challenge
is taking a program annotated with CCRs (of which atomic is a special case), and trans-
lating it to a semantically equivalent program that uses lower level synchronization
primitives such as locks and condition variables efficiently.

18

References
1. Jean-Raymond Abrial and Dominique Cansell. Formal construction of a non-blocking con-

current queue algorithm (a case study in atomicity). J. UCS, 11(5):744–770, 2005.
2. P.C. Attie and E.A. Emerson. Synthesis of concurrent systems for an atomic read/atomic

write model of computation. In PODC ’96, pages 111–120. ACM, 1996.
3. Sorav Bansal and Alex Aiken. Automatic generation of peephole superoptimizers. SIGOPS

Oper. Syst. Rev., 40(5):394–403, 2006.
4. Yoah Bar-David and Gadi Taubenfeld. Automatic discovery of mutual exclusion algorithms.

In Proc. of the symp. on Principles of Distributed Computing, pages 305–305, 2003.
5. J. Berdine, A. Chawdhary, B. Cook, D. Distefano, and P.W. O’Hearn. Variance analyses

from invariance analyses. In POPL, pages 211–224, 2007.
6. Sigmund Cherem, Trishul Chilimbi, and Sumit Gulwani. Inferring locks for atomic sections.

In PLDI’08, pages 304–315, New York, NY, USA, 2008. ACM.
7. E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons using

branching-time temporal logic. In Logic of Programs, Workshop, pages 52–71, 1982.
8. E.M. Clarke, Jr., O. Grumberg, and D.A. Peled. Model Checking. The MIT Press, 1999.
9. D. Dams. Abstract Interpretation and Partition Refinement for Model Checking. PhD thesis,

Eindhoven University of Technology, The Netherlands, December 1996.
10. E.W. Dijkstra. Cooperating sequential processes, TR EWD-123. Technical report, 1965.
11. Michael Emmi, Jeffrey S. Fischer, Ranjit Jhala, and Rupak Majumdar. Lock allocation. In

POPL ’07, pages 291–296, New York, NY, USA, 2007. ACM.
12. Lindsay Groves and Robert Colvin. Derivation of a scalable lock-free stack algorithm. Elec-

tron. Notes Theor. Comput. Sci., 187:55–74, 2007.
13. Brinch Hansen. Edison - a multiprocessor language. Software - Practice and Experience,

11(4):325–361, 1981.
14. T. Harris and K. Fraser. Language support for lightweight transactions. In OOPSLA ’03,

pages 388–402. ACM, 2003.
15. M.P. Herlihy and J.M. Wing. Linearizability: a correctness condition for concurrent objects.

ACM Transactions on Programming Languages and Systems, 12(3), 1990.
16. C. A. R. Hoare. Towards a theory of parallel programming. In The origin of concurrent

programming: from semaphores to remote procedure calls, pages 231–244. Springer-Verlag
New York, Inc., New York, NY, USA, 2002.

17. G. J. Holzmann. The Spin Model Checker, Primer and Reference Manual. Addison-Wesley,
Reading, Massachusetts, 2003.

18. Muhammad Umar Janjua and Alan Mycroft. Automatic correction to safety violations in
programs. In Thread Verification, 2006.

19. B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. In Conference on
Computer Aided Verification (CAV), pages 226–238, 2005. LNCS 3576.

20. B. Jobstmann, S. Staber, A. Griesmayer, and R. Bloem. Finding and fixing faults. Journal
of Computer and System Sciences (JCSS), 2008. Accepted for publication.

21. R. Joshi and J. Misra. Toward a theory of maximally concurrent programs (shortened ver-
sion). In PODC ’00, pages 319–328, New York, NY, USA, 2000. ACM.

22. L. Lamport. Concurrent reading and writing. Commun. ACM, 20(11):806–811, 1977.
23. Z. Manna and P. Wolper. Synthesis of communicating processes from temporal logic speci-

fications. ACM Trans. Program. Lang. Syst., 6(1):68–93, 1984.
24. Henry Massalin. Superoptimizer: a look at the smallest program. In ASPLOS-II:Architectual

support for programming languages and operating systems, pages 122–126. IEEE, 1987.
25. Bill McCloskey, Feng Zhou, David Gay, and Eric Brewer. Autolocker: synchronization in-

ference for atomic sections. In POPL ’06, pages 346–358, New York, NY, USA, 2006.
ACM.

19

26. Rahul Nagpaly, Karthik Pattabiramanz, Darko Kirovski, and Benjamin Zorn. Tolerace: Tol-
erating and detecting races. In STMCS: Second Workshop on Software Tools for Multi-Core
Systems, 2007.

27. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL ’89, pages 179–
190, New York, NY, USA, 1989. ACM.

28. Sriram Rajamani, G. Ramalingam, Venkatesh-Prasad Ranganath, and Kapil Vaswani. Con-
trolling non-determinism for semantic guarantees. In Exploiting Concurrency Efficiently and
Correctly – (EC)2, 2008.

29. P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event processes.
SIAM J. Control Optim., 25(1):206–230, 1987.

30. V.A. Saraswat, V. Sarkar, and C. von Praun. X10: concurrent programming for modern
architectures. In PPoPP ’07, pages 271–271, New York, NY, USA, 2007. ACM.

31. Nir Shavit and Dan Touitou. Software transactional memory. In PODC ’95, pages 204–213,
New York, NY, USA, 1995. ACM.

32. Armando Solar-Lezama, Gilad Arnold, Liviu Tancau, Rastislav Bodı́k, Vijay A. Saraswat,
and Sanjit A. Seshia. Sketching stencils. In PLDI, pages 167–178, 2007.

33. Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik. Sketching concur-
rent data structures. In PLDI ’08, pages 136–148, New York, NY, USA, 2008. ACM.

34. Armando Solar-Lezama, Rodric M. Rabbah, Rastislav Bodı́k, and Kemal Ebcioglu. Pro-
gramming by sketching for bit-streaming programs. In PLDI, pages 281–294. ACM, 2005.

35. Armando Solar-Lezama, Liviu Tancau, Rastislav Bodı́k, Sanjit A. Seshia, and Vijay A.
Saraswat. Combinatorial sketching for finite programs. In ASPLOS, pages 404–415, 2006.

36. S. Staber, B. Jobstmann, and R. Bloem. Finding and fixing faults. In Conference on Correct
Hardware Design and Verification Methods (CHARME), pages 35–49, 2005. LNCS 3725.

37. H. Sutter and J. Larus. Software and the concurrency revolution. Queue, 3(7):54–62, 2005.
38. Martin Vechev and Eran Yahav. Deriving linearizable fine-grained concurrent objects. In

PLDI ’08, pages 125–135, New York, NY, USA, 2008. ACM.
39. Martin T. Vechev, Eran Yahav, David F. Bacon, and Noam Rinetzky. Cgcexplorer: a semi-

automated search procedure for provably correct concurrent collectors. In PLDI ’07, pages
456–467, New York, NY, USA, 2007. ACM.

A Separator
A simple version of implement is shown in Fig. 6. It uses a characterization function
χ which finds a guard in the language, but does not attempt to minimize its cost. Syn-
chronization derived using simple version of implement always has the same high
cost: for each label l, nga(P, l) = |Obs|.

In this section, we present another version of implement, which results in a pro-
gram with the same set of traces as for the simple version of implement, but has
minimal cost. The new version of implement is shown in Fig. 11 and is based on the
notion of a separator which we describe next.

Separator Intuitively, a separator is a guard in LG that distinguishes between two sets
of states.

Definition 3 (Separator). Let LG be a language of guards. Let S1, S2 ⊆ Σ be sets of
states. A separator for S1 and S2 in LG is a guard g ∈ LG such that for all s1 ∈ S1,
[[g]](s1) = true and for all s2 ∈ S2, [[g]](s2) = false.

A separator for S1 and S2 does not exist in LG if and only if there are states s1 ∈ S1

and s2 ∈ S2 such that s1 ≈LG s2.

20

implement(P: Program, R : Set of Transitions) : Program {
P ′ = P
ts = 〈ΣP , TP,S \R, InitP 〉
L = {lbl(t) | t ∈ R}
foreach l ∈ L

BS = {src(t) | t ∈ R ∧ lbl(t) = l}
GS = {src(t) ∈ Reachts | lbl(t) = l}
sep = SEPARATOR(BS, GS)
let ccr(l) be guard → stmt in
P ′ = P ′[l : ¬sep ∧ guard → stmt]

return P ′

}
Fig. 11. The procedure implement using separator to optimize cost.

Lemma 3. If a separator for S1 and S2 in LG exists, then it can be defined using the
characterization function χ : Σ → LG:

χObs(S1) is a separator for S1 and S2

However, the cost of this separator may be higher than necessary, because it does not
take into account S2.

Given S1 and S2, there may be multiple separators in LG, with different costs.
Note that all separators for S1 and S2 are logically equivalent over the set S1 ∪ S2,
but χObs(S1) is the strongest separator in Σ. By choosing a weaker separator, we can
reduce its cost, as follows.

Given the observable variables Obs, we can define separator using χObs, as in Lemma 3.
However, the cost of this separator is high because it enumerates all variables in Obs,
even if these variables are not required to distinguish between S1 and S2, e.g., evaluate
to the same values in all states S1 ∪ S2.

The algorithm in Fig. 12 computes a separator with the minimal number of vari-
ables. It enumerates subsets of Obs of increasing size until it finds one that can distin-
guish between S1 and S2, and builds a separator formula using χ.

SEPARATOR(S1, S2 : Set of States) : Guard {
foreach k = 1, . . . , |Obs|

foreach V ⊆ Obs such that |V | = k
if (S1 ↓ V) ∩ (S2 ↓ V) = ∅

return χV (S1);
abort ”cannot find separator”
}

Fig. 12. An algorithm for computing a separator for disjoint sets of states S1, S2 ⊆ Σ with
respect to observable variables Obs.

The variables V ⊆ Obs cannot distinguish between states s and s′ when the values
of all these variables are identical in s and s′. Technically, we use s ↓ V to denote the
projection of the state s onto the set of variables V ⊆ Obs. For a set S ⊆ Σ, we use

21

S ↓ V to denote {s ↓ V | s ∈ S}. A set of variables V can distinguish between sets of
states S1 and S2, if their projections onto V are disjoint.

Example 7. Let Var = {x, y, z}. Let S1 = {〈1, 1, 1〉} and S3 = {〈1, 1, 2〉, 〈1, 2, 3〉}.
Suppose that Obs = {x, z}. Then, a possible separator for S1 and S2 is χObs(〈1, 1, 1〉) def=
x = 1∧z = 1, which performs two shared accesses. Another separator for S1 and S2 is
z = 1, and it only accesses a single variable. The algorithm in Fig. 12 returns the latter.

The correctness of this algorithm relies on the fact that in EQ(V) the observational
equivalence can be decided by comparing values of the variables in V only, without
evaluating all guards in the language:

Lemma 4. For all s, s′ ∈ Σ, s ≈EQ(V) s′ if and only if (s ↓ V) = (s′ ↓ V).

B Examples
In this section, we use the tool to illustrate the connection between synchronization cost
and permissiveness on several small but instructive examples. In these examples, we use
the synchronization cost as defined in Section 4. In all of the examples we start with
a program that is initially incorrect and does not use any synchronization. We use the
tool to automatically infer the maximally permissive synchronization for the given cost
(observability).

B.1 Asynchronous Counters

counter1 {
A: x = x%3 + 1;
goto A;

}

counter2 {
B: y = y%2 + 1;
goto B;

}

main() {
x = 1; y = 1;
counter1 || counter2;

}
Fig. 13. Asynchronous Counters

Guard Full Full/Sep limited limited
{ x,y } { x,y } { y } { x }

A (x 6= 2 ∨ y 6= 1) (x 6= 2 ∨ y 6= 1) (y 6= 1) (x 6= 2)
B (x 6= 3 ∨ y 6= 2) (x 6= 3) (y 6= 2) true

Fig. 14. Guards computed using GREEDY for the CCRs at locations A and B of the asynchronous
counters example, under different settings of observability.

Consider the example program of Fig. 13. This program consists of two threads:
each thread continuously performs modulo counting on a variable different than the
other thread. The threads operate independently of each other, e.g. use no synchroniza-
tion. The challenge is to synchronize the two counter threads so that certain shared
states are never reached. That is, no external reader accessing the shared state is able to
observe such values. In this example, assume that every state must satisfy the following
invariant: ¬(x = 3 ∧ y = 1).

Fig. 14 summarizes the results we obtained for this example by running GREEDY

with different settings of observability. In the table we show the guards computed for
the CCRs at locations A and B of the example program.

22

Full Observability In this case, the synchronization cost allows the solution to observe
all shared variables, that is, full observability. Assuming that both counter threads can
observe the shared variables x and y, the GREEDY algorithm produces the following

valid program as a result:

counter1 {
A: (x 6= 2 ∨ y 6= 1) ->

x = x%3 + 1;
goto A;

}

counter2 {
B: (x 6= 3 ∨ y 6= 2) ->

y = y%2 + 1;
goto B;

}
That is, it produces the guards (x 6= 2 ∨ y 6= 1) and (x 6= 3 ∨ y 6= 2) for A and B

respectively, as shown in Fig. 14. These guards correspond to the maximally permissive
solution that can obtained for this example as they eliminate only the invalid traces.

Applying Separator Applying the separator of Section 4 to this example improves the
cost of the solution. That is, it simplifies the guard of the second counter thread while
maintaining the same level of permissibility. The result is shown in column Full/Sep in
Fig. 14.

Limited observability However, let us suppose the solution is only allowed to observe
variable y. In this case, the system produces the guards (y 6= 1) and (y 6= 2) for A
and B respectively, shown in column limited y in Fig. 14. This solution is maximally
permissive with respect to the limited observability, but permits a subset of the traces
allowed by the solution using full observability. In both guards of this limited observ-
ability solution, only a single shared access is performed (to the variable y) and hence
application of the separator will not improve the cost.

Now, assume that instead of y, we lower the cost and allow it to observe only vari-
able x. In this case, the system produces the guards (x 6= 2) and true for A and B
respectively (shown as last column of Fig. 14). In this solution, only the guard for A
was strengthened (as compared to the original program). The result is maximally per-
missive for this restricted cost, but is less permissive than the one computed with full
observability.

We have exercised the tool with more complex versions of this example, involv-
ing multiple counter and reader threads. However, this simple example is the essential
representative and clearly illustrates that limiting synchronization cost limits the per-
missiveness.

Discussion It is interesting to note that there are various concurrent snapshot algorithms
which ensure that readers cannot observe intermediate updates to shared memory by
writers (see for example the concurrent reading and writing problem as discussed by
Lamport [22]). Many of these algorithms are designed to satisfy general atomicity
specifications such as linearizability [15]. However, if such an algorithm is taken and
used in a specific setting, it may restrict the allowed concurrency unnecessary and in
unknown ways. For example, in our case, if we are to use an algorithm where each cycle
of increments is atomic (e.g. the only observable state is when both x and y are 0), then
such an algorithm would be correct but unnecessarily restrictive for our invariant. Note
that we can still use our approach to infer synchronization to satisfy general atomicity
correctness criteria.

23

B.2 Dining Philosophers
Our next example is a slight adaptation of dining philosophers, a well known problem in
concurrency control, first proposed and solved by Dijkstra [10]. In this setup, there are
N philosophers dining on a round table. Each philosopher alternates its state between
thinking and eating. The challenge is to design a synchronization protocol which avoids
deadlock (no philosopher will ever eat) and starvation (every philosopher will eventu-
ally eat). There are many variants and solutions of this problem, all with different levels
of concurrency. Assume for example that each philosopher atomically updates its state
as a function of its previous state (we have ran examples where that is not the case).
Moreover, the philosophers are not synchronized with each other. Initially, when each
philosopher starts its operation, its state is set to THINKING.

deposit {
instr r x = 1;
l x = bal;
instr r x = 0;
l x = l x + 5;
instr w x = 1;
bal = l x;
instr w x = 0;

}

withdraw {
instr r y = 1;
l y = bal;
instr r y = 0;
l y = l w - 2;
instr w y = 1;
bal = l y;
instr w y = 0;

}

main {
bal = 5;
instr r x = instr w x = 0;
instr r y = instr w y = 0;

deposit || withdraw
}

Fig. 15. Race correction example

philosopher(int i) {
A: phil[i] = (phil[i]==THINKING) ? phil[i]=EATING : phil[i]=THINKING;

goto A;
}

Our safety criteria is that no two adjacent philosophers can eat at the same time. As-
sume that we have four philosophers sitting on a table where philosopher 0 is neighbors
with 1 and 3, 1 with 0 and 2, 2 with 1 and 3, and 3 with 0 and 2.

Full Observability We start by having the cost of the synchronization code observe all
variables. Assume the state of each philosopher is observable by all other philosophers.
If we run the system without using the separator, the tool produces guards that are
fairly elaborate. However, if separator is used, the cost is reduced (e.g. smaller guards
are computed) and we end up with the expected (and maximally permissive) solution.
Below is the expected inferred CCR guard for philosopher 0 produced by the tool:

(!phil[1] == EATING ∧ !phil[3] == EATING) -> ...

Limited Observability Let us now suppose that we restrict the synchronization cost and
do not allow the solution to observe the state of philosopher 3. When we run the system
(with separator), the following maximally permissive solution is produced (we do not
show the guards here without separator, but they are more expensive, although similarly
permissive).

0: (false -> ...)
1: (true -> ...)

24

2: (false -> ...)
3: (true -> ...)

The above solution is also intuitive. Without being able to observe the state of
philosopher 3, the neighbors of 3 (0 and 2) can never make progress, because otherwise
they may end up eating together with 3. It is easy to see that by decreasing observability,
we have ended up with a correct solution that is less permissive than the one with full
observability. Note that we consider this a correct solution because we ignore starvation
of philosophers. Even though both solutions allow starvation, with full observability,
there are executions where philosophers 0 and 3 can make progress, while when ob-
servability is limited, we are forced to err on the safe side and never allow any progress
of 0 and 3.

B.3 Race Correction

In this example we show how we used the system to fix data races. A race condition
occurs if two threads access a shared variable at the same time, and at least one of these
accesses is a write.

Our current implementation is limited to invariant specifications. Because race con-
ditions are a temporal safety property, we used additional instrumentation to encode
it in our current implementation. In the future, we plan to extend our tool to directly
handle temporal safety properties without additional instrumentation.

We consider the commonly used illustrative example of a bank account (see Fig. 15)
with two methods accessing a shared variable. For this simple example, we manually
introduced instrumentation. We introduce a variable for each shared access and set it
to 1 right before the shared access and reset it to 0 right after the shared access. The
instrumentation variables are in bold.

Echoing the definition of a race condition above, the state safety invariant is that no
two instrumentation variables from different threads that associate to the same location,
where at least one of them is a location that is written, are both set to 1. The invariant is
¬(instr w y = instr w x = 1∨instr w y = instr r x = 1∨instr r y = instr w x = 1).
Running the system computes a solution that is race-free and maximally permissive.
Below we show only the inferred guards (using the separator):

deposit {
....
!(instr w y == 1) -> instr r x = 1;
!(instr r y == 1 ∨ instr w y = 1) -> instr w x = 1;
...

}

withdraw {
...
!(instr w x = 1) -> instr r y = 1;
!(instr r x = 1 ∨ instr w x = 1) -> instr w y = 1;
...

}

25

C Proofs

Lemma 1 For all t, t′ ∈ TP,S such that lbl(t) = lbl(t′), t′ ≈LG t if and only if
[[χ(src(t))]](src(t′)) = true.
Proof: Let t, t′ ∈ TP,S such that lbl(t) = lbl(t′). If t ≈LG t′, then by definition
of the equivalence relation ≈LG in (2), we get that src(t) ≈LG src(t′). Therefore,
by (3), we conclude that [[χ(src(t))]](src(t′)) = true. If t 6≈LG t′ then by definition of
the equivalence relation ≈LG we get that src(t) 6≈LG src(t′). Therefore, by (3), we
conclude that [[χ(src(t))]](src(t′)) = false.
Theorem 1 Let R ⊆ TP,S . The transition system ts defined by 〈ΣP , TP,S \ [R]LG, InitP 〉
is implementable from P and LG:
(1) There exists a program P ′ such that [[P ′]] = [[ts]].
(2) P ′ can obtained from P by introducing guards from LG.
Proof: Let R ⊆ TP,S and P ′ be the result of implement(P, [R]LG) defined in Fig. 6.
In this algorithm, the program P ′ is obtained from P by introducing guards from LG.
To show that [[P ′]] = [[ts]], we show that the transition system of P ′ is the same as ts. It
boils down to showing that TP ′,S = TP,S \ [R]LG.

Recall that the algorithm in Fig. 6 modifies the program P by strengthening the
guards, i.e., the transitions of P ′ is a subset of the transitions of P : TP ′,S ⊆ TP,S . In
other words, there exists a set R′ of transitions such that TP ′,S = TP,S \ R′. We show
that R′ = [R]LG.

It is easy to see that [R]LG ⊆ R′: for every t ∈ [R]LG, the algorithm in Fig. 6
strengthens the guard of the ccr(t) with χ(src(t)), therefore, t is not enabled in P ′, i.e.,
t ∈ R′.

Consider a transition t′ that is in P but not in P ′, i.e., t′ ∈ R′. We show that
t′ ∈ [R]LG. The guard of ccr(t′) is defined by strengthening the guard of ccr(t′) in P ,
in a way that eliminates t′. That is, there exists t ∈ [R]LG such that lbl(t) = lbl(t′) and
src(t′) satisfies χ(src(t)). By Lemma 1, t′ ≈LG t and thus t′ ∈ [R]LG.

Corollary C1 Let R ⊆ TP,S be closed under ≈LG, i.e., R = [R]LG.

[[implement(P, R)]] = [[〈ΣP , TP,S \R, InitP 〉]]

Theorem 2 A run of the EXHAUSTIVE algorithm terminates with either a valid program
or abort.
Proof: In every iteration, the EXHAUSTIVE algorithm adds at least one transition from
TP,S to the set R. Because TP,S is finite, the EXHAUSTIVE algorithm either finds that ts
is valid or that B is empty, and terminates. If the transition system ts is valid, then the
EXHAUSTIVE algorithm returns a program implement(P,R), denoted by P ′, where R
is closed under ≈LG. By Corollary C1, we get that [[P ′]] = [[ts]], and thus P ′ is a valid
program.

Lemma C2 For every P ′ ∈ MP (P, LG), there exists R ∈ TP,S , such that R is closed
under ≈LG and [[P ′]] = [[〈ΣP , TP,S \R, InitP 〉]].
Proof: By Definition 1 of MP (P, LG), P ′ is obtained from P by introducing guards
in LG such that [[P ′]] ⊆ [[P]] and P ′ is valid. Since P ′ is less permissive than P , but
has the same statements, it differs from P by having stronger guards, i.e., the transition

26

system of P ′ has less transitions than that of P . Therefore, there exists R such that
TP ′,S = TP,S \R.

Suppose that R is not closed under ≈LG. Let t, t′ ∈ TP,S such that t ≈LG t′,
t /∈ R and t′ ∈ R, i.e., t ∈ TP ′,S , and t′ /∈ TP ′,S . Therefore, the guard g ∈ LG of
ccr(t) in P ′ holds for src(t) but not for src(t′), and a contradiction is obtained with
src(t) ≈LG src(t′).
Definition C3 Let P ′ be a program obtained from P by introducing guards in LG, and
R ∈ TP,S . We say that R is a clean cut for P ′ when all the following conditions hold:
(a) R is closed under ≈LG,
(b) [[P ′]] = [[implement(P, R)]],
(c) for all t ∈ R there exists t′ ∈ R, such that t ≈LG t′ and src(t′) is reachable in P ′.
Lemma C4 Let R′ ∈ TP,S be closed under≈LG and let P ′ be the result of implement(P, R′).
There exists R ⊆ R′ such that R is a clean cut for P ′.
Proof: Let t ∈ R′. If for all transitions t′ ∈ [t]LG, src(t′) is not reachable in P ′, then we
can remove [(]LGt) from R′ without changing the set of traces, i.e., [[implement(P,R′)]] =
[[implement(P, R′ \ [t]LG)]] Therefore, we define R by removing from R′ all the
equivalence classes that are unreachable in P ′ and get that [[implement(P, R)]] =
[[P ′]]. By construction, R is closed under ≈LG and R ⊆ R′.
Lemma C5 Let R be a clean cut for P ′, and let R′′ ⊂ R, such that R′′ is closed under
≈LG. If P ′ ∈ MP (P, S) then the program implement(P,R′′) is invalid.
Proof: First, we show that the program implement(P,R′′) has strictly more traces
than P ′. By Definition C3 of clean cut, at least one transition in R \R′′ is reachable in
P ′, but does not belong to P ′, therefore, adding that transition to the transition system
means adding a new trace. Since P ′ is maximally permissive, any program that has
strictly more traces is invalid, by Definition 1. In particular implement(P,R′′) is
invalid.
Lemma 2 For every maximally permissive program P ′ ∈ MP (P, LG), there exists a
run of the EXHAUSTIVE algorithm that returns P ′′ such that [[P ′]] = [[P ′′]].
Proof: Let P ′ be a program in MP (P, LG). We show that there exists a run of EXHAUS-
TIVE that returns P ′′ such that [[P ′]] = [[P ′′]].

By Lemma C2, let R′ ⊆ TP,S be a set of transitions closed under ≈LG such that
[[P ′]] = [[〈ΣP , TP,S \R′, InitP 〉]]. By Corollary C1, we get that P ′ and implement(P, R′)
have the same semantics (sets of traces). By Lemma C4, there exists a set R ⊆ R′ such
that R is a clean cut for implement(P, R′), and thus [[P ′]] = [[implement(P, R)]]. It
remains to show that there exists a run of EXHAUSTIVE that returns implement(P, R).
That is, we need to show that R can be computed by some choices of bad transitions in
EXHAUSTIVE.

If the original program P is valid, then R = ∅. We assume that R contains m
equivalence classes of transitions, for m > 0. The proof is by induction on the num-
ber of iterations of the algorithm. For i > 0, let Ri denote the value of R at the
end of iteration i of EXHAUSTIVE; tsi denote the transition system in iteration i, i.e.,
〈ΣP , TP,S \Ri−1, InitP 〉; Bi denote the set of bad transitions of tsi, i.e., Bi = bad-transitions(tsi);
and ti be the transition chosen in iteration i from Bi. Initially, R0 = ∅.

We show by induction that for all i = 1, . . . , m, if Ri−1 ⊆ R then Bi ∩ R 6= ∅. It
implies that in each iteration, we can pick a transition ti such that ti ∈ Bi ∩R, and add

27

its equivalence class to Ri−1 to get Ri ⊆ R. Following this order, we get that Rm = R
and in the next iteration tsm+1 is valid and EXHAUSTIVE returns implement(P, R) as
required.

Intuitively, we can always pick ti from Bi∩R, because every reachable stuck state in
tsi has a path to it through R (because, if we remove R from tsi, we get a valid transition
system). Thus, R will contain at least one bad transition in tsi, i.e., Bi ∩R 6= ∅.

Let 1 ≤ k ≤ m. Suppose that for all i = 1, . . . , k − 1, we pick ti ∈ Bi ∩ R. Note
that we get that Ri+1 ⊂ R and thus removing R from tsi we get the same traces as in
P ′.

We show that EXHAUSTIVE does not return or abort in iteration k. First, we show
that tsk is not valid (return in line 4 of EXHAUSTIVE). Recall that R is a cut of P ′ and
P ′ ∈ MP (P, S). By Lemma C5, we get that implement(P, Rk) is not valid because
Rk ⊂ R. Since [[tsk]] = [[implement(P, Rk)]], we get that tsk is not valid. Second,
we show that Bk is not empty (abort in line 6 of EXHAUSTIVE). If Bk is empty then
it is impossible to remove transitions from tsk to make doomed states unreachable,
therefore removing R from tsk would not result in a valid program, contradicting the
fact that P ′ is valid.

We show that there exists t ∈ Bk ∩ R. If Bk ∩ R is empty, then removing R from
tsk does not make any doomed states of tsk unreachable, i.e., the result is not a valid
transition system, contradicting the fact that P ′ is valid.

Lemma C6 For every maximally permissive program P ′ ∈ MP (P, LG), there exists
R ∈ min(RS) such that [[P ′]] = [[implement(P, R)]].
Proof: Recall that the set R, defined in the proof of Lemma 2, belongs to RS and satisfies
[[P ′]] = [[implement(P, R)]]. We show that R ∈ min(RS).

By definition of min(RS), we need to show that for all R′′ ∈ RS, R′′ 6⊂ R. For the
sake of contradiction, suppose that there exists R′′ ∈ RS such that R′′ ⊂ R. Since
R is a clean cut for P ′ and P ′ ∈ MP (P, S), we can use Lemma C5 to get that
implement(P,R′′) is not valid. By definition of RS, R′′ /∈ RS and a contradiction
is obtained.

Lemma C7 For every R ∈ min(RS), implement(P, R) ∈ MP (P, LG).
Proof: Let R ∈ min(RS). By definition, min(RS) ⊆ RS, and for all R′ ∈ RS, R′ is
computed by EXHAUSTIVE and induces a valid program implement(P,R′). Thus, in
particular, the program implement(P, R), denoted by P1, is valid. We can use Corol-
lary C1, because R is closed under ≈LG, to get that TP1,S = TP,S \R. For the sake of
contradiction, suppose that P1 is not maximally permissive, i.e., there exists a valid pro-
gram P2 obtained from P by introducing guards in LG, such that [[P1]] ⊂ [[P2]]. Without
loss of generality, we assume that P2 is maximally-permissive, i.e., P2 ∈ MP (P, S).

Using Lemma C6, there exists R2 ∈ min(RS) such that [[P2]] = [[implement(P,R2)]].
Note that R2 is closed under≈LG. Using Corollary C1, we get that [[P2]] = [[〈ΣP , TP,S \R2, InitP 〉]].
It implies that TP2,S ⊇ TP,S \R2.

The programs P1 and P2 differ only in the guards, and not statements, but [[P1]] ⊂
[[P2]]. Therefore, the transitions system of P2 has strictly more transitions than that of
P1, i.e., there exists R1 such that TP1,S = TP2,S \R1 and R1 is not empty.

Combining the above constraints about TP1,S , we get that TP,S \R ⊇ TP,S \ (R2 ∪
R1). Therefore, R ⊇ R1 ∪ R2 and since R1 is not empty we get the strict inclusion:

28

R ⊃ R2. This, together with the facts that R2 ∈ RS and R ∈ min(RS), leads to
contradiction.

Theorem 3
Proof: Follows from Lemma C6 and Lemma C7
Theorem 4 A run of the GREEDY algorithm terminates with either a valid program or
abort.
Proof: Similar to the proof of Theorem 2

Lemma C8 Suppose that a run of GREEDY is side-effects free and it computes a set R
of edges. Let ts denote the transition system of P . For all t ∈ R, dst(t) ∈ Doomedts.
Proof: Recall that a side-effect free run means that for all i > 0, the GREEDY algorithm in
iteration i picks a transition t from cut-transitions(ts) such that |[t]LG| = 1. Therefore,
in iteration i + 1, the set R is the same as in iteration i union with t, and the transition
system in i + 1 is the same as in i minus t. By removing t from the transition system,
reachability of other cut transitions is not affected, because every (simple) path contains
at most one cut-transition. Thus, the cut-transitions of i+1 are the same as in i, minus t.
It follows that R = cut-transitions(ts). By definition, the destination of a cut transition
is a doomed state, which completes the proof that destinations of all transitions in R are
doomed states.

Theorem 5 If a run of GREEDY has no side-effects then it computes a maximally per-
missive program for P and LG or aborts. If it aborts, then MP(P, LG) = ∅.
Proof: Suppose that a run of GREEDY without side-effects computes as set R of edges
and returns the valid program implement(P, R), denoted by P ′. We show that P ′ ∈
MP (P, LG).

Let P ′′ be a program obtained from P by introducing guards from LG, such that
[[P ′]] ⊂ [[P ′′]]. Since P ′ and P ′′ differ only in guards, and not statements, and they both
obtained from P , the transitions of P ′′ are a superset of those of P ′, and a subset of
those of P . Therefore, TP ′′,S \ TP ′,S ⊂ R. It follows that every trace in [[P ′′]] \ [[P ′]]
contains at least one transitions form R. By Lemma C8, R is a set of doomed transitions
in P . A trace that contains a doomed state is not valid. Therefore, the program P ′′,
which contains an invalid trace, is not valid.

29

